Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/58176
Title: | Thermal quantum correlations in two gravitational cat states |
Keywords: | Gravity Quantum mechanics Quantum information Thermodynamics |
Issue Date: | 2023 |
Publisher: | Multidisciplinary Digital Publishing Institute |
Citation: | ROJAS, M.; LOBO, I. P. Thermal quantum correlations in two gravitational cat states. Universe, [S.l.], 2023. |
Abstract: | We consider the effect of a thermal bath on quantum correlations induced by the gravitational interaction in the weak field limit between two massive cat states, called gravitational cat (gravcat) states. The main goal of this paper is to provide a good understanding of the effects of temperature and several parameters in the entanglement (measured by the concurrence) and quantum coherence (measured by the 𝑙1 -norm that is defined from the minimal distance between the quantum state and the set of incoherent states) which are derived from the thermal quantum density operator. Our results show that the thermal concurrence and 𝑙1 -norm can be significantly optimized by increasing the masses or decreasing the distance between them. We investigate and discuss the behavior of these quantities under temperature variations in different regimes, including some that are expected to be experimentally feasible in the future. In particular, we observe that thermal fluctuations raise non-entangled quantum correlations when entanglement suddenly drops. |
URI: | https://www.mdpi.com/2218-1997/9/2/71 http://repositorio.ufla.br/jspui/handle/1/58176 |
Appears in Collections: | DEX - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.