Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/40768
Title: | Theoretical study of specific solvent effects on the optical and magnetic properties of copper(II) acetylacetonate |
Keywords: | Near infrared spectroscopy Electron paramagnetic resonance (EPR) Density functional theory |
Issue Date: | Feb-2011 |
Publisher: | American Chemical Society (ACS) |
Citation: | ALMEIDA, K. J. de et al. Theoretical study of specific solvent effects on the optical and magnetic properties of copper(II) acetylacetonate. The Journal of Chemical Physics A, [S.l.], v. 115, n. 8, p. 1331-1339, Feb. 2011. DOI: 10.1021/jp109826p. |
Abstract: | Specific and basicity solvent effects on the visible near-infrared electronic transitions and the electron paramagnetic resonance (EPR) parameters of the copper(II) acetylacetonate complex, Cu(acac)2, have been investigated at the density functional theory level. The computed absorption transitions as well as the EPR parameters show a strong dependence on the direct coordination environment around the Cu(II) complex. High solvatocromic shifts are observed for 3d−3d transitions, with the highest effect observed for the dz2→dxy transition, which is red-shifted by 6000 cm−1 and 9000 cm−1 in water and pyridine solvent models, respectively. Compared to the electronic g-tensors, the hyperfine coupling constants of the Cu(acac)2 complex show a more pronounced dependence on the effect of base strength of solvent. Overall, the present methodology satisfactorily models the solvent effect on the optical and magnetic properties of the Cu(acac)2 complex, and theory and experiment agree sufficiently well to warrant the use of the computed optical and EPR parameters to elucidate the coordination environment of the Cu(II) systems in basic solutions. |
URI: | https://pubs.acs.org/doi/10.1021/jp109826p http://repositorio.ufla.br/jspui/handle/1/40768 |
Appears in Collections: | DQI - Artigos publicados em periódicos |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.