Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/11041
Title: Predição por modelos não-lineares do C-CO2 evoluído de argissolo tratado com resíduos orgânicos
Other Titles: Prediction for nonlinear models C-CO2 evolved treated soil with organic waste
Authors: Muniz, Joel Augusto
Silva, Carlos Alberto
Brighenti, Carla Regina Guimarães
Morais, Augusto Ramalho de
Oliveira, Izabela Regina Cardoso de
Keywords: Decomposição
Meia-vida
Autocorrelação
Curvaturas de Bates e Watts
Decomposition
Half-life
Autocorrelation
Bates and Watts curvatures
Issue Date: 15-Apr-2016
Publisher: Universidade Federal de Lavras
Citation: SILVA, E. M. Predição por modelos não-lineares do C-CO2 evoluído de argissolo tratado com resíduos orgânicos. 2016. 72 p. Dissertação (Mestrado em Estatística e Experimentação Agropecuária)-Universidade Federal de Lavras, Lavras, 2016.
Abstract: Many cultural residues and types of management interfere in the decomposition and quality of the soil and crop production. Knowledge of carbon mineralization curves enables us to seek improvements in soil quality and crop productivity. The aim of this study was to compare nonlinear models that describe carbon mineralization and choose the most appropriate, considering surface residue or incorporated into the soil. The data used were obtained from Giacomini et al. (2008) and correspond to the results of an experiment with oat straw, pig slurry and pig deep-litter. The Stanford e Smith, Cabrera and Molina nonlinear models were used, considering autoregressive structure errors AR(1) when necessary. Parameter estimation was performed using the \gnls"statistical tool of software R, using the least squares method and the Gauss-Newton algorithm for convergence. Adjustments were compared using the following evaluators: Akaike Information Criterion (AIC) and Bates and Watts curvature. The Stanford e Smith and Cabrera nonlinear models described satisfactorily carbon mineralization in the soil. The Molina model does not t the data.
URI: http://repositorio.ufla.br/jspui/handle/1/11041
Appears in Collections:Estatística e Experimentação Agropecuária - Mestrado (Dissertações)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.