Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/59499
Full metadata record
DC FieldValueLanguage
dc.creatorLourenço, Fernando-
dc.creatorReis, Fernando-
dc.date.accessioned2024-09-25T12:27:00Z-
dc.date.available2024-09-25T12:27:00Z-
dc.date.issued2023-
dc.identifier.citationLOURENÇO, F.; REIS, F. A brief survey on residue theory of holomorphic foliations. Revista Matemática Contemporânea. [S.l], v. 53, p.181-2012, 2023.pt_BR
dc.identifier.urihttps://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2023/08/Article-08-vol-53.pdfpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/59499-
dc.description.abstractThis is a survey paper dealing with holomorphic foliations, with emphasis on Residue Theory and its applications. We start recalling the definition of holomorphic foliations as a subsheaf of the tangent sheaf of a manifold. The theory of Characteristic Classes of vector bundles is approached from this perspective. We define Chern Class of holomorphic foliations using the Chern-Weil theory and we remark that the Baum-Bott residue is a great tool that help us to classify some foliations. We present along the survey several recent results and advances in residue theory. We finish the work present some applications of residues to solve for example the Poincaré problem and the existence of minimal sets for foliations.pt_BR
dc.languageenpt_BR
dc.publisherSociedade Brasileira de Matemáticapt_BR
dc.rightsrestrictAccesspt_BR
dc.rightsAttribution-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.sourceMatemática Contemporâneapt_BR
dc.subjectHolomorphic foliationpt_BR
dc.subjectFlagspt_BR
dc.subjectResiduespt_BR
dc.subjectCharacteristic classespt_BR
dc.titleA brief survey on residue theory of holomorphic foliationspt_BR
dc.typeArtigopt_BR
Appears in Collections:DMM - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_A brief survey on residue theory of holomorphic foliations.pdf587,21 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons