Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/6999
metadata.revistascielo.dc.title: | Uma abordagem bayesiana para o mapeamento de QTLS utilizando o método MCMC com saltos reversíveis |
metadata.revistascielo.dc.title.alternative: | A bayesian approach to map QTLs using reversible jump MCMC |
metadata.revistascielo.dc.creator: | Silva, Joseane Padilha da Leandro, Roseli Aparecida |
metadata.revistascielo.dc.subject: | Genética - Modelos matemáticos Teoria bayesiana de decisão estatística QTL - Mapeamento MCMC com saltos reversíveis Genetics - Mathematical models Bayesian statistical decision theory QTL - Mapping Reversible jump MCMC |
metadata.revistascielo.dc.publisher: | Editora da Universidade Federal de Lavras |
metadata.revistascielo.dc.date: | 1-Aug-2009 |
metadata.revistascielo.dc.identifier.citation: | SILVA, J. P. da; LEANDRO, R. A. Uma abordagem bayesiana para o mapeamento de QTLS utilizando o método MCMC com saltos reversíveis. Ciência e Agrotecnologia, Lavras, v. 33, n. 4, p. 1061-1070, jul./ago. 2009. |
metadata.revistascielo.dc.description.resumo: | A utilização de metodologias bayesianas tem se tornado frequente nas aplicações em Genética, em particular em mapeamento de QTLs usando marcadores moleculares. Mapear um QTL significa identificar sua localização ao longo do genoma, estimar seus efeitos genéticos: aditivo, dominância, epistasia, etc. A abordagem bayesiana permite combinar a verossimilhança dos dados fenotípicos com distribuições a priori atribuídas a todas as quantidades desconhecidas no modelo (número, localização no genoma e efeitos genéticos dos QTLs) de forma a fornecer distribuições a posteriori a respeito dessas quantidades. Métodos de mapeamento bayesiano podem incorporar a incerteza relativa ao número desconhecido de QTLs na análise; essa incerteza, no entanto, resulta em complicações na obtenção da amostra da distribuição conjunta a posteriori, uma vez que a dimensão do espaço do modelo pode variar. O método MCMC com Saltos Reversíveis (MCMC-SR), proposto por Green (1995), é uma excelente ferramenta para explorar a distribuição conjunta a posteriori nesse contexto. Neste trabalho, explora-se o método MCMC-SR, utilizando dados artificiais gerados no software WinQTLCart, atribuindo-se diferentes prioris para o número de QTLs. |
metadata.revistascielo.dc.description.abstract: | The use of Bayesian methodology in genetic applications has grown increasingly popular, in particular in the analysis of quantitative trait loci (QTL) for studies using molecular markers. In such analyses the objectives are mapping QTLs, estimating their locations in the genome and their genotypic effects (additive, dominance, and epistatic). The Bayesian approach proceeds by setting up a likelihood function for the phenotype and assigning prior distributions to all unknown quantities in the model (number, chromosome, locus, and genetic effects of QTL). These induce a posterior distribution of the unknown quantities that contains all of the available information for inference of the genetic architecture of the trait. Bayesian mapping methods can treat the unknown number of QTL as a random variable, which has several advantages but results in the complication of varying the dimension of the model space. The reversible jump MCMC algorithm (MCMC-RJ), proposed by Green (1995), offers a powerful and general approach to exploring posterior distributions in this setting. The method was evaluated by analyzing simulated data in WinQTLCart, attributing different priors distributions on the QTL numbers. |
metadata.revistascielo.dc.identifier: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542009000400017 |
metadata.revistascielo.dc.language: | pt |
Appears in Collections: | Ciência e Agrotecnologia |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.