Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/33069
Title: | Aerobic exercise inhibits acute lung injury: from mouse to human evidence Exercise reduced lung injury markers in mouse and in cells |
Keywords: | Exercise immunology Lung inflammation Immune response Acute lung injury Cytokines Imunologia do exercício Inflamação pulmonar Resposta imune Lesão pulmonar aguda Citocinas |
Issue Date: | 2018 |
Publisher: | International Society of Exercise and Immunology |
Citation: | RIGONATO-OLIVEIRA, N. C. et al. Aerobic exercise inhibits acute lung injury: from mouse to human evidence Exercise reduced lung injury markers in mouse and in cells. Exercise Immunology, [S. l.], v. 24, p. 36-44, 2018. |
Abstract: | Acute respiratory distress syndrome (ARDS) is defined as hypoxemic respiratory failure with intense pulmonary inflammation, involving hyperactivation of endothelial cells and neutrophils. Given the anti-inflammatory effects of aerobic exercise (AE), this study investigated whether AE performed daily for 5 weeks would inhibit extra-pulmonary LPS-induced ARDS. C57Bl/6 mice were distributed into Control, Exercise, LPS and Exercise+LPS groups. AE was performed on a treadmill for 5x/week for four weeks before LPS administration. 24hours after the final AE physical test, animals received 100ug of LPS intra-peritoneally. In addition, whole blood cell culture, neutrophils and human endothelial cells were preincubated with IL-10, an anti-inflammatory cytokine induced by exercise. AE reduced total protein levels (p<0.01) and neutrophil accumulation in bronchoalveolar lavage (BAL) (p<0.01) and lung parenchyma (p<0.01). AE reduced BAL inflammatory cytokines IL-1β, IL-6 and GM-CSF (p<0.001), CXCL1/KC, IL-17, TNF-alpha and IGF-1 (p<0.01). Systemically, AE reduced IL-1β, IL-6 and IFN-gamma (p<0.001), CXCL1/KC (p<0.01) and TNF-alpha (p<0.05). AE increased IL-10 levels in serum (p<0.001) and BAL (p<0.001). Furthermore, AE increased superoxide dismutase SOD (p<0.01) and decreased superoxide anion accumulation in the lungs (p<0.01). Lastly, pre-incubation with IL-10 significantly reduced LPS-induced activation of whole blood cells, neutrophils and HUVECs, as observed by reduced production of IL-1β, IL-6, IL-8 and TNF-alpha. Our data suggest that AE inhibited LPS-induced lung inflammation by attenuating inflammatory cytokines and oxidative stress markers in mice and human cell culture via enhanced IL-10 production. |
URI: | http://eir-isei.de/2018/eir-2018-036-article.pdf http://repositorio.ufla.br/jspui/handle/1/33069 |
Appears in Collections: | DME - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.