Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/28801
Title: Expectation propagation with factorizing distributions: a Gaussian approximation and performance results for simple models
Keywords: Expectation propagation algorithm
Bayesian inference
Factorizing posterior approximation
Neural network models
Algoritmo de propagação de expectativa
Inferência Bayesiana
Fatorização da aproximação posterior
Modelos de rede neural
Issue Date: Apr-2011
Publisher: Massachusetts Institute of Technology
Citation: RIBEIRO, F.; OPPER, M. Expectation propagation with factorizing distributions: a Gaussian approximation and performance results for simple models. Neural Computation, Cambridge, v. 23, n. 4, p. 1047-1069, Apr. 2011.
Abstract: We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
URI: https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00104?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed
http://repositorio.ufla.br/jspui/handle/1/28801
Appears in Collections:DFI - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.