Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/42128
Title: | Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules |
Keywords: | Soils - Trace elements Oxirredução Solos - Oligoelementos |
Issue Date: | Jul-2009 |
Publisher: | John Wiley & Sons Ltd |
Citation: | CORNU, S. et al. Impact of Redox Cycles on Manganese, Iron, Cobalt, and Lead in Nodules. Soil Science Society of America, Chichester, v. 73, n. 4, p. 1231-1241, July 2009. |
Abstract: | Redox processes are responsible for Fe and Mn segregation as Fe–Mn oxide coatings or nodules. These nodules are also trace element scavengers in soils. Redox processes are of particular importance in seasonally saturated soil containing naturally high concentrations of trace metals. We investigated the dynamics of Fe–Mn nodules and two associated trace elements, Co and Pb, under controlled redox conditions in a column experiment, including five columns fed with mimicked topsoil solution that was elevated in Fe and Mn. The results show that the redox conditions reached 100 mV, which was sufficient to dissolve Mn oxides and release the associated Co, while Pb was readsorbed onto nodule surfaces. The amounts of Mn and Co released into the water were small compared with the quantities stored in the nodules (<0.1% of the initial stock stored in the nodules). The redox conditions were insufficient, however, to allow Fe oxide dissolution. On the contrary, 70 to 90% of the Fe entering the column was fixed onto the nodules. In terms of an environmental threat, these results showed that Pb would not be released from soil during nodule dissolution, whereas Co, which is less toxic, would be released. |
URI: | https://doi.org/10.2136/sssaj2008.0024 http://repositorio.ufla.br/jspui/handle/1/42128 |
Appears in Collections: | DCS - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.