Please use this identifier to cite or link to this item:
http://repositorio.ufla.br/jspui/handle/1/11187
Title: | Risco de crédito: uma abordagem utilizando análise discriminante, regressão logística e redes neurais artificiais |
Other Titles: | Credit risk: an approach using discriminant analysis, logistic regression and artificial neural networks |
Authors: | Carvalho, Francisval de Melo Lima, André Luis Ribeiro Mendonça, Fabrício Molica de Benedicto, Gideon Carvalho de |
Keywords: | Modelo Dinâmico Modelo Fleuriet Risco de crédito Falências Indicadores financeiros Dynamic Model Fleuriet Model Credit risk Bankruptcy Financial indicators |
Issue Date: | 24-May-2016 |
Publisher: | Universidade Federal de Lavras |
Citation: | PRADO, J. W. do. Risco de crédito: uma abordagem utilizando análise discriminante, regressão logística e redes neurais artificiais. 2016. 228 p. Dissertação (Mestrado em Administração)-Universidade Federal de Lavras, Lavras, 2016. |
Abstract: | Considering the relevance of researches concerning credit risk, model diversity and the existent indicators, this thesis aimed at verifying if the Fleuriet Model contributes in discriminating Brazilian open capital companies in the analysis of credit concession. We specifically intended to i) identify the economic-financial indicators used in credit risk models; ii) identify which economic-financial indicators best discriminate companies in the analysis of credit concession; iii) assess which techniques used (discriminant analysis, logistic regression and neural networks) present the best accuracy to predict company bankruptcy. To do this, the theoretical background approached the concepts of financial analysis, which introduced themes relative to the company evaluation process; considerations on credit, risk and analysis; Fleuriet Model and its indicators, and, finally, presented the techniques for credit analysis based on discriminant analysis, logistic regression and artificial neural networks. Methodologically, the research was defined as quantitative, regarding its nature, and explanatory, regarding its type. It was developed using data derived from bibliographic and document analysis. The financial demonstrations were collected by means of the Economática ® and the BM$FBOVESPA website. The sample was comprised of 121 companies, being those 70 solvents and 51 insolvents from various sectors. In the analyses, we used 22 indicators of the Traditional Model and 13 of the Fleuriet Model, totalizing 35 indicators. The economic-financial indicators which were a part of, at least, one of the three final models were: X1 (Working Capital over Assets), X3 (NCG over Assets), X4 (NCG over Net Revenue), X8 (Type of Financial Structure), X9 (Net Thermometer), X16 (Net Equity divided by the total demandable), X17 (Asset Turnover), X20 (Net Equity Profitability), X25 (Net Margin), X28 (Debt Composition) and X31 (Net Equity over Asset). The final models presented setting values of: 90.9% (discriminant analysis); 90.9% (logistic regression) and 97.8% (neural networks). The modeling in neural networks presented higher accuracy, which was confirmed by the ROC curve. In conclusion, the indicators of the Fleuriet Model presented relevant results for the research of credit risk, especially if modeled by neural networks. |
URI: | http://repositorio.ufla.br/jspui/handle/1/11187 |
Appears in Collections: | Administração - Mestrado (Dissertação) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DISSERTAÇÃO_Risco de crédito-uma abordagem utilizando análise discriminante, regressão logística e redes neurais artificiais.pdf | 2,53 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.