Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/58107
Title: | Intermolecular covalent interactions: nature and directionality |
Keywords: | Bond theory Chalcogen bonds Density functional calculations Halogen bonds Pnictogen bonds |
Issue Date: | 2023 |
Publisher: | https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202203791 |
Citation: | SANTOS, L. de A. et al. Intermolecular covalent interactions: nature and directionality. Chemistry-A European Journal, [S.l.], v. 29, n. 14, 2023. |
Abstract: | Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal FmZ⋅⋅⋅F− complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO−LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F−Z⋅⋅⋅F− is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3, HClTe⋅⋅⋅NH3, and H2ClSb⋅⋅⋅NH3 complexes. |
URI: | https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/chem.202203791 http://repositorio.ufla.br/jspui/handle/1/58107 |
Appears in Collections: | DQI - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.