Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/41810
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGoodarzi, Mohammad-
dc.creatorChen, Tao-
dc.creatorFreitas, Matheus P.-
dc.date.accessioned2020-07-12T22:42:19Z-
dc.date.available2020-07-12T22:42:19Z-
dc.date.issued2010-12-
dc.identifier.citationGOODARZI, M.; CHEN, T.; FREITAS, M. P. QSPR predictions of heat of fusion of organic compounds using bayesian regularized artificial neural networks. Chemometrics and Intelligent Laboratory Systems, [S.l.], v. 104, n. 2, p. 260-264, Dec. 2010. DOI: 10.1016/j.chemolab.2010.08.018.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/abs/pii/S0169743910001668pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/41810-
dc.description.abstractComputational approaches for the prediction of environmental pollutants' properties have great potential in rapid environmental risk assessment and management with reduced experimental cost. A quantitative structure–property relationship (QSPR) study was conducted to predict the heat of fusion of a set of organic compounds that have adverse effect on the environment. The forward selection (FS) strategy was used for descriptors selection. We examined the feasibility of using multiple linear regression (MLR), artificial neural networks (ANN) and Bayesian regularized artificial neural networks (BRANN) as linear and nonlinear methods. The QSPR models were validated by an external set of compounds that were not used in the model development stage. All models reliably predicted the heat of fusion of the organic compounds under study, whereas more accurate results were obtained by the BRANN model.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceChemometrics and Intelligent Laboratory Systemspt_BR
dc.subjectHeat of fusionpt_BR
dc.subjectQSPRpt_BR
dc.subjectForward selectionpt_BR
dc.subjectMLRpt_BR
dc.subjectBRANN modelpt_BR
dc.subjectBayesian regularized artificial neural networks (BRANN)pt_BR
dc.subjectQuantitative Structure-Property Relationships (QSPR)pt_BR
dc.subjectMultiple linear regression (MLR)pt_BR
dc.titleQSPR predictions of heat of fusion of organic compounds using bayesian regularized artificial neural networkspt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DQI - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.