Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/56517
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMonti, Cassio Augusto Ussi-
dc.creatorOliveira, Rafael Menali-
dc.creatorRoise, Joseph Peter-
dc.creatorScolforo, Henrique Ferraço-
dc.creatorGomide, Lucas Rezende-
dc.date.accessioned2023-04-05T18:22:24Z-
dc.date.available2023-04-05T18:22:24Z-
dc.date.issued2022-10-28-
dc.identifier.citationMONTI, C. A. U. et al. Hybrid method for fitting nonlinear height? Diameter functions. Forests, [S.l.], v. 13, n. 11, p. 1-18, 2022. DOI: 10.3390/f13111783.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/56517-
dc.description.abstractRegression analysis is widely applied in many fields of science to estimate important variables. In general, nonlinear regression is a complex optimization problem and presents intrinsic difficulties in estimating reliable parameters. Nonlinear optimization algorithms commonly require a precise initial estimate to return reasonable estimates. In this work, we introduce a new hybrid algorithm based on the association of a genetic algorithm with the Levenberg–Marquardt method (GALM) to adjust biological nonlinear models without knowledge of initial parameter estimates. The proposed hybrid algorithm was applied to 12 nonlinear models widely used in forest sciences and 12 databases under varying conditions considering classic hypsometric relationships to evaluate the robustness of this new approach. The hybrid method involves two stages; the curve approximation process begins with a genetic algorithm with a modified local search approach. The second stage involves the application of the Levenberg–Marquardt algorithm. The final performance of the hybrid method was evaluated using total fitting for all tested models and databases, confirming the reliability of the proposed algorithm in providing stable parameter estimates. The GA was able to predict the initial parameters, which assisted the LM in converging efficiently. The developed GALM method is effective, and its application is recommended for biological nonlinear analyses.pt_BR
dc.languageen_USpt_BR
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)pt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceForestspt_BR
dc.subjectFitting curvespt_BR
dc.subjectGenetic algorithmpt_BR
dc.subjectHybrid methodpt_BR
dc.subjectHypsometric relationshippt_BR
dc.subjectNonlinear parameterizationpt_BR
dc.titleHybrid method for fitting nonlinear height? Diameter functionspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Hybrid method for fitting nonlinear height diameter functions.pdf3,78 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons