Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/39356
Full metadata record
DC FieldValueLanguage
dc.creatorVilela, Emerson Ferreira-
dc.creatorInda, Alberto Vasconcellos-
dc.creatorZinn, Yuri Lopes-
dc.date.accessioned2020-03-25T12:35:47Z-
dc.date.available2020-03-25T12:35:47Z-
dc.date.issued2019-12-
dc.identifier.citationVILELA, E. F.; INDA, A. V.; ZINN, Y. L. Soil genesis, mineralogy and chemical composition in a steatite outcrop under tropical humid climate in Brazil. Catena, Amsterdam, v. 183, Dec. 2019. DOI: https://doi.org/10.1016/j.catena.2019.104234.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/56557356-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0341816219303765#!pt_BR
dc.description.abstractSteatite is a metamorphic, ultramafic rock composed by talc, serpentine, magnetite and other unique minerals. Soils developed from this rock is typically unproductive due to high Mg and low P contents, high concentrations of heavy metals, and the extent of such limitations in the humid tropics is still poorly known. Here, we aimed to study pedogenesis, morphology and composition of eight soils formed from steatite in Minas Gerais, Brazil. These soils were a) Lithic Udorthents (3 pedons); b) Oxic Dystrudepts (2 pedons); and c) Acrudoxes (3 pedons). All soils presented high particle density but low bulk density due to high packing void porosity associated to granular structure. Soil pH and exchangeable Mg+2 were relatively high, whereas Mehlich-I P and exchangeable Al+3 were very low. X-ray fluorescence data showed that Entisols and Inceptisols have high (94 a 200 g kg−1) MgO contents, whereas Oxisols are highly enriched in Fe2O3, although still bearing MgO contents as high as 30 g kg−1. The Entisols and Inceptisols were mostly composed by talc, but also had Fe oxides and small amounts of kaolinite, whereas the dusky red Oxisols contained mostly hematite. Although present in the parent material, serpentine was not detected in soils. The considerable amounts of MgO in Oxisols can be explained by rock fragments preserved by a dark Fe oxide coating, visible in thin sections. Magnetic susceptibility was high and increased strongly with increasing weathering stage. Local topography strongly controlled soil formation and composition, which allowed for the existence of three climax vegetations: canyon cloud forest, semi-deciduous forest and savanna, suggesting that soil limitations to native plants are lower than expected.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceCatenapt_BR
dc.subjectSoils of extreme environmentspt_BR
dc.subjectMagnesic mineralogy classpt_BR
dc.subjectMagnetic susceptibilitypt_BR
dc.subjectSoil micromorphologypt_BR
dc.subjectSolos de ambientes extremospt_BR
dc.subjectClasse de mineralogia magnéticapt_BR
dc.subjectSusceptibilidade magnéticapt_BR
dc.subjectMicromorfologia do solopt_BR
dc.titleSoil genesis, mineralogy and chemical composition in a steatite outcrop under tropical humid climate in Brazilpt_BR
dc.typeArtigopt_BR
Appears in Collections:DCS - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.