Use este identificador para citar ou linkar para este item:
http://repositorio.ufla.br/jspui/handle/1/41810
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Goodarzi, Mohammad | - |
dc.creator | Chen, Tao | - |
dc.creator | Freitas, Matheus P. | - |
dc.date.accessioned | 2020-07-12T22:42:19Z | - |
dc.date.available | 2020-07-12T22:42:19Z | - |
dc.date.issued | 2010-12 | - |
dc.identifier.citation | GOODARZI, M.; CHEN, T.; FREITAS, M. P. QSPR predictions of heat of fusion of organic compounds using bayesian regularized artificial neural networks. Chemometrics and Intelligent Laboratory Systems, [S.l.], v. 104, n. 2, p. 260-264, Dec. 2010. DOI: 10.1016/j.chemolab.2010.08.018. | pt_BR |
dc.identifier.uri | https://www.sciencedirect.com/science/article/abs/pii/S0169743910001668 | pt_BR |
dc.identifier.uri | http://repositorio.ufla.br/jspui/handle/1/41810 | - |
dc.description.abstract | Computational approaches for the prediction of environmental pollutants' properties have great potential in rapid environmental risk assessment and management with reduced experimental cost. A quantitative structure–property relationship (QSPR) study was conducted to predict the heat of fusion of a set of organic compounds that have adverse effect on the environment. The forward selection (FS) strategy was used for descriptors selection. We examined the feasibility of using multiple linear regression (MLR), artificial neural networks (ANN) and Bayesian regularized artificial neural networks (BRANN) as linear and nonlinear methods. The QSPR models were validated by an external set of compounds that were not used in the model development stage. All models reliably predicted the heat of fusion of the organic compounds under study, whereas more accurate results were obtained by the BRANN model. | pt_BR |
dc.language | en_US | pt_BR |
dc.publisher | Elsevier | pt_BR |
dc.rights | restrictAccess | pt_BR |
dc.source | Chemometrics and Intelligent Laboratory Systems | pt_BR |
dc.subject | Heat of fusion | pt_BR |
dc.subject | QSPR | pt_BR |
dc.subject | Forward selection | pt_BR |
dc.subject | MLR | pt_BR |
dc.subject | BRANN model | pt_BR |
dc.subject | Bayesian regularized artificial neural networks (BRANN) | pt_BR |
dc.subject | Quantitative Structure-Property Relationships (QSPR) | pt_BR |
dc.subject | Multiple linear regression (MLR) | pt_BR |
dc.title | QSPR predictions of heat of fusion of organic compounds using bayesian regularized artificial neural networks | pt_BR |
dc.type | Artigo | pt_BR |
Aparece nas coleções: | DQI - Artigos publicados em periódicos |
Arquivos associados a este item:
Não existem arquivos associados a este item.
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.