Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/43111
Title: Desenvolvimento de uma rede neuro-fuzzy para predição da temperatura retal de frangos de corte
Keywords: Sistemas híbridos
Modelos lineares locais
Ambiente térmico
Hybrid systems
Local linear models
Thermal environment
Issue Date: 2010
Publisher: Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Informática (INF)
Citation: FERREIRA, L. et al. Desenvolvimento de uma rede neuro-fuzzy para predição da temperatura retal de frangos de corte. Revista de Informática Teórica e Aplicada, [Porto Alegre], v. 17, n. 2, p. 221-233, 2010. DOI: 10.22456/2175-2745.8046.
Abstract: The goal of this work was to develop and validate a neuro-fuzzy intelligent system (LOLIMOT) for rectal temperature prediction of broiler chickens. The neuro-fuzzy network was developed using SCILAB 4.1, on the ground of three input variables: air temperature, relative humidity and air velocity. The output variable was rectal temperature. Experimental results, used for validation, showed that the average standard deviation between simulated and measured values of RT was 0.11 °C.The neuro-fuzzy system presents as a satisfactory hybrid intelligent system for rectal temperature prediction of broiler chickens, which adds fuzzy logic features based on the fuzzy sets theory to artificial neural networks.
URI: http://repositorio.ufla.br/jspui/handle/1/43111
Appears in Collections:DCC - Artigos publicados em periódicos



This item is licensed under a Creative Commons License Creative Commons

Admin Tools