Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/33306
Full metadata record
DC FieldValueLanguage
dc.creatorLasmar Junior, Eduardo Lucio-
dc.creatorRosa, Renata Lopes-
dc.creatorRodríguez, Demóstenes Zegarra-
dc.date.accessioned2019-03-29T11:20:45Z-
dc.date.available2019-03-29T11:20:45Z-
dc.date.issued2018-12-
dc.identifier.citationLASMAR JUNIOR, E. L.; ROSA, R. L.; RODRÍGUEZ, D. Z. A recommendation system for shared-use mobility service through data extracted from online social networks. Journal of Communications Software and Systems, [S. l.], v. 14, n. 4, p. 359-366, Dec. 2018.pt_BR
dc.identifier.urihttps://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=308841pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/33306-
dc.description.abstractIn recent years, the shared mobility service hasincreased in many countries across the world because its low cost and several shared-use mobility applications on mobile devices. Commonly, if a ride is shared between people with similar preferences, users likely feel both more comfortable and safer.In this context, the main goal of this article is to classify userswith similar preferences, in automatic manner, to improve user’s quality of experience in ridesharing service. To obtain initial data, subjective tests are carried out using questionnaires and their results are used to determine ridesharing profiles. Then, some basic user profile information is extracted from Online Social Networks (OSN) to determine an user profile based on preferences in ridesharing service. The user profile classification is performed through different machine learning algorithms, which use as input the data extracted from OSN. Two case studies of shared-mobility are treated, (i) sharing a ride with a passenger with a similar hobby [2], and (ii) sharing a ride with people thatsupport an opposite football teams. In this work, a novel contribution is the use of Hybrid Discriminative Restricted Boltzmann Machines (HDRBM) technique for classification, which results overcomes other algorithms, such as Random Forest, SVM and DRBM. The experimental results presented a correctly classified instance of 96:9% and 97:3% for the cases of sharing a ride with people with similar hobby and support different football team, respectively. Finally, a Recommendation System (RS) is proposed, which efficiency is compared with a basic RS, obtaining a Pearson correlation coefficient of 0:97 and 0:79, respectively.pt_BR
dc.languageen_USpt_BR
dc.publisherFundação de Ensino Superior de Bragança Paulistapt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceJournal of Communications Software and Systemspt_BR
dc.subjectRecommendation systempt_BR
dc.subjectShared mobilitypt_BR
dc.subjectOnline social networkspt_BR
dc.subjectMachine learningpt_BR
dc.subjectSocial web analysis toolpt_BR
dc.subjectSistema de recomendaçãopt_BR
dc.subjectMobilidade compartilhadapt_BR
dc.subjectRedes sociais on-linept_BR
dc.subjectAprendizado de máquinapt_BR
dc.subjectFerramenta de análise web socialpt_BR
dc.titleA recommendation system for shared-use mobility service through data extracted from online social networkspt_BR
dc.typeArtigopt_BR
Appears in Collections:DCA - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.