Use este identificador para citar ou linkar para este item: http://repositorio.ufla.br/jspui/handle/1/31287
Registro completo de metadados
Campo DCValorIdioma
dc.creatorVinhas Neto, Francisco
dc.date.accessioned2018-10-10T13:53:49Z-
dc.date.available2018-10-10T13:53:49Z-
dc.date.issued2015-01-26
dc.date.submitted2013-08-16
dc.identifier.citationVINHAS NETO, F. Execução paralela de programação genética utilizando MapReduce. 2013. 55 p. Monografia (Graduação em Ciência da Computação) - Universidade Federal de Lavras, Lavras, 2013.pt_BR
dc.identifier.urihttp://repositorio.ufla.br/jspui/handle/1/31287-
dc.description.abstractThe Genetic Programming is a technique used for automatic generation of applications in Wireless Sensor Networks, which needs to perform a number of simulations for a given problem in order to have a greater degree of confidence of the result obtained by the method. Thus, its running time becomes high when using a single machine. However, there are opportunities for parallelization of these executions that might imply a reduction in execution time and improving the quality of the results. This work is a study on the MapReduce programming model adapted for a Genetic Programming to automatic generation of applications in Wireless Sensor Network (WSN), through the distribution of executions among the machines of a cluster. It proposed an implementation of a Genetic Programming to automatic generation of applications in WSN and used WSN simulator to evaluate the quality of the solution. This study also analyzes the benefits of using the MapReduce framework.pt_BR
dc.languagept_BRpt_BR
dc.rightsacesso abertopt_BR
dc.subjectMapReducept_BR
dc.subjectProgramação genéticapt_BR
dc.subjectRede de sensores sem fiopt_BR
dc.subjectProgramação paralelapt_BR
dc.titleExecução paralela de programação genética utilizando MapReducept_BR
dc.typeTCCpt_BR
dc.contributor.advisor-coOliveira, Renato Resende Ribeiro de
dc.contributor.advisor1Pereira, Marluce Rodrigues
dc.contributor.referee1Pereira, Denilson Alves
dc.contributor.referee1Heimfarth, Tales
dc.contributor.referee1Oliveira, Renato Resende Ribeiro de
dc.description.resumoA Programação Genética é uma técnica utilizada para geração automática de aplicações em Redes de Sensores sem Fio, que necessita realizar um certo número de simulações para um determinado problema para que se tenha um maior grau de confiança do resultado obtido pelo método. Dessa forma, o seu tempo de execução torna-se alto quando utilizando uma única máquina. Porém, existem oportunidades de paralelização dessas execuções que podem implicar na redução do tempo de execução e na melhoria da qualidade dos resultados obtidos. Neste trabalho, é realizado um estudo sobre o modelo de programação MapReduce adaptado para uma Programação Genética para geração automática de aplicações em Rede de Sensores sem Fio (RSSF), através da distribuição das execuções entre as máquinas de um cluster. É proposta uma implementação de uma Programação Genética para geração automática de aplicações em RSSF e utilizado um simulador de RSSF para avaliar a qualidade da solução. São analisados também os benefícios de se usar o framework MapReduce.pt_BR
Aparece nas coleções:PROGRAD - Ciência da Computação (Trabalhos de Conclusão de Curso)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_Execucao_paralela_de_programacao_genetica_utilizando_mapreduce.pdf1,57 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.