Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/48202
Título: | Ciência de dados na avaliação de amostras de café de qualidade extrema |
Título(s) alternativo(s): | Data Science in the evaluation of extreme quality coffee samples |
Palavras-chave: | Café - Atributos sensoriais Análise multivariada Árvore de regressão Café cereja descascado Cafés especiais Coffee - Sensory attributes Multivariate analysis Regression tree Peeled cherry coffee |
Data do documento: | 2020 |
Editor: | Universidade Federal de Minas Gerais |
Citação: | FERREIRA, E. B. et al. Ciência de dados na avaliação de amostras de café de qualidade extrema. Caderno de Ciências Agrárias, Montes Claros, v. 12, p. 01-08, 2020. DOI: 10.35699/2447-6218.2020.15863. |
Resumo: | Demand for the quality of specialty coffees has driven the market and influenced the increased commercial value of coffee bags. In the Brazilian market, the state of Minas Gerais contributes a significant percentage of productivity, a fact that has been accompanied by quality coffee contests. This paper analyzed the first twenty samples of peeled cherry coffee ranked in the Concurso Mineiro de Qualidade do Café in 2013. Under the quantitative approach, an exploratory analysis was performed from the construction of the principal components with the 15 attributes. Subsequently, the prediction capacity of final grades was evaluated through a regression tree model. As a result, Linoleic and Palmitic acids were the attributes that most contributed to the construction of the first principal components. In addition, Linoleic acid was attributed as the root of the regression tree, which is a important attribute for the prediction of final scores. |
URI: | http://repositorio.ufla.br/jspui/handle/1/48202 |
Aparece nas coleções: | DCA - Artigos publicados em periódicos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
ARTIGO_Ciência de dados na avaliação de amostras de café de qualidade extrema.pdf | 1,15 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma Licença Creative Commons