Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/49329
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAlarcón-Narváez, Daniel-
dc.creatorHernández-Torruco, José-
dc.creatorHernández-Ocaña, Betania-
dc.creatorChávez-Bosquez, Oscar-
dc.creatorMarchi, Jerusa-
dc.creatorMéndez-Castillo, Juan José-
dc.date.accessioned2022-02-15T18:45:33Z-
dc.date.available2022-02-15T18:45:33Z-
dc.date.issued2021-
dc.identifier.citationALARCÓN-NARVÁEZ, D. et al. Toward a machine learning model for a primary diagnosis of Guillain-Barré syndrome subtypes. Health Informatics Journal, [S.l.], 2021.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/49329-
dc.description.abstractGuillain-Barré Syndrome (GBS) is a neurological disorder affecting people of any age and sex, mainly damaging the peripheral nervous system. GBS is divided into several subtypes, in which only four are the most common, demanding different treatments. Identifying the subtype is an expensive and time-consuming task. Early GBS detection is crucial to save the patient’s life and not aggravate the disease. This work aims to provide a primary screening tool for GBS subtypes fast and efficiently without complementary invasive methods, based only on clinical variables prospected in consultation, taken from clinical history, and based on risk factors. We conducted experiments with four classifiers with different approaches, five different filters for feature selection, six wrappers, and One versus All (OvA) classification. For the experiments, we used a data set that includes 129 records of Mexican patients and 26 clinical representative variables. Random Forest filter obtained the best results in each classifier for the diagnosis of the four subtypes, in the same way, this filter with the SVM classifier achieved the best result (0.6840). OvA with SVM classifier reached a balanced accuracy of 0.8884 for the Miller-Fisher (MF) subtype.pt_BR
dc.languageen_USpt_BR
dc.publisherSAGE Journalspt_BR
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceHealth Informatics Journalpt_BR
dc.subjectFeature selection methodspt_BR
dc.subjectMulticlass classificationpt_BR
dc.subjectSingle classifierspt_BR
dc.subjectPerformance measurespt_BR
dc.subjectPredictive modelpt_BR
dc.titleToward a machine learning model for a primary diagnosis of Guillain-Barré syndrome subtypespt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCC - Artigos publicados em periódicos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ARTIGO_Toward a machine learning model for a primary diagnosis of Guillain-Barré syndrome subtypes.pdf197,78 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons

Ferramentas do administrador