Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/30434
Title: Spatial pattern of the seasonal drought/burned area relationship across brazilian biomes: sensitivity to drought metrics and global remote-sensing fire products
Keywords: Fire season
Global remote sensing
Global fire emissions database (GFED)
Burned area datasets
MCD45A1 dataset
MERIS FIRE_CCI dataset
Fire weather
Brazilian biomes
Issue Date: 2017
Publisher: MDPI
Citation: NOGUEIRA, J. M. P. et al. Spatial pattern of the seasonal drought/burned area relationship across brazilian biomes: sensitivity to drought metrics and global remote-sensing fire products. Climate, [S.l.], v. 5, n. 2, 2017.
Abstract: Fires are complex processes having important impacts on biosphere/atmosphere interactions. The spatial and temporal pattern of fire activity is determined by complex feedbacks between climate and plant functioning through and biomass desiccation, usually estimated by fire danger indices (FDI) in official fire risk prevention services. Contrasted vegetation types from fire-prone Brazilian biomes may respond differently to soil water deficit during the fire season. Then, we propose to evaluate the burned area (BA)/FDI relationship across Brazil using most common FDIs and the main BA products from global remote sensing. We computed 12 standard FDIs- at 0.5° resolution from 2002 to 2011 and used the monthly BA from four BA datasets—from the MODIS sensor (MCD45A1), the MERIS sensor (MERIS FIRE_CCI), the Global Fire Emission Database version 4 (GFED4) and version 4s including small fires (GFED4s). We performed a Principal Component Analysis (PCA) on the coefficients of determination (R2) of the FDI/BA relationship to investigate the biome specificities of Brazilian biomes and the sensitivity to BA datasets. Good relationships (R2 > 0.8) were observed for all BA datasets, except SPEI (R2 < 0.2). We showed that FDIs computed from empirical water balances considering a lower soil capacity are more correlated to the seasonal pattern of fire occurrence in the Cerrado biome with contrasted adjustments between the western (early drying) and eastern part (late drying), while the fine fuel moisture index is more correlated to the fire seasonal pattern in Amazonia. The biome specificities of the FDI/BA relationship was evaluated with a general linear model. High accuracies in the biome distribution according to the FDI/BA relationship (>50%, p < 0.001) was observed in Amazonia and Cerrado, with lower accuracy (<32%, p < 0.001) in the Atlantic Forest and Caatinga. These results suggest that the FDI/BA relationship are biome-specific to explain the seasonal course of burned in Brazilian biomes, independently of the global BA product used. Selected FDIs should be used for fire danger forecast in each Brazilian biome.
URI: http://www.mdpi.com/2225-1154/5/2/42
http://repositorio.ufla.br/jspui/handle/1/30434
Appears in Collections:DBI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.