Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/56802
Title: | A statistical signal processing approach to islanding detection |
Keywords: | Islanding detection Distributed generation Principal component analysis High order statistics Cumulants Radial basis function network Photovoltaic array Fisher’s discriminant ratio |
Issue Date: | 2023 |
Publisher: | Brazilian Society on Computational Intelligence |
Citation: | LIMA, R. R. de et al. A statistical signal processing approach to islanding detection. Learning and NonLinear Models, [S.l.], v. 21, n. 1, p. 60-76, 2023. |
Abstract: | The integration of distributed generation (DG) sources in the electric energy systems may bring new problems that need attention, one of these problems is the occurrence of unintentional islanding. Islanding is a condition in which part of the distribution network is disconnected from the system, and consumer units are still powered by one or more DGs, which can cause damage to equipment and pose risks to the safety of technicians. This paper shows an islanding detection method (IDM) in Power Systems with DG based on statistical signal processing. We used a MathWorks Simulink model of a grid-connected 250 kW photovoltaic (PV) array to simulate the behavior of the three-phase voltage signal in the point of common coupling (PCC) under the nominal operation, islanding condition, and fault condition using different load compositions. Principal Component Analysis (PCA) was used to extract the transitory events from the voltage signals, and then we used second-, third-, and fourthorder cumulants to generate features and the best ones were selected using the Fisher’s Discriminant Ratio (FDR). A Radial Basis Function Network (RBFN) makes the classification of the events. We found that, for this setup, we can achieve detection rates of 99% for both islanding condition detection and fault occurrence classification, no matter the power mismatch between the load and the DG. |
URI: | https://sbic.org.br/lnlm/publicacoes/vol21-no1/vol21-no1-art5/ http://repositorio.ufla.br/jspui/handle/1/56802 |
Appears in Collections: | DEG - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.