Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/40539
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBertoncello, L. N.-
dc.creatorLevcovitz, D.-
dc.date.accessioned2020-05-04T18:11:34Z-
dc.date.available2020-05-04T18:11:34Z-
dc.date.issued2020-
dc.identifier.citationBERTONCELLO, L.N.; LEVCOVITZ, D. On the isotropy group of a simple derivation. Journal of Pure and Applied Algebra, [S.l.], v. 224, n. 1, p. 33-41, 2020.pt_BR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0022404919301033pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/40539-
dc.description.abstractLet R=K[X1,…,Xn] be a polynomial ring in n variables over a field K of characteristic zero and d a K-derivation of R. Consider the isotropy group of d: Aut(R)d:={ρ∈AutK(R)|ρdρ−1=d}. In his doctoral thesis ([1]), Baltazar proved that if d is a simple Shamsuddin derivation of K[X1,X2], then its isotropy group is trivial. He also gave an example of a non-simple derivation whose isotropy group is infinite. Recently, Mendes and Pan ([13]) generalized this result to certain derivations of K[X1,X2] proving that, under certain hypothesis, a derivation of K[X1,X2] is simple if, and only if, its isotropy group is trivial. In this paper, we prove that the isotropy group of a simple Shamsuddin derivation of the polynomial ring R=K[X1,…,Xn] is trivial. We also calculate other isotropy groups of (not necessarily simple) derivations of K[X1,X2].pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceJournal of Pure and Applied Algebrapt_BR
dc.subjectDifferential idealpt_BR
dc.subjectDifferential simplicitypt_BR
dc.titleOn the isotropy group of a simple derivationpt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DEX - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.