Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/15038
metadata.ojs.dc.title: Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves
metadata.ojs.dc.creator: Oliveira, Sanderson L. Gonzaga de
Kischinhevsky, Maurício
metadata.ojs.dc.subject: Time complexity
Space-filling curves
Hilbert-like curve
Sierpinski-like curve
metadata.ojs.dc.publisher: Universidade Federal de Lavras
metadata.ojs.dc.date: 1-Mar-2010
metadata.ojs.dc.identifier.citation: OLIVEIRA, S. L. G. de; KISCHINHEVSKY, M. Time complexity of algorithms that update the Sierpinski-like and modified Hilbert curves. INFOCOMP Journal of Computer Science, Lavras, v. 9, n. 1, p. 90-97, Mar. 2010.
metadata.ojs.dc.description: This paper presents the time complexity of two algorithms that update space-filling curves of adaptively refined domains. The Modified Hilbert (space-filling) Curve was proposed to traverse square-shaped adaptive-refined meshes. Whereas, the Sierpinski-like (space-filling) Curve was proposed in order to traverse triangular-shaped adaptive-refined meshes. Those curves are variations of the namesimilar well-known space-filling curves, i.e. the Hilbert Curve and the Sierpinski Curve. Moreover, they ´are adapted from those classical curves that traverse regular discretized domains. This paper describes the asymptotic tight bounds of algorithms that update the Sierpinski-like and the Modified Hilbert Curves ´ space-filling curves.
metadata.ojs.dc.language: eng
Appears in Collections:Infocomp



This item is licensed under a Creative Commons License Creative Commons