Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/38156
Title: | Análise espacial de um fragmento florestal baseada no mosaico de dirichlet |
Other Titles: | Spatial analysis of a forest fragment based on dirichlet's mosaic |
Keywords: | Mosaico de dirichlet Árvores - Distribuição espacial Método de Monte-Carlo Mosaico de Voronoi Dirichlet's mosaic |
Issue Date: | 2012 |
Publisher: | Sociedade de Investigações Florestais |
Citation: | SCALON, J. D.; OLIVEIRA, C. A. P. de; MELLO, J. M. de. Análise espacial de um fragmento florestal baseada no mosaico de dirichlet. Revista Árvore, Viçosa, MG, v. 36, n. 4, p. 733-740, 2012. |
Abstract: | The spatial pattern of trees affects a large number of physiological and ecological processes in a forest, including competition, distribution, size, growth and mortality of the species. Methods based on the Ripley's K function have been frequently used to characterize the spatial configuration of a forest. In this article we advocate to use methods that are based on areas of the Dirichlet's mosaic (function D) to describe the spatial distribution of trees. Due to the importance of Xylopia brasiliensis (Pindaíba) in the structure and dynamics of Semideciduous montana forests, this study assessed the K and D functions to describe the spatial distribution of this specie. Results showed that the estimators of the K and D functions, combined with Monte Carlo simulations, led to rejection of the null hypothessis of completely spatial randomness (p < 0,10 ) of the Xylopia brasiliensis in favor of the presence of clustering of the specie within the forest fragment. |
URI: | http://repositorio.ufla.br/jspui/handle/1/38156 |
Appears in Collections: | DEX - Artigos publicados em periódicos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
ARTIGO_Análise espacial de um fragmento florestal baseada no mosaico de dirichlet.pdf | 483,26 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License