Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49637
Registro completo de metadados
Campo DCValorIdioma
dc.creatorNuvunga, Joel Jorge-
dc.creatorSilva, Alessandra Querino da-
dc.creatorMendes, Cristian Tiago Erazo-
dc.creatorCossa, Gabriel-
dc.creatorOliveira, Luciano Antonio de-
dc.creatorSilva, Carlos Pereira da-
dc.creatorCândido, Nelio-
dc.creatorInácio, Hermínio Bento-
dc.creatorBueno Filho, Júlio Sílvio de Sousa-
dc.date.accessioned2022-03-31T12:47:58Z-
dc.date.available2022-03-31T12:47:58Z-
dc.date.issued2021-02-
dc.identifier.citationNUVUNGA, J. J. et al. Stability and adaptability of elite upland rice lines using Bayesian-AMMI model. Australian Journal of Crop Science, [S.l.], v. 15, n. 2, p. 244-250, Feb. 2021. DOI: 10.21475/ajcs.21.15.02.p2882.pt_BR
dc.identifier.urihttps://www.cropj.com/nuvunga_15_2_2021_244_250.pdfpt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49637-
dc.description.abstractRice is one of the world’s most important crops. The search for genotypes that are more productive and have wide adaptation to different environments is paramount. One of the major breeder’s obstacles faced is identification of superior strains is the presence of Genotype × Environment Interaction (GEI), which motivated the development of countless statistical procedures aiming to offer more efficient studies. In this work we analysed adaptability and stability of 13 upland rice lineages as part of a genetic improvement program in nine different environments, resulting from local combination and years of agriculture. The experiment was conducted in a completely randomized block design, with three replicates. The main variable is the grain storage in kg/ha. The model applied is the Bayesian Main Additive Effects and Multiplicative Interaction (Bayesian-AMMI). Our implementation implies an extra assumption of random effects from genotypes coming from a single population as opposed to previous works in the literature. Credibility regions with maximum posteriori density allowed identification of cultivars with higher average yield. Stable genotypes showed an initial evidence of adaptation to an environment in this rice breeding program. Bayesian-AMMI is flexible, and starts to be more widely used, but our suggestion is promising in making it a more powerful tool.pt_BR
dc.languageen_USpt_BR
dc.publisherSouthern Cross Publishingpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceAustralian Journal of Crop Science (AJCS)pt_BR
dc.subjectGenetic improvementpt_BR
dc.subjectGenotype × Environment interactionpt_BR
dc.subjectInferencept_BR
dc.subjectMulti-environmentpt_BR
dc.subjectRecommendationspt_BR
dc.titleStability and adaptability of elite upland rice lines using Bayesian-AMMI modelpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.