Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/49191
Title: Uma abordagem em cascata para predição de gênero a partir de textos em Português
Other Titles: A cascading approach to gender prediction from portuguese texts
Authors: Merschmann, Luiz Henrique de Campos
Pereira, Denilson Alves
Paiva, Elaine Ribeiro de Faria
Keywords: Caracterização autoral
Mineração de texto
Predição de gênero
Língua portuguesa
Author profiling
Portuguese language
Text mining
Gender prediction
Issue Date: 7-Feb-2022
Publisher: Universidade Federal de Lavras
Citation: MORAIS, J. P. M. de. Uma abordagem em cascata para predição de gênero a partir de textos em Português. 2021. 48 p. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Lavras, Lavras, 2022.
Abstract: Author Profiling, whose objective is the analysis of a text to uncover characteristics (e.g., gen- der and age) of its author, has become an important task in different areas such as forensics, marketing, and e-commerce. Although a lot of research has been conducted on this task for some widely used lan- guages (e.g., English), there is still a lot of room for improvement in studies involving the Portuguese language. Thus, this work contributes by proposing and evaluating a cascading approach, which combi- nes a weighted lexical approach, a heuristic and a classifier, for the gender prediction problem using only textual content written in the Portuguese language. The proposed approach takes into account both spe- cificities of the Portuguese language and domain characteristics of the texts. The results obtained from the proposed approach showed that exploring the specificities of the Portuguese language and domain characteristics of the texts can positively contribute to the performance of the gender prediction task.
URI: http://repositorio.ufla.br/jspui/handle/1/49191
Appears in Collections:Ciência da Computação - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.