Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/11265
Title: Biofortificação com zinco, selênio e ferro, e biodisponibilidade de ferro em cultivares de feijoeiro-comum
Authors: Andrade, Messias José Bastos de
Guilherme, Luiz Roberto Guimarães
Li, Li
Ávila, Fabrício William
Pereira, Joelma
Souza, Guilherme Amaral de
Guilherme, Luiz Roberto Guimarães
Keywords: Feijão - Aspectos nutricionais
Saúde humana
Micronutriente
Beans - Nutritional aspects
Human health
Micronutrient
Issue Date: 14-Jun-2016
Publisher: Universidade Federal de Lavras
Citation: FIGUEIREDO, M. A. de. Biofortificação com zinco, selênio e ferro, e biodisponibilidade de ferro em cultivares de feijoeiro-comum. 2016. 136 p. Tese (Doutorado em Agronomia/Fitotecnia)-Universidade Federal de Lavras, Lavras, 2016.
Abstract: The common bean (Phaseolus vulgaris L.), a staple food in nutritional diet of Brazilians and populations in developing countries, is a nutritionally rich legume with potential for biofortification. Approximately one third of the world population suffers from nutritional deficiencies, being necessary to increase the nutrient content in vegetables, especially iron (Fe), selenium (Se) and zinc (Zn), which are important micronutrients for plants and human health. In this context, three studies were carried out aiming to evaluate the potential of common bean cultivars to biofortification with Fe, Se and Zn, and verify the interaction between these minerals and iron bioavailability, in order to contribute to increased nutritional quality of grains, reducing the micronutrients deficiency and improving human health. In the first study, experiments were conducted in a greenhouse, with ten common bean cultivars in nutrient solution under different treatments with Fe, Se and Zn. The plant growth and the mineral content of the beans were evaluated in addition to verify the influence of polyphenol and phytate levels on Fe bioavailability in grains fortified with Zn and Se. The evaluated beans cultivars have proved promising for simultaneous biofortification with these nutrients without greatly affecting Fe bioavailability. In the second study, the aim was evaluate the interaction between Fe, Se and Zn in cultivars consumed in Brazil or in USA. Gene expression and root microscopy analysis were performed in order to understand the positive effect of Zn supply on the Fe uptake by roots. The expression of genes related to the transport and uptake of Fe and Zn did not clearly explain the influence of Zn in Fe nutrition. The roots microscopy and the evaluation of nutrient solutions used showed that, in the presence of Zn, there was Fe accumulation in epidermis of the roots and not in the vascular system, prone to be precipitated when it goes through the root membrane. In the latest study, a field experiment was conducted to evaluate the effect of Zn fertilization via soil and foliar, in the content and accumulation of Fe and Zn in grains and in the yield of common bean cultivars, in addition to verify the amount of these micronutrients supplied by biofortified beans. The fertilization with Zn did not affect the yield, but provided high levels of this nutrient in grains of the cultivars analyzed, representing 27% of the recommended daily intake of Zn. The higher Fe content in beans, obtained when there was no application of foliar Zn, supplies 56% of the daily requirement of Fe.
URI: http://repositorio.ufla.br/jspui/handle/1/11265
Appears in Collections:Agronomia/Fitotecnia - Doutorado (Teses)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.