Please use this identifier to cite or link to this item: http://repositorio.ufla.br/jspui/handle/1/15299
Full metadata record
DC FieldValueLanguage
dc.creatorLeite, Daniel-
dc.creatorCosta, Pyramo-
dc.creatorGomide, Fernando-
dc.date.accessioned2017-08-31T17:08:28Z-
dc.date.available2017-08-31T17:08:28Z-
dc.date.issued2013-02-
dc.identifier.citationLEITE, D. F.; COSTA, P.; GOMIDE, F. Evolving granular neural networks from fuzzy data streams. Neural Networks, [S. l.], v. 38, p. 1-16, Feb. 2013.pt_BR
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S0893608012002791#!pt_BR
dc.identifier.urirepositorio.ufla.br/jspui/handle/1/15299-
dc.description.abstractThis paper introduces a granular neural network framework for evolving fuzzy system modeling from fuzzy data streams. The evolving granular neural network (eGNN) is able to handle gradual and abrupt parameter changes typical of nonstationary (online) environments. eGNN builds interpretable multi-sized local models using fuzzy neurons for information fusion. An online incremental learning algorithm develops the neural network structure from the information contained in data streams. We focus on trapezoidal fuzzy intervals and objects with trapezoidal membership function representation. More precisely, the framework considers triangular, interval, and numeric types of data to construct granular fuzzy models as particular arrangements of trapezoids. Application examples in classification and function approximation in material and biomedical engineering are used to evaluate and illustrate the neural network usefulness. Simulation results suggest that the eGNN fuzzy modeling approach can handle fuzzy data successfully and outperforms alternative state-of-the-art approaches in terms of accuracy, transparency and compactness.pt_BR
dc.languageen_USpt_BR
dc.publisherElsevierpt_BR
dc.rightsrestrictAccesspt_BR
dc.sourceNeural Networkspt_BR
dc.subjectEvolving systemspt_BR
dc.subjectGranular computingpt_BR
dc.subjectInformation fusionpt_BR
dc.subjectNeurofuzzy networkspt_BR
dc.subjectOnline modelingpt_BR
dc.subjectSistemas em evoluçãopt_BR
dc.subjectComputação granularpt_BR
dc.subjectFusão de informaçãopt_BR
dc.subjectRedes neurofuzzypt_BR
dc.subjectModelagem onlinept_BR
dc.titleEvolving granular neural networks from fuzzy data streamspt_BR
dc.typeArtigopt_BR
Appears in Collections:DEG - Artigos publicados em periódicos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.