Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/49447
Título: | Modelos de classificação em fraudes financeiras: comparação de desempenho em casos de crime de smurfing |
Título(s) alternativo(s): | Financial fraud classification models: performance comparison in smurfing crime cases |
Autores: | Lima, Renato Ribeiro de Maziero, Erick Galani Guimarães, Paulo Henrique Sales Pires, Danilo Machado |
Palavras-chave: | Fraudes financeiras Machine learning Smurfing Segurança financeira Financial frauds Financial security |
Data do documento: | 25-Fev-2022 |
Editor: | Universidade Federal de Lavras |
Citação: | ALCINO, M. S. Modelos de classificação em fraudes financeiras: comparação de desempenho em casos de crime de smurfing. 2022. 84 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária) – Universidade Federal de Lavras, Lavras, 2022. |
Resumo: | The difficulty in identifying financial fraud is directly related to technological advances, as the new possibilities of forms of financial transactions, in turn, generate new forms of fraudulent agents to act. In this context, the aim of this study is to explore the theoretical construction of six machine learning (ML) models, in addition to comparing them through specific performance evaluation metrics. Furthermore, this work develops an algorithm to detect a type of financial crime known as smurfing. This algorithm does not use ML techniques, but aims to classify financial transactions as possible fraud through the analysis of pooled data. Given the impossibility of using real financial data, due to its confidentiality, this work is using simulated data. Two different scenarios were generated, both highly unbalanced, in which the behavior of financial fraud varies according to specific parameters. The chosen classification models were logistic model, Fuzzy Rule Based Systems, Artificial Neural Networks, Random Forest, Extreme Gradient Reinforcement and Support Vector Machine. The comparison of the models in the different scenarios was done through a combination of the metrics Area Under de Curve, Recall and Fb , once data are imbalanced. The results showed that the Random Forest and Extreme Gradient Boosting models had the best performances, therefore, it is believed that the use of such models in real data, even with different parameters, can help in tracking illegal financial transactions and identifying fraudsters |
URI: | http://repositorio.ufla.br/jspui/handle/1/49447 |
Aparece nas coleções: | Estatística e Experimentação Agropecuária - Mestrado (Dissertações) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DISSERTAÇÃO_Modelos de classificação em fraudes financeiras comparação de desempenho em casos de crime de smurfing.pdf | 1,57 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.