Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/40646
Title: An elementary proof of fisher-cochran theorem using a geometrical approach
Other Titles: Uma prova elementar do teorema de Fisher-Cochran usando uma abordagem geométrica
Keywords: Chi-squared distribution
Quadratic forms
Orthogonal projections
Distribuição do qui-quadrado
Formas quadráticas
Projeções ortogonais
Issue Date: 2019
Publisher: Universidade Federal de Lavras
Citation: CHAVES, L. M.; SOUZA, D. J. de. An elementary proof of fisher-cochran theorem using a geometrical approach. Revista Brasileira de Biometria, Lavras, v. 37, n. 3, p. 372-377, 2019.
Abstract: The classical Fisher-Cochran theorem is a fundamental result in many areas of statistics as analysis of variance and hypothesis tests. In general this theorem is proved with linear algebraic arguments. An elementary proof is present, based strongly on geometrical concepts as linear subspaces and orthogonal projections, which may improve our intuition about the result.
URI: http://repositorio.ufla.br/jspui/handle/1/40646
Appears in Collections:DEG - Artigos publicados em periódicos

Files in This Item:
File Description SizeFormat 
ARTIGO_An elementary proof of fisher-cochran theorem using a geometrical approach.pdf233,96 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons