Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/50211
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFelix, Filipe C.-
dc.creatorAvalos, Fabio A. P.-
dc.creatorLima, Wellington de-
dc.creatorCândido, Bernardo M.-
dc.creatorSilva, Marx L. N.-
dc.creatorMincato, Ronaldo L.-
dc.date.accessioned2022-06-13T22:30:16Z-
dc.date.available2022-06-13T22:30:16Z-
dc.date.issued2021-04-
dc.identifier.citationFELIX, F. C. et al. Seasonal behavior of vegetation determined by sensor on an unmanned aerial vehicle. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 93, n. 1, e20200712, 2021. DOI: 10.1590/0001-3765202120200712.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/50211-
dc.description.abstractGeographic information systems make it possible to obtain fine scale maps for environmental monitoring from airborne sensors on aerial platforms, such as unmanned aerial vehicles (UAVs), which offer products with low costs and high space-time resolution. The present study assessed the performance of an UAV in the evaluation of the seasonal behavior of five vegetation coverages: Coffea spp., Eucalyptus spp., Pinus spp. and two forest remnants. For this, vegetation indices (Excess Green and Excess Red minus Green), meteorological data and moisture of surface soils were used. In addition, Sentinel-2 satellite images were used to validate these results. The highest correlations with soil moisture were found in coffee and Forest Remnant 1. The Coffea spp. had the indices with the highest correlation to the studied soil properties. However, the UAV images also provided relevant results for understanding the dynamics of forest remnants. The Excess Green index (p = 0.96) had the highest correlation coefficients for Coffea spp., while the Excess Red minus Green index was the best index for forest remnants (p = 0.75). The results confirmed that low-cost UAVs have the potential to be used as a support tool for phenological studies and can also validate satellite-derived data.pt_BR
dc.languageenpt_BR
dc.publisherAcademia Brasileira de Ciênciaspt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceAnais da Academia Brasileira de Ciências/ Annals of the Brazilian Academy of Sciencespt_BR
dc.subjectCoffea spp.pt_BR
dc.subjectEucalyptus spp.pt_BR
dc.subjectForest Remnantpt_BR
dc.subjectPinus spp.pt_BR
dc.subjectVegetation Indicespt_BR
dc.subjectCafépt_BR
dc.subjectEucaliptopt_BR
dc.subjectRemanescentes florestaispt_BR
dc.subjectÍndices de Vegetaçãopt_BR
dc.subjectVeículo aéreo não tripuladopt_BR
dc.titleSeasonal behavior of vegetation determined by sensor on an unmanned aerial vehiclept_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Seasonal behavior of vegetation determined by sensor on an unmanned aerial vehicle.pdf2,18 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons