Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/49668
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Carvalho, Marcela de Marillac | - |
dc.date.accessioned | 2022-04-04T19:51:08Z | - |
dc.date.available | 2022-04-04T19:51:08Z | - |
dc.date.issued | 2022-04-04 | - |
dc.date.submitted | 2022-02-24 | - |
dc.identifier.citation | CARVALHO, M. M. Dependência de portfólios: uma abordagem multiescala via cópulas multivariadas. 2022. 104 p. Tese (Doutorado em Estatística e Experimentação Agropecuária) – Universidade Federal de Lavras, Lavras, 2022. | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/49668 | - |
dc.description.abstract | The dynamics of economic and financial variables is a recurring subject in scientific research. Specifically in the financial market, asset price movements reflect various structures of behavior, each occurring in a different time horizons. In addition, the time series generated by these data have peculiar characteristics that must be incorporated into the financial analysis. In this context, for a more accurate and realistic understanding of issues in finance, this work seeks to apply the wavelet methodology to analyze the structure of dependence between financial assets in the Brazilian stock market in the time-frequency domain. In this thesis, two essays were developed that explore the application of copula theory to obtain dependency structures in financial series wavelet with the objective of measuring the behavior in the frequency components of stock returns, with the impacts of cycles short, medium and long term. The present work was divided in the application of two distinct techniques of multivariate copulas in frequency components of the series of returns obtained with filters maximal overlap discrete wavelet transform. In the first essay the hierarchical construction of pair copula D-Vine of Bedford e Cooke (2002) was used in an intraday portfolio with six stocks decomposed using the Daubechie filter with two null moments, in order to measure the multivariate asymmetric dependence on shortterm frequencies referring to 15 min., 1 hour, 1 day and 1 week of trading. The results indicated a greater association of assets during market recoveries in the first months after the COVID-19 pandemic. Small increments in measures of tail dependence were evidenced especially at lower frequencies. As the composition of the portfolio is diversified with stocks from different sectors, the levels of dependence are reduced considerably, which reveals the importance of strategies composition/selection of portfolios in the short term. In the second essay, the technique applied was the factor copulas of Oh e Patton (2012) in a larger portfolio, totaling thirty daily stock returns reconstructed by decomposition with the Haar filter, in order to incorporate the effects of economic cycles in risk estimation using the Value at Risk metric. In this analysis, the factor loadings were specified based on segments of action of the actions and dynamically with dependence parameters conducted with the structure Generalized Autoregressive Scores (CREAL; KOOPMAN; LUCAS, 2013) revealing the behavior since the subprime crisis in 2008 with the copula Skew t–t. The results demonstrate that the VaRs estimates, obtained out of the sample, are consistent considering short and short to medium term components. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal de Lavras | pt_BR |
dc.rights | acesso aberto | pt_BR |
dc.subject | Mercado financeiro | pt_BR |
dc.subject | Wavelets | pt_BR |
dc.subject | Cópulas multivariadas | pt_BR |
dc.subject | Dependência | pt_BR |
dc.subject | Gerenciamento de risco | pt_BR |
dc.subject | Financial market | pt_BR |
dc.subject | Dependence | pt_BR |
dc.subject | Multivariate copulas | pt_BR |
dc.subject | Risk management | pt_BR |
dc.title | Dependência de portfólios: uma abordagem multiescala via cópulas multivariadas | pt_BR |
dc.title.alternative | Portfolio dependence: a multi-scale approach via multivariate copulas | pt_BR |
dc.type | tese | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Estatística e Experimentação Agropecuária | pt_BR |
dc.publisher.initials | UFLA | pt_BR |
dc.publisher.country | brasil | pt_BR |
dc.contributor.advisor1 | Sáfadi, Thelma | - |
dc.contributor.referee1 | Chiann, Chang | - |
dc.contributor.referee2 | Ávila, Ednilson Sebastião | - |
dc.contributor.referee3 | Pessanha, Gabriel Rodrigo Gomes | - |
dc.contributor.referee4 | Guimarães, Paulo Henrique Sales | - |
dc.description.resumo | A dinâmica de variáveis econômicas e financeiras é um assunto recorrente nas pesquisas científicas. Especificamente no mercado financeiro, os movimentos dos preços dos ativos refletem várias estruturas de comportamento, cada uma ocorrendo em um horizonte de tempo diferente. Além disso, as séries temporais geradas por estes dados apresentam características peculiares que devem ser incorporadas na análise financeira. Neste contexto, para uma compreensão mais precisa e realista dessas questões em finanças este trabalho busca aplicar a metodologia wavelet para analisar estrutura de dependência entre ativos financeiros do mercado acionário brasileiro no domínio tempo-frequência. Esta tese, desenvolveu-se dois ensaios com o objetivo de auferir o comportamento nos componentes de frequência dos retornos de ações, com os impactos de ciclos de curto, médio e longo prazo. O presente trabalho foi dividido na aplicação de duas técnicas distintas de cópulas multivariadas em componentes de frequência das séries de retornos obtidos com filtros maximal overlap discrete wavelet transform. No primeiro ensaio a construção hierárquica de pair copula D-Vine de Bedford e Cooke (2002) com a função cópula Joe-Clayton (JOE, 1996) foi empregada em um portfólio intradiário com seis ações decompostas utilizando o filtro Daubechie com dois momentos nulos, no intuito de mensurar a dependência assimétrica multivariada em frequências de curto prazo referente a 15 min., 1 hora, 1 dia e 1 semana de negociação. Os resultados indicaram uma maior associação dos ativos durante as recuperações do mercado nos primeiros meses pós pandemia do COVID-19. Pequenos incrementos nas medidas de dependência de cauda foram evidenciados especialmente em frequências menores. À medida que a composição do portfólio é diversificada com ações de setores distintos, os níveis da dependência se reduzem consideravelmente, o que revela a importância de estratégias composição/seleção de portfólios a curto prazo. No segundo ensaio a técnica aplicada foi a de cópulas fatoriais de Oh e Patton (2012) em portfólio de maior dimensão, totalizando trinta retornos diários de ações reconstruídos pela decomposição com o filtro Haar, de modo a incorporar os efeitos de ciclos econômicos na estimação do risco por meio da métrica Value at Risk. Nessa análise as cargas fatoriais foram especificadas com base em segmentos de atuação das ações e de forma dinâmica com parâmetros de dependência conduzidos com a estrutura Generalized Autoregressive Scores (CREAL; KOOPMAN; LUCAS, 2013) revelando o comportamento a partir da crise do subprime em 2008 com a cópula Skew t–t. Os resultados demonstram que as estimativas do VaRs, obtidas fora da amostra, são consistentes considerando componentes de curto e curto a médio prazo. | pt_BR |
dc.publisher.department | Departamento de Estatística | pt_BR |
dc.subject.cnpq | Estatística | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/6322729454622590 | pt_BR |
Aparece nas coleções: | Estatística e Experimentação Agropecuária - Doutorado (Teses) |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
TESE_Dependência de portfólios uma abordagem multiescala via cópulas multivariadas.pdf | 3,82 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.