Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/36694
Title: PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation
Keywords: Biodegradable polymers
Ugi reaction
Magnetic composites
Hyperthermic agent
Polímeros biodegradáveis
Reação Ugi
Compósitos magnéticos
Agente hipertérmico
Issue Date: 2016
Publisher: Budapest University of Technology and Economics
Citation: ICART, L. P. et al. PLA-b-PEG/magnetite hyperthermic agent prepared by Ugi four component condensation. eXPRESS Polymer Letters, [S. l.], v. 10, n. 3, p. 188-203, 2016.
Abstract: Ugi four component condensation (UFCC), is an important tool for the synthesis of different types of bioconjugate species. In this study, a PLA-PEG/magnetite magnetic composite was prepared by a synthetic-route approach based on UFCC. In particular, poly(lactic acid) (PLA) was synthesized by autocatalytic polycondensation. Also, poly(ethyleneglycol) bis-amine (bis-amine PEG) was synthesized by two different methods: via carbonyldiimidazol (CDI)/ethylenediamine (ED) (75% yield) and via chlorate monochlorated acetyl (CCA)/ED (95% yield). All products were characterized by gel permeation chromatography (GPC), hydrogen-1 nuclear magnetic resonance (NMR1 H), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). In addition, magnetite was prepared and modified to generate aldehyde groups which are also necessary for UFCC. This product was characterized by DSC, TGA, X-ray diffraction (XRD) and magnetic force (MF) techniques. Also, the magnetic composite PLA-PEG/magnetite was synthesized by UFCC. The calculated yield was equal to 80%. Furthermore, magnetic microspheres were prepared by the procedure of emulsion solvent-evaporation and characterized by scanning electron microscopy (SEM) and magnetic induction hyperthermia (MIH). The main contribution of these results is to propose a new application for UFCC in the preparation of biomasked magnetic drug delivery systems able to improve the cancer treatment and even the welfare of the patients.
URI: http://www.expresspolymlett.com/index.html?tartalom=content.php&year=2016&number=3&kodnumber=1
http://repositorio.ufla.br/jspui/handle/1/36694
Appears in Collections:DEG - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.