Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/42672
Title: Modelo hierárquico generalizado normal assimétrico Bayesiano aplicado à análise genômica
Other Titles: Bayesian asymmetric gaussian generalized hierarchical model applied to genomic analysis
Authors: Balestre, Márcio
Bueno Filho, Júlio Sílvio de Sousa
Bueno Filho, Júlio Sílvio de Sousa
Nascimento, Moysés
Oliveira, Isabela Regina Cardoso de
Keywords: Assimetria
Seleção genômica ampla
Herdabilidade
Análise genômica
Modelo hierárquico generalizado Bayesiano
Asymmetry
Heritability
Genetic analysis
Generalized hierarchical Bayesian model
Genome wide selection problem
Issue Date: 27-Aug-2020
Publisher: Universidade Federal de Lavras
Citation: MATEUS, W. S. Modelo hierárquico generalizado normal assimétrico Bayesiano aplicado à análise genômica. 2020. 73 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária) – Universidade Federal de Lavras, Lavras, 2020.
Abstract: A crucial point in genomic analysis is the correct selection of genetically superior individuals for characters of economic importance. In this dissertation we study the application of the Generalized Hierarchical Bayesian Model (MHGB) using the asymetric gaussian distribution to the Genome wide Selection problem (GWS). The reasoning for this choice of modelling is to challenge current models of GWS when they fail their assumptions and become less reliable. A simulation study was carried to compare reference models to MHGB. Markers of actual SNPs data where used to simulated phenotypes in different scenarios for number of genes and heritability, as well as degrees of asymmetry in the error distribution. In symmetric scenarios MHGB was almost as acurate as main reference methods GBLUP. When asymetry arises, MHGB accuracy overtakes GBLUP and all other considered methods. There are evidence that MHGB should be used with advantages in GWS, whenever asymmetries are identified in the data distribution.
URI: http://repositorio.ufla.br/jspui/handle/1/42672
Appears in Collections:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.