Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/35290
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMelo, Elliezer de Almeida-
dc.date.accessioned2019-07-15T13:20:00Z-
dc.date.available2019-07-15T13:20:00Z-
dc.date.issued2019-07-15-
dc.date.submitted2019-03-14-
dc.identifier.citationMELO, E. de A. Modelagem da relação hipsométrica e do crescimento e produção utilizando aprendizagem de máquina e modelo de efeito misto. 2019. 143 p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2019.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/35290-
dc.description.abstractWe developed this study based on forest inventory data collected from temporary and permanent plots. The objective was to model the hypsometric relationship, the growth, and the production of eucalyptus forests using traditional regression techniques, mixed modeling, and machine learning to obtain models capable of representing the reality of forest stands. We divided the study into three chapters. In the first chapter, we performed a literature review to support the development of the second and third chapters. The second chapter consisted of evaluating four nonlinear models for modeling the hypsometric relationship. We compared the traditional regression technique with the mixed modeling technique with the addition of covariates and heteroscedasticity modeling to obtain more accurate models. The use of nonlinear mixed models allowed us to reduce the standard error by approximately 60%. We decomposed the Gompertz model and included the clone, basal area, site, and age covariates to provide better accuracy, modeling the heteroscedasticity. The heteroscedasticity modeling allowed us to reduce the estimate of the residual standard error and percentage of approximately 55% when compared to the mixed effects model. For the second chapter, we aimed to analyze the performance of machine learning techniques (Artificial Neural Networks - ANN and Support Vector Machine - SVM) in the projection of the basal area and volume, comparing them to the traditional method of regression analysis using the Clutter model and variations thereof. The data derive from 2,550 permanent sample units of clonal stands of the Eucalyptus grandis x E. urophylla hybrid, comprising seven genetic materials. The machine learning methods to project the basal area provided good training and generalization skills. For the volumetric projection, the methods presented low generalization capacity. The estimates produced by the Clutter system and its variations were superior to the machine learning techniques.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal de Lavraspt_BR
dc.rightsacesso abertopt_BR
dc.subjectModelos mistospt_BR
dc.subjectModelagem da heterocedasticidadept_BR
dc.subjectAprendizagem de máquinaspt_BR
dc.subjectRedes neurais artificiaispt_BR
dc.subjectMáquina de vetor de suportept_BR
dc.subjectModelo de Clutterpt_BR
dc.subjectMixed modelspt_BR
dc.subjectHeteroskedasticity modelingpt_BR
dc.subjectMachine learningpt_BR
dc.subjectSupport vector machinept_BR
dc.subjectClutter modelpt_BR
dc.titleModelagem da relação hipsométrica e do crescimento e produção utilizando aprendizagem de máquina e modelo de efeito mistopt_BR
dc.title.alternativeModeling of the hypsometric relationship and growth and production using machine learning and a mixed effect modelpt_BR
dc.typetesept_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Florestalpt_BR
dc.publisher.initialsUFLApt_BR
dc.publisher.countrybrasilpt_BR
dc.contributor.advisor1Calegário, Natalino-
dc.contributor.referee1Gomide, Lucas Rezende-
dc.contributor.referee2Lacerda, Wilian Soares-
dc.contributor.referee3Barbosa, Bruno Henrique Groenner-
dc.contributor.referee4Mendonça , Adriano Ribeiro de-
dc.description.resumoO presente estudo foi desenvolvido a partir de dados de inventário florestal coletados em parcelas temporárias e permanentes. Objetivou-se modelar a relação hipsométrica, o crescimento e a produção das florestas de eucalipto, a partir das técnicas de regressão tradicional, modelagem mista e aprendizagem de máquinas, para a obtenção de modelos capazes de representar a realidade do povoamento florestal. O estudo foi dividido em três capítulos. No primeiro capítulo, realizou-se uma revisão de literatura com o intuito de embasar o desenvolvimento do segundo e terceiro capítulos. O segundo capítulo, constituiu-se na avaliação de quatro modelos não lineares para modelagem da relação hipsométrica. Comparou-se a técnica de regressão tradicional com a técnica de modelagem mista com a adição de covariantes e modelagem da heterocedasticidade, visando obter modelos com melhor acurácia. A utilização dos modelos não lineares mistos possibilitou uma redução do erro padrão em aproximadamente 60%. O modelo de Gompertz, por proporcionar melhor acurácia foi decomposto e incluíram-se as covariáveis clone, área basal, sítio e idade e modelou-se a heterocedasticidade. A modelagem da heterocedasticidade possibilitou uma redução na estimativa do erro padrão residual e percentual de, aproximadamente, 55%, quando comparado ao modelo de efeitos mistos. Para o segundo capítulo, objetivou-se analisar o desempenho de técnicas de aprendizagem de máquinas (Redes Neurais Artificiais - RNA e Máquina de Vetor de Suporte - MVS) na projeção da área basal e volume em comparação ao método tradicional de análise de regressão, utilizando o modelo de Clutter e variações deste. Os dados são provenientes de 2.550 unidades amostrais permanentes de povoamentos clonais do híbrido Eucalyptus grandis x E. urophylla, compreendendo sete materiais genéticos. Os métodos de aprendizagem de máquinas para projeção da área basal proporcionaram boa capacidade de treinamento e generalização. Para a projeção volumétrica, os métodos apresentaram baixa capacidade de generalização. As estimativas produzidas pelo sistema de Clutter e variações deste foram superiores às técnicas de aprendizagem de máquinas.pt_BR
dc.publisher.departmentDepartamento de Ciências Florestaispt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8574991354525904pt_BR
Aparece nas coleções:Engenharia Florestal - Doutorado (Teses)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TESE_Modelagem da relação hipsométrica e do crescimento ....pdf2,39 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.