
Citation: Monti, C.A.U.; Oliveira,

R.M.; Roise, J.P.; Scolforo, H.F.;

Gomide, L.R. Hybrid Method for

Fitting Nonlinear Height–Diameter

Functions. Forests 2022, 13, 1783.

https://doi.org/10.3390/f13111783

Academic Editor: Krzysztof

Stereńczak
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Abstract: Regression analysis is widely applied in many fields of science to estimate important
variables. In general, nonlinear regression is a complex optimization problem and presents intrinsic
difficulties in estimating reliable parameters. Nonlinear optimization algorithms commonly require
a precise initial estimate to return reasonable estimates. In this work, we introduce a new hybrid
algorithm based on the association of a genetic algorithm with the Levenberg–Marquardt method
(GALM) to adjust biological nonlinear models without knowledge of initial parameter estimates. The
proposed hybrid algorithm was applied to 12 nonlinear models widely used in forest sciences and
12 databases under varying conditions considering classic hypsometric relationships to evaluate the
robustness of this new approach. The hybrid method involves two stages; the curve approximation
process begins with a genetic algorithm with a modified local search approach. The second stage
involves the application of the Levenberg–Marquardt algorithm. The final performance of the hybrid
method was evaluated using total fitting for all tested models and databases, confirming the reliability
of the proposed algorithm in providing stable parameter estimates. The GA was able to predict the
initial parameters, which assisted the LM in converging efficiently. The developed GALM method is
effective, and its application is recommended for biological nonlinear analyses.

Keywords: fitting curves; genetic algorithm; hybrid method; hypsometric relationship;
nonlinear parameterization

1. Introduction

The objective of this paper is to introduce a new hybrid method encompassing an
initial estimate and effective convergence to a global minimum in the context of nonlinear
regression for application to growth equations often applied in forestry. A modified version
of a genetic algorithm is integrated with the Levenberg–Marquardt method to achieve
this goal.

Statistical modeling is essential to support fundamental hypotheses and scientific
theories, as well as industry and agricultural processes. The nonlinear behavior of some
relationships complicates the task of minimizing the loss of a particular model, which
might be further complicated by database characteristics and the mathematical nature of
the applied model. A nonlinear regression model is a nonlinear function with at least one
independent variable and one dependent variable [1]. In forestry, the nonlinear behavior of
most measured variables is often identified, leading to several studies over the years on
subjects such as total tree height [2–4], tree crown [5,6], tree radial growth as a function of
sunlight [7], dominant height [8–10], growth, and yield [1,11,12].

In Ref. [13], a comprehensive list of applications is provided for several families
of nonlinear curves in agriculture, ecology, economy, medicine, and biology, such as the
asymptotic, Michaelis–Menten, logistic, monomolecular, Gompertz, and Richards functions.
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Nonlinear models are more suitable in tree growth studies [14], covering a wide range of
forms to describe biological phenomena [15]. Typically, ecological systems have diverse
nonlinear components [16,17] linking to landscape, species, topographic gradient, climate,
age, and density. For some nonlinear models, it is feasible to convert a nonlinear function
into a linear function through mathematical transformation [18]. However, some models
are intrinsically nonlinear, meaning that their parameters must be estimated by a nonlinear
optimization algorithm [19]; these procedures have generally been successful in achieving
convergence in many cases [20].

Several methods have been developed for this purpose, e.g., the Levenberg–Marquardt,
steepest descent algorithm, Nelder–Mead, and Gauss–Newton algorithms [21]. The
Levenberg–Marquardt algorithm is among the most applied algorithms, owing to its
flexibility and fast convergence. The Levenberg–Marquardt algorithm is robust and avoids
the weakness of the well-known Gauss–Newton method, which is the rank-deficient shape
of the Jacobian matrix [22]. Several studies regarding nonlinear regression models have
highlighted this convergence issue over the years, such as in [15], in which the authors
reported difficulties associated with obtaining nonlinear parameters for the Gompertz
model in a plant growth study, likely due to the high sensitivity of the adjustment in
relation to the initial parameters. This issue was similarly reported by Parresol [23] in
a tree biomass nonlinear modeling study. In a taper modeling study, Cao and Wang [24]
reported nonconvergence when estimating random nonlinear parameters in a calibration
study using the Max–Burkhart (1976) [25] modified taper equation in a mixed effect study.

Metaheuristic algorithm estimates are usually not as reliable as estimated generated
using traditional methods owing to the generation of different solutions depending on
the initial random seed, which implies the use of an intense iterative procedure [26].
The main logic behind metaheuristic is to change the initial parameter estimates until
the error metric approaches the least-squares approximation [18]. Failure to converge is
essentially associated with the local search space restriction, which is narrowed by the
initial parameter estimate and additionally narrowed by the optimization algorithm in the
convergence process [27]. When convergence is achieved, the reliability of the parameter
estimates is also affected compared to traditional methods [28]. These initial values are
recurrently obtained by using partial derivatives of the model, based on the scientist’s
experience, or through estimates based on literature reports. The initial estimate is an
important issue when optimizing nonlinear models, owing to its direct effect on subsequent
estimates [15,29].

Parameter estimation is essentially a type of optimization problem, which means that
it can be solved applying stochastic algorithms [30], presenting an opportunity to use
such algorithms to fit nonlinear regression models. However, these algorithms are subject
to limitations regarding the stability on their outcomes [31–33], which may necessitate
repetitive analyses to provide reliable outputs. A genetic algorithm (GA) is an example
of a widely applied stochastic algorithm to solve nonlinear optimization problems [34–38].
A GA is a stochastic search strategy that explores the problem domain based on the
principles of natural selection and survival [39]. It consists of a set of powerful search
heuristics [40] and is appropriate for the prediction of nonlinear parameters, owing to its
core characteristic of producing several solutions with each iteration [41]. According to [42],
the genetic algorithm is known as a problem-solving method for a wide range of problems;
its most obvious application is the optimization of parameters in functions containing
multiple local optimal points and an intrinsic multiobjective setting.

Considering the limitations of traditional nonlinear optimization algorithms, such
as the Levenberg–Marquardt algorithm, when initial parameter guesses must be reason-
able and lead to convergence of parameter estimates, metaheuristics, i.e., GA, be used to
provide an initial estimate. On the other hand, metaheuristics can lead to a certain level
of instability in outputs, which can be avoided by classic nonlinear algorithms when the
initial conditions are well-supplied. In forestry, this issue is even more common due to the
natural nonlinear behavior of the biological variables and the unconsolidated knowledge
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of some relationships that serve as the basis for assumptions with respect to biological
variables. New plant and wildlife species analyses are often subject to the same problem.

2. Materials and Methods
2.1. Study Overview

Twelve nonlinear biological growth models (Table 1) were chosen to test the genetic
algorithm hybrid method, in addition to an individual tree database from three Brazilian
states of São Paulo, Minas Gerais, and Paraná. The database was compiled as part of
a large study aiming to cover most of the variation of the investigated states’ environ-
mental resources. Datasets (12) from ten different sites (Figure 1) were selected: SA
(Araucaria augustifolia (Bertol.)), NMT (Atlantic forest trees, Mata Atlântica), HE8 (8-year-old
Eucalyptus spp.), HE40 (40-year-old Eucalyptus spp.), NX (Xylopia brasiliensis Spreng.),
SP (5-year-old, 7-year-old, and 8-year-old Pinus taeda after thinning), HE6 (6-year-old
Eucalyptus spp.), HE2 (2-year-old Eucalyptus spp.), NSD (deciduous forest trees in a semi-
decidual forest), and NC (Brazilian savanna, Cerradão). Our focus in this study was the
variation in the height–diameter (h-d) relationship across silviculture prescriptions, species,
sites, and ages.

The selected regions have different soils, vegetation types, biomes, and climate char-
acteristics. Most of the study areas are covered by Oxisols, Ultisols, and Entisols. The
biomes covered by this study are Brazilian Savannah (Cerrado) and the Atlantic Rainforest
(Mata Atlântica), two of the three larges biomes in Brazil. Brazil has three climate types
according to Köppen-Geiger climate classification [43]: Tropical Zone—A (81.4%), Dry
Zone—B (4.9%) and Humid Subtropical Zone—C (13.7%). The sites applied in this study
are described within the 8 following subtypes: Af (without dry season), Am (monsoon), Aw
(with dry winter), As (with dry summer), Cfa (oceanic climate without dry season and with
hot summer), Cfb (oceanic climate without dry season and with temperate summer), Cwa
(with dry winter and hot summer), and Cwb (with dry winter and temperate summer).

Table 1. Summary of descriptive statistics from the study database involving even-aged (*) and
uneven-aged (**) forest types.

Database N
Average Max Min SD

d h d h d h d h

SA * 100 19.7 12.3 43.0 17.1 7.0 7.1 80.5 22.7
NMT ** 1975 9.6 6.5 99.0 30.0 2.9 1.4 54.8 30.2
NX ** 73 24.3 15.1 50.6 21.5 6.1 7.5 126.4 33.8

NSD ** 1975 11.7 9.7 77.4 25.0 3.0 2.1 82.5 36.0
NC ** 609 11.1 7.1 56.8 20.6 3.1 1.8 71.6 28.4
HE2 * 229 11.7 15.1 14.9 40.3 4.8 10.0 15.6 22.7
HE6 * 357 16.9 24.1 24.3 27.9 6.3 7.0 30.6 29.0
HE8 * 28 19.1 24.4 29.1 32.5 6.5 9.8 63.6 56.0

HE40 * 188 17.1 25.1 38.2 50.0 2.7 4.0 84.2 121.6
SP5 * 100 11.7 9.6 20.4 12.7 4.4 5.1 31.0 15.5
SP7 * 100 14.7 13.7 24.1 17.8 6.3 7.9 35.1 16.9
SP8 * 100 14.4 14.8 23.1 18.8 7.1 10.4 30.3 15.9

Notes: N—number of trees measured; d—diameter at breast height (cm); h—total tree height (m); SA—Araucaria
augustifolia; NMT—Atlantic forest trees (Mata Atlântica); HE8—8-year-old Eucalyptus spp.; HE40—40-year-old
Eucalyptus spp.; NX—Xylopia brasiliensis trees; SP7—7-year-old Pinus spp.; SP5—5-year-old Pinus spp.;
SP81S—8-year-old after thinning Pinus spp.; HE6—6-year-old Eucalyptus spp.; HE2—2-year-old
Eucalyptus spp.; NSD—deciduous forest trees (semi-decidual); NC –savanna (Cerradão); Average—average value;
Max—maximum value; Min—minimum value; SD—standard deviation.
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2.2. Database Structure

The structure of the database studied in the nonlinear fitting algorithm is designed
to encompass several forest types and their wide heterogeneity. The goal is to perform
a complete and robust experiment to test the hybrid algorithm and its dynamic range
approach. To that end, 5834 individual tree observations were selected from 12 sites, where
the diameter at breast height (d) (in centimeters, 1.3 m aboveground) and total height (h)
(in meters) were measured. The samples were selected from different forest types, classified
by Veloso et al. [44] as Brazilian Savannah (Cerradão), Atlantic Rainforest (Mata Atlântica)
and Semi-Deciduous Seasonal Forest (Floresta Estacional Semi-decidual). In addition,
commercial fast growth species (Eucalyptus spp. and Pinus spp.) managed under different
silvicultural systems were selected: (i) Three datasets composed of 2-, 6-, and 8-year-old
planted Eucalyptus spp. stands with a planting density 2 × 2 m in a management system
designed for energy wood, pulpwood, and saw timber, respectively, as well as a fourth
dataset comprising a 40-year-old planted Eucalyptus spp. stand (2 × 2 m) that had never
been harvested nor thinned; and (ii) two datasets composed of 5- and 7-year-old planted
Pinus spp. stands with a planting density of 2.2 × 2.2 m that had never been thinned and
a dataset comprising an 8-year-old Pinus spp. stand planted with a density of 2.2 × 2.2 m
that had been recently thinned at 8 years of age. These regimes are often planted by
pulp, fiberboard, and lumber industries in Brazil. Finally, two Brazilian native species
were selected that exhibit monodominance behavior (Araucaria augustifolia (Bertol.) and
Xylopia brasiliensis Spreng.) and are important for ecological, financial, cultural, and
social values.

The database applied in this study presented dispersion and position measures varying
within a wide range due to its diverse origins and treatments (Table 1).

The characteristic dispersion and nonlinear correlation within each dataset are shown
in Figure 2. The high inner variation must be assigned to the natural and older stands,
which present overstock (HE40) and different species (NC, NMT, and NSD). However,
some other datasets show less variance within their observations (HE2, HE6, HE8, NX, SA,
SP5, and SP8), which could lead to a requirement of less computational effort to adjust
a model. These datasets come mainly from monocultures. Spearman’s rank correlation
(π) (Figure 2) shows a strong relationship between d and h variables (π ≥ 0.7) for most of
the dataset. Only in NC and NMT was the correlation not considered to be strong because
their origin was from mixed-species natural stands.

2.3. Fitting Approach
2.3.1. Nonlinear Regression Models

Twelve nonlinear biological growth models (Table 2) were chosen to test the robustness
of the hybrid method. These type of models have been frequently applied to predict
variables in forest science, e.g., total tree height [45–47], dominant tree height [48], and
individual tree variables [49].

The prediction of the total height (h) is widely applied in forestry studies, usually
presenting sufficient correlation with diameter at breast height (d) to perform regression
analysis. The hypsometric patterns tend to exhibit nonlinear behavior, whereas the linear
h(d) equations may only be applicable to tested tree sizes and standard conditions [50]. Ow-
ing to the widespread use of the h(d) relationship in forest management and the complexity
of its fitting and estimating features, it was used to test the novel algorithm. Therefore,
twelve nonlinear regression models were selected from the forest science literature and
used to estimate the total height (h) as a function of diameter at breast height (d) (Table 2).
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Table 2. Nonlinear regression models selected to test the hybrid algorithm with dynamic range.

Parameter ID Model Reference Model

2
1 Meyer 1 h(d) = b1 · (1− exp(−b2 · d)) + ε

2 Burkhart 2 h(d) = b1 · exp
(

b2
d

)
+ε

3

3 Monomolecular 1 h(d) = b1 ·
(

1 − b2 · exp(−b 3 · d
))
+ε

4 Mitcherlich 1 h(d) = b1 − b2 · bd
3 + ε

5 Gompertz 1 h(d) = b1 · exp(−b2 · exp(−b3 · d)) + ε

6 Logistic 3 h(d) =
b1

1+exp
(

b2−d
b3

) + ε

7 Chapman-Richards 4 h(d) = b1 · (1− exp(−b2 · d)b3 ) + ε

8 Bailey 2 h(d) = b1 · (1− exp(−b2 · db3 )) + ε

4

9 Von Bertalanffy 1 h(d) = (b1
1−b4 − b2 · exp(−b3 · d))

1
1−b4 + ε

10 Bailey 2 h(d) = b1 · (1− b2 · exp(−b3 · db4 )) + ε
11 Zeide 2 h(d) = b1 · exp(−b2 · exp(−b3 · db4 )) + ε

12 Richards 2 h(d) = b1 · (1− b2 · exp(−b3 · d)b4 + ε

Notes: h(d)—total tree height as a function of diameter at breast height (d); b1—asymptote parameter; b2—curve
slope parameter; b3—rate to reach the asymptote parameter; b4—allometric constant parameter; ε—random error;
exp—mathematical exponential expression. 1—[29]; 2—[3]; 3—[51]; 4—[52].

2.3.2. Hybrid Method

In this section, we describe the proposed hybrid method to fit nonlinear regression
models without knowledge of the initial parameter values. The method has two stages:
(a) the genetic-dynamic approach, i.e., the genetic algorithm developed to predict the initial
parameter values, and (b) the statistical approach, i.e., model fitting by applying a widely
applied statistical nonlinear regression algorithm (Levenberg–Marquardt). We named the
proposed hybrid approach GALM (genetic algorithm + Levenberg–Marquardt).

The main procedure of the hybrid algorithm is illustrated flow chart in Figure 3. It
covers both stages, i.e., the GA procedures and the classic regression method.
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The hybrid algorithm implementation was developed using R software
(Version 4.2.1) [53]. In the first step, we coded and designed a genetic algorithm (GA)
with a modification in the fitting strategy to encompass a dynamic shrinking characteristic,
and in the second step, we applied the R package (Version 1.2-2) minpack.lm [54] to fit
the nonlinear regression models by the Levenberg–Marquardt method for all databases
following 100 repetitions. All computational tests were performed on a Desktop/Intel®

Core™ i5-3570 (3.4 GHz).

Step 1: Genetic Dynamic Approach

In order to control the genetic algorithm convergence, previous tests were applied.
As an evolving population algorithm, the GA requires predefinitions to start off its iter-
ations. The initial conditions for the GA are described in this paper as the population
size, fitness function, and genetic operators (selection, crossover, and mutation operators).
The population size is represented by a group of individuals, which, in the context of
this study, are the estimated value of the parameters to be evaluated at every iteration,
i.e., the potential squared error of the equation. The genetic operators play an enhancing
role through the iterations, approximating the curve within the dataset. In this study, in
order to provide wider search of the solution, owing to the lack of previous information
about the initial parameter estimate, we set a maximum population size of 300 individuals
and 100 iterations as the stop criteria, define as k iterations, where k ∈ {1, . . . , 100}. The
fitness function (Q) minimizes the residual sum of squares (Equation (1)), where h is the
vector of the observed total height in meters, β̂k is the estimated vector of parameters for
iteration k considering the models in Table 1, and X is the design matrix.

Q = argmin1:k ‖ h− β̂kX ‖2 (1)

The parameters are obtained from a random generation structure within a predefined
symmetric interval (R = [−r, +r]), such that R~Uniform (−r, +r), in which all values have the
same probability of being selected. Thus, the range (R) has an expected value and variance
of E[R] = 0 and V[R] = r2/3, respectively, as the parameters of the uniform distribution
were set to be symmetric. Therefore, the underlying objective function is to minimize the
variance of the model predictions by shrinking the value of r toward zero; consequently, the
estimated parameters will have the same pattern. This strategy improves the minimization
strategy for the overall variance of the parameters obtained by the GA procedure through
the genetic operators, also improving the efficiency of the genetic selection operator and
providing shrinking characteristics to the estimated parameters (β̂) by considering a limiting
factor as a set operator, i.e., min {β1

k, β2
k, . . . ,βp

k} for iteration k.
Initially, a high value is assigned for r (|r| = 100) to account for the lack of previous

information about the data and the model, which implies that all parameters start the
process with a random value obtained from the same range and distribution (R~Uniform
(−r, +r)). This initial interval R tends to decrease according to the iterations through the
dynamic strategy as the fitness function is improved. The pseudocode of the dynamic
range is given in Table 3.

Table 3. Pseudocode for the dynamic range strategy implementation.

Begin function:
dyrange (gk, g*, βj

k){
if (gk > g*):

r = min {βj
k} where j = 1, . . . , p.

else: r = r
return range [+r, -r]

}
End function
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where the function gk represents the best candidate solution in iteration k, and the
function g* is the best solution found until iteration k. The dynamic range function provides
adaptation in order to accelerate the convergence of the parameters to the local optima.
Thus, the range interval changes according to the current best solution, but the interval
remains untouched if the randomness seed of the searching phase of the algorithm reaches
a place in the solution space that is not considered a source of good estimates based on
the fitness function. After execution of the dynamic range strategy, the genetic operators
are activated.

(1) Selection Operator: This operator plays the role of the most adapted individual
selector, similar to Darwin’s theory of biological selection, which asserts that the most
adapted individual has the greatest probability of survival. Computationally, this is
implemented by a random search of the population, creating a new set and selecting
individuals according to their fitness values [37]. Tournament selection (Equation (2))
was chosen to control the diversity losses [38], selecting two individuals (f (x*) and
f (y*)) from the pool of parents (population). In order to obtain the most adapted
parents, this operator chooses the best value of fitness in every defined pair. Thereafter,
the best individuals are selected to crossover proceedings.

f (z*) = min{f (z1), f (z2), . . . , f (z300)} (2)

where z* represents the best chosen individual based on the sample, and f (z*) represents
the selection strategy for the two individuals f (x*) and f (y*). In this case, z1 is analogous to
x1 and y1.

(2) Crossover Operator: This is an important operator of the GA, providing the exploita-
tion phase of the solution search [55]. Similar to biology, the crossover is responsible
for exchanging genes from parents to their offspring, producing phenotypic variabil-
ity, i.e., a combination of parameter estimates from selected parents with the aim of
producing offspring containing characteristics of both best selected individuals in the
selection operator. The crossover operator has one swapping gene for each selected
pair of parents (Figure 4).
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(3) Mutation Operator: According to [55], mutation performs solution exploration, in-
creasing the diversity of the population. This operator imitates biological mutation as
described in Darwin’s theory, which says that there are some “random changes” in
an individual’s characteristics that if these changes are skill-increasing, they will be
passed from parents to offspring, maintaining differences from the other individuals
(diversity). Mutation maintains genetic population diversity and provides an escape
mechanism from a local optima space [28]. Computationally, mutation works by
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randomly selecting a parameter and a new value for this parameter according to
the interval R described above. We applied a 60% random mutation rate for each
iteration. We chose a high mutation rate for this study to account for the lack of
previous information about the datasets and the mathematical properties of the loss
function (nonlinear models).

Step 2: Statistical Approach

The second strategy of the hybrid algorithm is associated with a classic nonlinear
regression solving algorithm, the Levenberg–Marquardt Method (LM). The parameter
values derived from the best output from the GA convergence were applied in this stage
as preoptimized initial guesses. Considering the dataset (xi, yi) to be fitted, where xi is
the independent and yi is the dependent variable; i = 1, . . . , n, where n is the number
of observations, βp is the vector of parameters; and p = 1, . . . , P, where P is the number
of parameters.

The LM algorithm was first idealized in [56], named Levenberg’s method, considering
Newton’s method in its update function. Newton’s method is a widely studied and ap-
plied algorithm for nonlinear optimization and uses Taylor series for approximation of the
nonlinear function to iteratively improve an initial vector of parameters (β0) for β, where β
is a vector of parameters that minimizes the residual sum of squares and keeps improv-
ing the estimates until there is no change [57]. An improvement of Levenberg’s method
proposed in [58] incorporated the estimated local curvature information into the original
Newton’s update function. The Levenberg–Marquardt algorithm was implemented as
a robust technique by Moré [59], who approached the step-bound ∆, which updates its
choice depending on the ratio (ρ(β)) between the actual reduction and the prediction re-
duction. This ratio is obtained by decomposition in the linear system by measuring the
agreement between the linear and the nonlinear function [60]. This step-bound concept is
a prior attempt of trust-region approach, using ρ(β) to choose ∆, as expressed in Equation (3).

ρ
(

β j
)
=

‖ F
(

β j
)
‖2 − ‖ F

(
β j + β

)
‖2

‖ F
(

β j
)
‖2 − ‖ F

(
β j
)
+ F′

(
β j
)

β ‖2 (3)

To update ∆, Equation (3) must be kept at a reasonable value such that if ρ(β) ≥ 3
4 ,

then ∆ increases, whereas if ρ(β) ≤ 1
4 , then ∆ must be decreased. For more specific rules

for updating ∆, see [60]. The author still states that α > 0 is the Levenberg–Marquardt
parameter if |F(α)| ≤ σ∆, where σ ∈ (0,1) specifies the relative error in ‖ Dβ(α) ‖, where
D is a diagonal matrix that takes into account the scale of the problem, i.e., the database
module [60].

2.4. Assessment of the Hybrid Approach

We selected 12 models with nonlinear functions with biological interpretation of
parameters from the literature with varying numbers of parameters to be estimated (2, 3,
and 4 parameters) and varied mathematical structure. A combinatorial problem arises
when every model is matched with 12 databases. The procedure runs 100 times to validate
the results due to the stochastic seed of GA (Step 1). Therefore, the experimental repetitions
reached 14,400 (12 × 12 × 100) runs when combined with the nonlinear regression method
(Step 2) assigned to the GA approach (the hybrid GALM). The statistical criteria derived
from the error were applied to evaluate the consistency of the parameters displayed by the
hybrid approach: MAE, mean absolute error (4); R2

adj, adjusted coefficient of determination
(5); Bias (6); and RMSE, root mean square error (7).

MAE =
∑
∣∣∣hi − ĥi

∣∣∣
n

(4)
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R2
adj = 1−

(
1− R2)(n− 1)

n− p− 1
(5)

Bias =
∑
(

ĥi − hi

)
n

(6)

RMSE =

√
∑
∣∣∣hi − ĥi

∣∣∣2
n

(7)

where hi represents the observed total height of individual tree i, ĥi is the estimated total
height for tree i, n represents the sample size, p is the number of parameters of the target
model, and R2 is the uncorrected coefficient of determination given by 1—SSE/SST, where
SSE is the sum of squares error and SST is the corrected sum of squares total.

3. Results
3.1. Hybrid Modeling Assessment
3.1.1. Genetic Algorithm Approach

The designed GA was able to predict the initial parameters for all tested mod-
els and datasets in which the fitness function decreased throughout the iterations by
model parameter classes 2pg, 3pg, and 4pg, which refer to models with two, three, and
four parameters, respectively (Figure 5). The GA improved the initial population using
a randomized procedure. This was attributed to the genetic algorithm intrinsic factors,
including mutation rate, population size, and the dynamic range approach. However, the
four-parameter models (4pg) were more complex in minimizing the error function due to
their higher degree of nonlinearity (Figure 5, A-4pg). Models with a complex structure tend
to not converge easily depending on the initial guess required by the nonlinear optimization
algorithms. However, the GA provided reliable initial guesses, which contributed to the
success of all GALM conversions.

The change in the dynamic range (Figure 5, set B) in each parameter class provides an
approximation of the efficiency of the fitting process, in which the dynamic range strategy
plays an important role. The logarithm of best average error (Figure 5, set A) presents
an abrupt reduction (A-2pg and A-4pg) (Figure 5), which can be associated with a slight
change in the dynamic range presented in B-2pg and B-4pg. After small changes in the
search range, the error exhibited stabilization for A-2pg and small oscillations for A-4pg
(Figure 5). For the latter case, GA found the best error possible and stabilized the dynamic
range (Figure 5, B–4pg) to refine the search around iteration 26. Solutions less optimal
than those found by GA for the A-4pg (Figure 5) were activated after iteration 26, and
although the error increased, the dynamic range remained stable, showing consistency
across iterations. The changes in the error for this case may be related to the GA steps, as
the dynamic range was kept stable.

For the 3pg parameter class (sets A and B in Figure 5), an inverse pattern was ob-
served, such that a large and abrupt change in the dynamic range (Figure 5, B-3pg) had
no significant effect on the error, reducing from 16 to around 10 (Figure 5, A-3pg). For this
case, the dynamic range selected high initial values according to its characteristics of equal
probability of obtaining the values within the initial range. Owing to the small reduction in
the error, the dynamic range rapidly adapted to the new best solution and stabilized after
a few subsequent iterations. This is an expected feature, owing to the broader initial range
for all parameter class models to account for the lack of information about the datasets and
the initial guesses. If the initial guesses were provided with a priori information, then the
expected behavior of the changes in the dynamic range should resemble that expressed in
B-2pg and B-4pg (Figure 5)—perhaps even more stable than the displayed changes.
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The dynamic range strategy was essential to provide the GA better coverage of the
solution space and more tools to avoid the local optima spots, which are usually difficult
to detect, requiring significant efforts for any non-deterministic method. The parameter
range interval changes when the algorithm finds a better solution, supporting the stochastic
pattern to improve the population average error. A robust convergence algorithm combined
with a short run time is desired to determine the initial parameters. This problem can be
solved in a straightforward manner using GA associated with the dynamic range approach.

3.1.2. Hybrid Approach

The GALM algorithm spent an average of 22.16 s, with a minimum of 1.0 and
a maximum of 58.56 s, to fit all models within all databases, achieving total fitting success,
regardless of database variability and the complexity of the mathematical model. Although
the processing time depends on the size of the applied dataset, the GALM achieved a fast
convergence time, despite no previous acknowledge of the database.

The error statistics showed equality in fitting among all models within the databases
and experimental repetitions (Table 4).

The hybrid method estimates the parameters for all models and databases without
returning any non-convergence output. In most tests, the parameter variation is either
very low or inexistent. Figure 6 shows a box plot of all 100 repetitions performed by
the algorithm on the Burkhart model estimates. The estimates are stables for almost all
databases, presenting 0.1% variation in NC for parameter b2 and NSD for parameter b1.
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Table 4. Average error statistics, with standard deviation in parenthesis (both in meters) for GALM,
considering all tested nonlinear regression models and databases for hypsometric relationships.

Model MAE (SD) R2
adj (SD) Bias (SD) RMSE (SD)

Meyer 1.732 (1.76) 0.553 (0.233) −0.113 (0.339) 0.174 (0.174)
Burkhart 1.736 (1.759) 0.549 (0.24) −0.122 (0.341) 0.173 (0.175)

Monomolecular 1.722 (1.773) 0.558 (0.236) −0.098 (0.341) 0.172 (0.173)
Mitcherlich 1.715 (1.774) 0.562 (0.235) −0.098 (0.341) 0.171 (0.174)
Gompertz 1.724 (1.771) 0.559 (0.234) −0.097 (0.341) 0.172 (0.174)

Logistic 1.733 (1.776) 0.557 (0.233) −0.094 (0.341) 0.173 (0.174)
Chapman & Richards 1.727 (1.772) 0.558 (0.234) −0.096 (0.341) 0.172 (0.174)

Bailey1 1.719 (1.769) 0.561 (0.236) −0.1 (0.342) 0.172 (0.174)
Von Bertalanffy 1.728 (1.772) 0.554 (0.237) −0.094 (0.341) 0.172 (0.174)

Bailey2 1.706 (1.774) 0.561 (0.236) −0.099 (0.336) 0.171 (0.174)
Zeide 1.704 (1.763) 0.562 (0.235) −0.096 (0.337) 0.17 (0.172)

Richards 1.723 (1.772) 0.558 (0.231) −0.091 (0.33) 0.172 (0.174)

Note: MAE—mean absolute error; R2
adj—adjusted determination coefficient; RMSE—root mean square error;

Bailey1—Bailey 3 parameters; Bailey2—Bailey 4 parameters; standard deviations of each metric by model
considering all datasets are shown in parentheses.
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4. Discussion

A complex database encompassing by 12 silviculture prescriptions and species was
used to fit the hypsometric relationship on 12 nonlinear regression models with biological
interpretation. The hybrid method has two stages: (1) the genetic-dynamic-approach,
providing high-quality initial parameter estimates; and (2) the Levenberg–Marquardt
method, using the initial parameter estimates from Stage 1 to estimate the final set of
parameter estimates.

The number of parameters within a model is an underlying reason for the increased
complexity of the parameter estimate analyses. We addressed this complexity by comparing
the high computational effort required to execute GALM to fit the models with four
parameters (Figure 5, A-4pg). However, the dynamic range strategy showed the same
pattern for all groups of models by reducing the parameter interval from a high value
to a reasonable range before 25 iterations in the first stage (Figure 5, B-4pg). In Ref. [24],
random effect parameters applied to the segmented taper model presented in [25] could
not be adjusted for combinations of fixed and random effects, which is common in mixed
effect regression. The authors derived algebraic constraints in the taper equation, which
may have caused convergence failure. Non-convergence is likely to occur when changes
in the mathematical structure of the model are taken into consideration and the initial
seeds are not updated accordingly. The first derivative of the model usually helps in
the fitting process, although in several examples, non-convergence persists due to the
high sensitivity of the classical methods to the initial seeds. A hybrid approach with
metaheuristic optimization of prior assumptions about the initial guesses is recommended.
In Ref. [15], the authors listed several nonlinear models often applied in biological sciences
and provided information about tools for fitting many of them. The authors stated that
some transformations should be applied in order to avoid changes in the initial intrinsic
characteristics of these models, as they are based on nonlinear model families, such as
Gompertz, exponential, monomolecular, and logistic models. In the GALM context, neither
the mathematical structure of the model nor number of parameters had a significant
influence on the convergence process, as the hybrid approach reached 100% convergence
in all tested cases, owing to its main advantage of application the genetic algorithm as
the initial seed provider. In addition, dynamic range modification improves the variance
of the estimates, and the enhancement phase (Step 2) results in more specific evaluation
of the space of solutions than would be achieved if only the standard configuration of
GA were applied. Whereas the genetic operators execute the local search and scape from
local optima, the dynamic range forces the shrinkage of the space of solutions, providing
more efficient solution exploitation. Therefore, GALM could be helpful for improving
the calibration rate in mixed effect nonlinear studies, such as in [24,61,62], as the random
effect would be identified as an additional parameter with constraints with respect to the
initial seed estimate, considering the mathematical structure of a specific model and the
dataset characteristics.

In Ref. [63], the authors applied simulations to ensure the reliability and accuracy
of a modified maximum likelihood procedure. In the GALM approach, the simulations
produced concrete results (Figure 6 and Table 4), demonstrating the estimation capacity
of the hybrid algorithm in producing stable and reliable parameter estimates, although
with a highly variable dataset (Figure 2). Stage 2 ensures that the stability of the hybrid
method is maintained if the provided initial solution is accurate toward the optima. The
estimated parameter variation (Figure 6) demonstrates that the association of GA with
LM provides more intuitive and direct analysis in the nonlinear modeling context. Table 4
presents the evaluation metrics for each model; regardless of the number of parameters and
mathematical structure, the statistic metrics of the hypsometric relationship were similar
(MAE, Bias, RMSE, and R2

adj), with a coefficient of variation for each metric across the
models of 0.56%, 8.45%, 0.58%, and 0.68%, respectively. The stochastic outcomes under
uncertainties from GA resulted in a robust and efficient way to estimate the parameters,
also reported in [37,38].



Forests 2022, 13, 1783 15 of 18

A high stability of GALM estimates was achieved for all databases, except for NSD
parameter b1 and NC parameter b2 (Figure 6). In these two cases, the datasets are com-
posed of a stand of natural mixed species with no stratification, which can lead to a diffuse
pattern due to high biological variation among species. The variations in parameter b1
and b2 indicate that these parameters present higher uncertainty compared to the other
parameters of the Burkhart model displayed in Figure 6. A sensitivity analysis might be
necessary to reduce the variation in these estimates. Studies considering sensitivity analysis
of parameter estimation are common in forestry, for example, in [61], the authors investi-
gated forest growth variables by introducing a modification of the Taylor approximation
series to fit mixed multilevel nonlinear models. They were not able to achieve conver-
gence by applying mixed effects in all parameters of a version of the Chapman–Richards
function; instead, they applied it to the slope parameter only. In order to obtain the initial
solutions for that combination, the authors applied several repetitive steps when fitting
the Chapman–Richards function for each plot separately, then regressed each plot-specific
parameter estimate over the covariate trees per hectare. The GALM executes the second
phase proposed in [61] using the Levenberg–Marquardt algorithm, which also uses Taylor
approximation in the update function and introduces the concept of a trust region [60],
achieving total adjustment with less effort and more time efficiency, with a maximum com-
putational time of 58.56 with 14,400 repetitions without prior knowledge about the database
or model mathematical structure. Furthermore, the shrinking characteristic applied to the
parameter estimates based on the dynamic range strategy provides less variation in the
model predictions, which makes the biological characteristics of the nonlinear parameters
a matter of interpretation according to their scale.

There are few desired characteristics in the development of a new parameter opti-
mization method, including low processing time, high-quality initial solutions, reliability,
and stability of the final solution. The GALM presents conclusive metrics toward these
objectives, corroborating the results of similar studies [64,65]. The use of metaheuristics as
a nonlinear adjustment method has been applied in some studies with similar results as
those reported in the present study. In Ref. [28], the authors proposed a method to change
the parameter domain using several genetic algorithms, known a ADM—conceptually
similar to our proposed approach. They changed the likelihood function to search for
a new parameter domain. A similar strategy was applied in the dynamic range calcula-
tion, for which parameter range adaptation was updated after every best loss function
was found throughout Step 2 processing. In Ref. [66], the authors minimized the model
calibration complexity using a modified scatter search algorithm, achieving efficiency in
reaching the global optima. In Ref. [67], the authors applied a combined strategy to model
a system of biodiesel production using a backpropagation fuzzy rule-based model to pro-
vide coefficients of an optimization model that updates the goals of production for the
fitting phase. In Ref. [68], the authors proposed the use of GA for two purposes—feature
selection and fitting strategy—without using classical methods to estimate the parameters.
Although the performance of parameter estimates was not validated, the authors high-
lighted the advantage of using GA for both feature selection and parameter estimation in
nonlinear regression, as no prior information about the initial guesses is required. In the
abovementioned studies, the authors attempted to facilitate the fitting process through
different approaches, reinforcing the necessity of more efficient methods. In some cases,
this represents a significant increase in complexity for the fitting method, which translates
into difficulties with respect to replication. With the GALM approach, we present a straight-
forward strategy to improve the gains in the GA phase by simply reducing the estimates
toward the origin as the solutions are improved through Step 1. The pseudocode presented
in Table 3 exemplifies the implementation of our strategy. This dynamic range update
approach provides search efficiency for improved solutions with no previous knowledge
about the dataset or the model structure, reducing the complexity of calibration in nonlinear
models and combining the strengths of widely applied optimization methods. In essence,
the GALM is a modified backpropagation strategy. In Stage 1, i.e., the dynamic range
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update, the quality of further solutions depends on previous solutions in a connected flow
of improvement. When Stage 2 begins, the solutions are already close to optimal; therefore,
fitting success is achieved with no extra effort.

The GALM approach presented here highlights some of the main difficulties associated
with biological nonlinear analyses, i.e., the attainment of the initial set of values for the
fitting model and, consequently, failure in accurate estimation of the model parameters.
The hybrid method overcomes the drawbacks of nonlinear biological analysis of a lack of
prior information about the dataset and biological interpretation of the parameters.

5. Conclusions

In this study, we investigated the use of a hybrid method based on the association of the
strengths of a genetic algorithm and the Levenberg–Marquardt method in order to improve
the capacity of fitting nonlinear models with biological interpretation of hypsometric
relationships. We estimated the parameters of nonlinear regression models with biological
interpretation without prior information about the dataset or the mathematical structure of
the nonlinear models. The overall result shows that this association can be used to improve
the calibration of parameters and the frequency of successes in fitting a nonlinear model
in forest modeling studies, particularly for hypsometric relationships, which can pose
challenges in obtaining parameter estimates, owing to its degenerated characteristic. The
presented hybrid method overcomes this issue, providing estimates for all tested datasets,
regardless of complexity.

The dynamic range strategy improves the search space and reduces the variance of
the parameters by shrinking them toward smaller values. This strategy assists the genetic
operators by making the search space more specific, improving the set of solutions.

The combination of GM with the LM method integrates the trust region concept
embedded in this method. The proposed GALM approach provides reliable estimates
and is therefore recommended for nonlinear studies applied in forestry, specifically for
parameters of biological interpretation.
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