Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/46065
Título: DVNAT: a Dedicated Vehicular Network ArchiTecture against inconsistency and bad-mouthing attacks through a reputation system
Autores: Correia, Luiz Henrique Andrade
Bettio, Raphael Winckler de
Santos, Aldri Luiz dos
Guidoni, Daniel Ludovico
Palavras-chave: Vehicular Ad hoc Network
Redes veiculares
Algoritmo Ed25519
Sistema de reputação
Reputation system
Vehicle networks
Ed25519 algorithm
Data do documento: 25-Jan-2021
Editor: Universidade Federal de Lavras
Citação: NATIVIDADE, D. V. DVNAT: a Dedicated Vehicular Network ArchiTecture against inconsistency and bad-mouthing attacks through a reputation system. 2020. 78 p. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Lavras, Lavras, 2021.
Resumo: The VANETs (Vehicular Ad hoc Network) brought more safety and comfort to traffic, allowing the exchange of traffic messages and entertainment content between vehicles. However, several types of attacks are known on vehicle networks, causing significant problems for drivers. Inconsistency and collusion attacks by bad-mouthing, for example, can disturb the correct functioning of the network. This paper presents DVNAT (Dedicated Vehicular Network ArchiTecture), which is capable of handling these types of attacks on vehicular networks. It uses a digital signature with the Ed25519 algorithm and a centralized reputation system with the LETICIA (Lightweight and EfficienT Information exChange In Ad-hoc network) algorithm developed to mitigate malicious vehicle attacks on the network. Simulation results show that DVNAT with the LETICIA algorithm effectively reduced the reputation of the malicious vehicle against inconsistency attacks while maintaining the reputation of the vehicle honest against bad-mouthing collusion attacks when compared to the ARS algorithms, BYOR, BYOR-LF, and IDES algorithms.
URI: http://repositorio.ufla.br/jspui/handle/1/46065
Aparece nas coleções:Ciência da Computação - Mestrado (Dissertações)



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.