Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/32245
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Sérgio Henrique Godinho-
dc.creatorPoggere, Giovana Clarice-
dc.creatorMenezes, Michele Duarte de-
dc.creatorCarvalho, Geila Santos-
dc.creatorGuilherme, Luiz Roberto Guimarães-
dc.creatorCuri, Nilton-
dc.date.accessioned2018-12-20T15:56:54Z-
dc.date.available2018-12-20T15:56:54Z-
dc.date.issued2016-
dc.identifier.citationSILVA, S. H. G. et al. Proximal sensing and digital terrain models applied to digital soil mapping and modeling of brazilian latosols (oxisols). Remote sensing, [S. l.], v. 8, n. 614, p. 1-22, 2016. doi: 10.3390/rs8080614.pt_BR
dc.identifier.urihttps://www.mdpi.com/2072-4292/8/8/614pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/32245-
dc.description.abstractDigital terrain models (DTM) have been used in soil mapping worldwide. When using such models, improved predictions are often attained with the input of extra variables provided by the use of proximal sensors, such as magnetometers and portable X-ray fluorescence scanners (pXRF). This work aimed to evaluate the efficiency of such tools for mapping soil classes and properties in tropical conditions. Soils were classified and sampled at 39 locations in a regular-grid design with a 200-m distance between samples. A pXRF and a magnetometer were used in all samples, and DTM values were obtained for every sampling site. Through visual analysis, boxplots were used to identify the best variables for distinguishing soil classes, which were further mapped using fuzzy logic. The map was then validated in the field. An ordinary least square regression model was used to predict sand and clay contents using DTM, pXRF and the magnetometer as predicting variables. Variables obtained with pXRF showed a greater ability for predicting soil classes (overall accuracy of 78% and 0.67 kappa index), as well as for estimating sand and clay contents than those acquired with DTM and the magnetometer. This study showed that pXRF offers additional variables that are key for mapping soils and predicting soil properties at a detailed scale. This would not be possible using only DTM or magnetic susceptibility.pt_BR
dc.languageen_USpt_BR
dc.publisherMDPIpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceRemote sensingpt_BR
dc.subjectMagnetic susceptibilitypt_BR
dc.subjectPortable X-ray fluorescence scannerpt_BR
dc.subjectData miningpt_BR
dc.subjectFuzzy logicspt_BR
dc.subjectOrdinary least square multiple linear regressionpt_BR
dc.subjectSuscetibilidade magnéticapt_BR
dc.subjectScanner de fluorescência de raios X portátilpt_BR
dc.subjectMineração de dadospt_BR
dc.subjectLógica Fuzzypt_BR
dc.subjectRegressão linear múltipla por mínimos quadrados ordináriospt_BR
dc.titleProximal sensing and digital terrain models applied to digital soil mapping and modeling of brazilian latosols (oxisols)pt_BR
dc.typeArtigopt_BR
Aparece nas coleções:DCS - Artigos publicados em periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.