Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/46875
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMartins, Amanda Larissa Alves-
dc.creatorLiska, Gilberto Rodrigues-
dc.creatorBeijo, Luiz Alberto-
dc.creatorMenezes, Fortunato Silva de-
dc.creatorCirillo, Marcelo Ângelo-
dc.date.accessioned2021-08-18T19:12:58Z-
dc.date.available2021-08-18T19:12:58Z-
dc.date.issued2020-08-
dc.identifier.citationMARTINS, A. L. A. et al. Generalized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazil. SN Applied Sciences, [S. I.], v. 2, 2020. DOI: https://doi.org/10.1007/s42452-020-03199-8.pt_BR
dc.identifier.urihttps://doi.org/10.1007/s42452-020-03199-8pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/46875-
dc.description.abstractThe rainfall monitoring allows us to understand the hydrological cycle that not only influences the ecological and environmental dynamics, but also affects the economic and social activities. These sectors are greatly affected when rainfall occurs in amounts greater than the average, called extreme event; moreover, statistical methodologies based on the mean occurrence of these events are inadequate to analyze these extreme events. The Extreme Values Theory provides adequate theoretical models for this type of event; therefore, the Generalized Pareto Distribution (Henceforth GPD) is used to analyze the extreme events that exceed a threshold. The present work has applied both the GPD and its nested version, the Exponential Distribution, in monthly rainfall data from the city of Uruguaiana, in the state of Rio Grande do Sul in Brazil, which calculates the return levels and probabilities for some events of practical interest. To support the results, the goodness of fit criteria is used, and a Monte Carlo simulation procedure is proposed to detect the true probability distribution in each month analyzed. The results show that the GPD and Exponential Distribution fits to the data in all months. Through the simulation study, we perceive that the GPD is more suitable in the months of September and November. However, in January, March, April, and August the, Exponential Distribution is more appropriate, and in the other months, we can use either one.pt_BR
dc.languageenpt_BR
dc.publisherSpringer Naturept_BR
dc.rightsrestrictAccesspt_BR
dc.sourceSN Applied Sciencespt_BR
dc.subjectExtreme value theorypt_BR
dc.subjectProbability distributionpt_BR
dc.subjectRain amountpt_BR
dc.subjectInundationpt_BR
dc.subjectEnvironmental concernpt_BR
dc.subjectDistribuição Generalizada de Paretopt_BR
dc.subjectPrecipitação máximapt_BR
dc.subjectTeoria dos Valores Extremospt_BR
dc.subjectDistribuição de probabilidadept_BR
dc.subjectInundaçãopt_BR
dc.titleGeneralized Pareto distribution applied to the analysis of maximum rainfall events in Uruguaiana, RS, Brazilpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DES - Artigos publicados em periódicos
DEX - Artigos publicados em periódicos
DFI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.