Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42863
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFurlong, Vitor B.-
dc.creatorCorrêa, Luciano J.-
dc.creatorLima, Fernando V.-
dc.creatorGiordano, Roberto C.-
dc.creatorRibeiro, Marcelo P. A.-
dc.date.accessioned2020-09-04T17:21:03Z-
dc.date.available2020-09-04T17:21:03Z-
dc.date.issued2020-
dc.identifier.citationFURLONG, V. B. et al. Estimation of biomass enzymatic hydrolysis state in stirred tank reactor through moving horizon algorithms with fixed and dynamic Fuzzy weights. Processes, [S. l.], v. 8, n. 4, 407, 2020. DOI: https://doi.org/10.3390/pr8040407.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42863-
dc.description.abstractSecond generation ethanol faces challenges before profitable implementation. Biomass hydrolysis is one of the bottlenecks, especially when this process occurs at high solids loading and with enzymatic catalysts. Under this setting, kinetic modeling and reaction monitoring are hindered due to the conditions of the medium, while increasing the mixing power. An algorithm that addresses these challenges might improve the reactor performance. In this work, a soft sensor that is based on agitation power measurements that uses an Artificial Neural Network (ANN) as an internal model is proposed in order to predict free carbohydrates concentrations. The developed soft sensor is used in a Moving Horizon Estimator (MHE) algorithm to improve the prediction of state variables during biomass hydrolysis. The algorithm is developed and used for batch and fed-batch hydrolysis experimental runs. An alteration of the classical MHE is proposed for improving prediction, using a novel fuzzy rule to alter the filter weights online. This alteration improved the prediction when compared to the original MHE in both training data sets (tracking error decreased 13%) and in test data sets, where the error reduction obtained is 44%.pt_BR
dc.languageen_USpt_BR
dc.publisherMDPIpt_BR
dc.rightsAttribution 4.0 International*
dc.rightsacesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceProcessespt_BR
dc.subjectArtificial neural networkpt_BR
dc.subjectBiomass enzymatic hydrolysispt_BR
dc.subjectFuzzy logicpt_BR
dc.subjectLocal linear model treept_BR
dc.subjectMoving horizon estimationpt_BR
dc.subjectProcess monitoringpt_BR
dc.subjectSoft sensingpt_BR
dc.subjectRede neural artificialpt_BR
dc.subjectHidrólise enzimática de biomassapt_BR
dc.subjectLógica Fuzzypt_BR
dc.subjectÁrvore modelo linear localpt_BR
dc.subjectEstimativa de horizonte móvelpt_BR
dc.subjectMonitoramento de processospt_BR
dc.titleEstimation of biomass enzymatic hydrolysis state in stirred tank reactor through moving horizon algorithms with fixed and dynamic Fuzzy weightspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEG - Artigos publicados em periódicos



Este item está licenciada sob uma Licença Creative Commons Creative Commons