Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/42651
Registro completo de metadados
Campo DCValorIdioma
dc.creatorTeixeira, Anita Fernanda dos Santos-
dc.creatorPelegrino, Marcelo Henrique Procópio-
dc.creatorFaria, Wilson Missina-
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorGonçalves, Mariana Gabriela Marcolino-
dc.creatorAcerbi Júnior, Fausto Weimar-
dc.creatorGomide, Lucas Rezende-
dc.creatorPádua Júnior, Alceu Linares-
dc.creatorSouza, Igor Alexandre de-
dc.creatorChakraborty, Somsubhra-
dc.creatorWeindorf, David C.-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2020-08-26T18:34:16Z-
dc.date.available2020-08-26T18:34:16Z-
dc.date.issued2020-03-
dc.identifier.citationTEIXEIRA, A. F. dos et al. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry. Geoderma, [S. I.], v. 361, Mar. 2020. DOI: https://doi.org/10.1016/j.geoderma.2019.114132.pt_BR
dc.identifier.urihttps://doi.org/10.1016/j.geoderma.2019.114132pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/42651-
dc.description.abstractPortable X-ray fluorescence (pXRF) spectrometry delivers results rapidly, at low-cost, and without generating chemical residues. This study aimed to predict soil pH, sum of bases (SB), base saturation percentage (BSP), cation exchange capacity (CEC), and Al saturation (Alsat) of 2017 contrasting Brazilian soil samples through the association of pXRF and three different algorithms [Cubist, Random forest (RF), and stepwise multiple linear regression (SMLR)]. Soil samples were collected from the surface (SURF) and subsurface (SUB) horizons in seven Brazilian states. The prediction models were generated for the SURF and SUB horizons separately and combined (SURF + SUB dataset). Overall, the best predictions were achieved via Cubist followed by RF. For the pH predictions, the model combining SURF and SUB horizons data presented better results. Satisfactory results were achieved for the predictions of SB (validation R2 = 0.86), BSP (validation R2 = 0.81) and Alsat (R2 = 0.76). Moreover, promising results were obtained for predicting pH (R2 = 0.63). Notably, CaO appeared as the most influential variable for soil property prediction models. Overall, pXRF showed great potential for predicting soil fertility properties for diversified tropical soils with low cost, rapidity, and without chemical waste generation.pt_BR
dc.languageenpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceGeodermapt_BR
dc.subjectPortable X-ray fluorescencept_BR
dc.subjectBase saturationpt_BR
dc.subjectCation exchange capacitypt_BR
dc.subjectRandom forestpt_BR
dc.subjectCubistpt_BR
dc.subjectSoil fertilitypt_BR
dc.subjectEspectrômetros de fluorescência de raios Xpt_BR
dc.subjectSaturação de basept_BR
dc.subjectCapacidade de troca de cátionspt_BR
dc.subjectFloresta aleatóriapt_BR
dc.subjectFertilidade do solopt_BR
dc.titleTropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometrypt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCF - Artigos publicados em periódicos
DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.