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Abstract. This is a survey paper dealing with holomorphic folia-
tions, with emphasis on Residue Theory and its applications. We
start recalling the definition of holomorphic foliations as a subsheaf
of the tangent sheaf of a manifold. The theory of Characteristic
Classes of vector bundles is approached from this perspective. We
define Chern Class of holomorphic foliations using the Chern-Weil
theory and we remark that the Baum-Bott residue is a great tool
that help us to classify some foliations. We present along the survey
several recent results and advances in residue theory. We finish the
work present some applications of residues to solve for example the
Poincaré problem and the existence of minimal sets for foliations.
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1 Introduction

The residue theory of holomorphic foliations started with the work of
P.Baum and R.Bott [7] in 1972. In their article the authors have devel-
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oped a class for foliations associated with its singular set using differential
geometry based on the Bott vanishing theorem. However this class, called
residue, is only an element in the homology group. The question that arises
is "how to calculate the residue?". We consider a holomorphic foliation F
of dimension q on a complex manifold M of dimension n. If we consider φ
a homogeneous symmetric polynomial of degree d, then to each compact
connect component Z ∈ Sing(F) of the singular set of the foliation F ,
there exists the homology class Resφ(F ;Z) into the group H2(n−d)(Z;C)
such that over certain condition on M , one has

φ(NF ) ⌢ [M ] =
∑

Resφ(F ;Z),

where NF represents the normal sheaf of the foliation F .
This survey address the problem of computing this residue Resφ(F ;Z)

in some cases. In one complex variable, we have the Cauchy’s residue of
a holomorphic function and the Cauchy integral formula which help us
to calculate it. On the other hand, in several complex variable and as a
generalization of the Cauchy’s residue we have the Grothendieck residue as-
sociated with a meromorphic form. Let f = (f1, . . . , fn) : U ⊂ Cn −→ Cn

be a finite holomorphic map, such that f(0) = 0, and g be a holomorphic
function on U . We define the Grothendieck residue by

Res0(g, f) =
( 1

2π
√
−1

)n
∫
γ

g(z)dz1 ∧ . . . ∧ dzn
f1 . . . fn

where γ is a n-cycle with orientation prescribed by the n-form d(arg(f1))∧

· · ·∧d(arg(fn)) ≥ 0. If we denote the merophorfic n-form
g(z)dz1 ∧ · · · ∧ dzn

f1 . . . fn
by ω we may use the notation

Res0(g, f) = Res0

[
ω

f1, . . . , fn

]
. (1.1)

We observe that for n = 1, this residue is just the Cauchy’s residue. Baum
and Bott [7] also shown how to calculate the residue of a higher dimension
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foliation since certain assumptions are required in each irreducible compo-
nent of the singular set of foliation. Take Z an irreducible component of
Sing(F) with dimZ = dim(F)− 1 and other generic hypotheses, one has

Resφ(F ;Z) = Resφ(F|Bp ; p)[Z],

where Resφ(F|Bp ; p) is a certain Grothendieck residue.
Still in the same work [7] Baum-Bott show that the residue of a di-

mension one foliation at an isolated singular point can be also expressed
by the Grothendieck residue in (1.1), where f1, . . . , fn are the components
of the vector fields that induces locally F .

In 1984, T. Suwa in [48] considers a foliation of complete intersection
type and express a certain class of residues in terms of the Chern classes
and the local Chern classes of the sheaf Ext1OM

(ΩF ,OM ). As an applica-
tion, in 3.8 Corollary he gives a partial answer to Rationality Conjecture
(see [7], p. 287). As another consequence in the case that the foliation has
codimension one, he shows how to calculate residues at isolated singulari-
ties.

T. Suwa in [50] has developed a residue theory to distributions, where
the localization considered there arises from a rather primitive fact, i.e.,
the Chern forms of degree greater than the rank of the vector bundle van-
ish. Hence the involutivity has nothing to do with it. For this reason the
localization can be defined by rank reason, of some characteristic classes
and associated residues of the normal sheaf of the distribution. Also in [50]
(Proposition 4.4 p.15), the author shows, in particular, when the distri-
bution is involutive (i.e., a foliation) the residue to distribution coincides
with the corresponding Baum-Bott residues of foliation.

Years later, in 2005 T. Suwa and F. Bracci in [9], based in the classical
Camacho-Sad residue (or index) theorem, have developed a residue theory
for adequate singular pairs, which generalizes in certain way the classical
Camacho-Sad residue. The authors show a Bott vanishing theorem and
adapt the theory of Cech-de Rham theory and localization for adequate
singular pair and prove that there exists the residue in this situation.
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More recently, in 2015, F. Bracci and T. Suwa in [10] provide another
effective way to compute residues. The authors consider a deformation of
a complex manifold M , denoted by M̃ = {Mt}t∈P̂ , where the parameter
space P̂ is a C∞ manifold and a deformation of a holomorphic foliation F
of M , denoted by F̃ = {Ft}. For all parameter t ∈ P̂ they assume that the
singular set St is compact. Let φ be a homogeneous symmetric polynomial
of degree d and Resφ(Ft;S

λ
t ) the Baum-Bott residue of Ft at the connect

compact set Sλ
t . It is proved that the Baum-Bott residue continuously

varies under this smooth deformation, i.e,

lim
t→t0

∑
λ

Resφ(Ft;S
λ
t ) = Resφ(Ft0 ;S

λ
t0).

Subsequentely, the authors consider F as a germ at 0 ∈ Cn of a simple
almost Liouvillian foliation of codimension one and V a divisor of poles.
Then it is shown that the residue of F at Z, which is an irreducible com-
ponent of singular set of F of codimension 2, can be written as a sum (over
the irreducible components of V that contains Z) in terms of Lehmann-
Suwa residues [39]. This represents an effective way to compute residues:

BB(F ;Z) =
k∑

j=1

Res(γ0, Vj)V ar(F , Vj ;Z).

In the paper [53] the author proves a more slight generalization of
the Bott residue theorem to holomorphic foliations of dimension one. The
proof is based on a localization formula of Duistermaat and Heckman type,
wich has been discussed first in [8].

Recently in [29] in 2016 Corrêa et al. have studied several residue
formulas for vector fields on compact complex orbifolds with isolated sin-
gularities, that is a special type of a singular variety.

It is worth remark that there are other types of residues and invariants
associated to a foliation, as residues of logarithmic vector fields in [24],
Camacho-Sad index in [16] and GSV-index of foliations and Pfaff systems
in [52, 25].
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We have finished the survey talking about the recent theme: residue to
flags of holomorphic foliations and distributions. In the work [37], it was
developed a general theory of residue to flags consisted of two foliations
F1 and F2, where the first one is tangent the second one. There are
many topics which are closely related to this flags and naturally appear in
the theory of foliation. For example, a conjecture due to Marco Brunella
(see [18], p.443) says that a two-dimensional holomorphic foliation F on
P3 either admits an invariant algebraic surface or it compose a flag of
holomorphic foliations.

2 Chern-Weil Theory of Characteristic classes of
holomorphic foliations

2.1 Holomorphic foliations

Let us begin by recalling the basic definition of singular holomorphic
foliations and distributions. Let M be a complex manifold of dimension n

and denote by ΘM and ΩM respectively, the sheaves of germs of holomor-
phic vector fields and holomorphic 1-forms on M . There are two definitions
of singular foliations that turn out to be equivalent as long as we consider
only reduced foliations. For this section about foliations theory we refer
to [7, 37, 41, 49, 50].

A singular holomorphic distribution of dimension q on M is a coher-
ent subsheaf F of ΘM of rank q. Moreover, if F satisfies the following
integrability condition

[Fx,Fx] ⊂ Fx for all x ∈ M,

we say that F is a holomorphic foliation. The normal sheaf of F is defined
as the quotient sheaf NF := ΘM/F , such that it is torsion free (it means
that F is saturated). With this definition we have the following exact
sequence

0 −→ F −→ ΘM −→ NF −→ 0.
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We define the singular set of the distribution F by

Sing(F) := Sing(NF ) = {p ∈ M ;NF ,p is not locally free}.

We assume that codim(Sing(F)) ≥ 2.

For the second one definition, a singular distribution G can be defined,
as a dual way by means of differential forms, i. e., as a coherent subsheaf
of ΩM . If G satisfies the integrability condition, i.e.,

dGx ⊂ (ΩM ∧ G)x for all x ∈ M \ Sing(G),

we say that G is a foliation, where Sing(G) := Sing(ΩM/G).
The two definitions of foliations are equivalents and related by taking

the annihilator of each other. If F is a foliation on M of dimension q, its
annihilator is defined by

Fa = {v ∈ ΩM ;< v, ω >= 0 for all ω ∈ F}.

We say that F is reduced, if for any open set U in M ,

Γ(U,ΘM ) ∩ Γ(U \ Sing(F),F) = Γ(U,F).

If we consider only reduced foliation, then G = Fa and the converse is
also true (see [49]).

To finished this subsection we present the follow definition.

Definition 2.1. Let V be an analytic subspace of a complex manifold X.
We say that V is invariant by a foliation F if

TF|V ⊂ (Ω1
V )

∗.

In particular cases,
• if V is a hypersurface we say that F is logarithmic along F ;
• if V is a reduced complete intersection of dimension n − k, defined

by intersection of k hypersurfaces we say that F is multlogarithmic along
F .
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2.1.1 Flag of holomorphic foliations

In this subsection we should define flag of foliations and show its main
properties. For more details we refer to [37, 23, 41].

A flag of singular holomorphic foliations on a complex manifold M

of dimension n, can be define by a finite sequence of k foliations F =

(F1, . . . ,Fk) such that, outside of the singular sets, each foliation Fi+1 is
a subfoliation of Fi and we denote Fi ⊂ Fi+1, for each i = 1, . . . , k− 1. In
a more formal manner, for k = 2 one has the following.

Definition 2.2. Let F1,F2 be two holomorphic foliations on M of dimen-
sions q = (q1, q2). We say that F := (F1,F2) is a 2-flag of holomorphic
foliations if F1 is a coherent sub OM -module of F2.

We note that, for x ∈ M \ ∪2
i=1Sing(Fi) the inclusion relation TxF1 ⊂

TxF2 holds, namely that the leaves of F1 are contained in leaves of F2.
Here TFi represents the tangent sheaf of the foliation Fi, but throughout
the text we will abuse of notation and denote it simply by Fi. Now we
observe that we have a diagram of short exact sequences of sheaves, called
"turtle diagram".

0

��

0

||

0

F1

!!

��

N2

bb >>

ΘM

==

!!
F2

==

!!

N1

OO

��
0

??

N12

==

""

0

0

<<

0



188 F. Lourenço and F. Reis

We define and use the following notation, let Sing(F) be the singular
set of the flag F builds by the analytic set Sing(F1)∪Sing(F2) and NF :=

N12 ⊕N2 the normal sheaf of the flag, where N12 is the relative quotient
sheaf F2/F1.

2.2 Characteristic classes via Chern-Weil theory

In this section we review the basic tools of Chern-Weil theory for work-
ing with residue and characteristic classes to vector bundles and sheaves.
The residue theory of foliation was first introduced by Baum and Bott us-
ing differential geometry, in a series of papers ([7, 6, 5]). Later Lehman and
Suwa in the decades of 1980 and 1990 present a new approach of residue
theory using Chern-Weil theory (see [39]).

Definition 2.3. A connection for a complex vector bundle E of rank r on
M is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

that satisfies

∇(f.s) = df ⊗ s+ f.∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

If ∇ is a connection for E, then it induces a C-linear map

∇ := ∇2 : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧∇(s), ω ∈ A1(M), s ∈ A0(M,E).

We define the composition map K := ∇ ◦ ∇ from A0(M,E) to A2(M,E)

as the curvature of the connection ∇. If s = (s1, . . . , sn) is a frame of E
on an open set U we have θ = (θij) the connection matrix (where θij are
1-forms on U ) of E with respect to frame s. In the same way, we can



A brief introduction on residue theory of holomorphic foliations 189

get K = (kij) the curvature matrix of E with respect to s. If we consider
σi, i = 1, . . . , r the i-th elementary symmetric functions in the eigenvalues
of the matrix K

det(It+K) = 1 + σ1(K)t+ σ2(K)t2 + · · ·+ σr(K)tr,

we may define a 2i-form of Chern ci on U by

ci(K) := σi(

√
−1

2π
K).

In general, if φ is a homogeneous symmetric polynomial in r variables
of degree d, we may write φ = P̃ (c1, . . . , cr) for some polynomial P̃ . Then
we can define

φ(K) := P̃ (c1(K), . . . , cr(K))

which is a closed form on M . Therefore, we have a cohomology class of E
on M , φ(E) := φ(K) ∈ H2d(M ;C).

Let G be a sheaf on M , S a compact connected set of M and U a
relatively compact open neighborhood of S in M . We may consider U =

{U0, U1} a covering of U , where U1 = U and U0 = U \ S and since there
exists [3] the following resolution of G

0 −→ AU (Er) −→ · · · −→ AU (E0) −→ AU ⊗OU
G −→ 0,

we can define the characteristic class φ(G) on U using the virtual bundle
ξ :=

∑r
i=0(−1)iEi, i. e., φ(G) := φ(ξ).

Given F a holomorphic foliation on M and φ a homogeneous symmetric
polynomial of degree d, one has the short exact sequence

0 −→ F −→ ΘM −→ NF −→ 0.

Then φ(NF ) denotes the characteristic class of F and it is an ele-
ment in cohomology group H2d(M ;C). We denote by P the Poincaré ho-
momorphism (or isomorphism if M is nonsingular) from H2d(M ;C) to
H2(n−d)(M ;C) and by A the Alexander homomorphism (or isomorphism
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if S is nonsingular) A : H2d(M,M\S;C) −→ H2(n−d)(S;C) we have the
following commuting diagram:

H2d(M,M\S;C) //

A
��

H2d(M ;C)

H2(n−d)(S;C)
i∗ // H2(n−d)(M ;C)

P

OO

where this map H2d(M,M\S;C) −→ H2d(M ;C) represents a lift that
can be interpreted, in terms of foliation theory, by the Bott vanishing
theorem (see [49], Theorem 9.11). Thus we have the residue of foliation F ,
denoted by Resφ(F ,NF ;S) in H2(n−d)(S;C) as the image of φS(NF ;C) ∈
H2d(M,M\S;C) by the Alexander duality which is independent of all
choices involved.

In general it is not possible to calculate such residue directly, namely,
by the above definition. It is then important when one can calculate such
element using tools like differential geometry, foliation theory, complex
analysis or singularities theory. The goal of this survey is to present some
results in this direction.

2.3 Some results about residues of holomorphic foliations

The residue theory of holomorphic foliations was developed by several
authors in the last years, we cite for instance, Baum and Bott in [7, 5],
Brasselet and Suwa in [11] and Bracci and Suwa in [9] and [10].

We would like to make a special reference to book [36], it is dedicated
to deep study of indices associated to vector fields in isolated singularity,
in the cases where the underlying space is either a smooth variety or a
singular variety. The authors defines several notions of index such that:
PoincarÃ©-Hopt index, Schwartz index, GSV index, Virtual index, Ho-
mological index and others. This is a very valuable reference for those
interested in the subject.

This subject plays a major role in several areas of mathematics and is
of great interest to other sciences.
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This book is dedicated to the study of indices of vector fields and flows
around an isolated singularity, or stationary point, in the cases where the
underlying space is either a manifold or a singular variety. This subject
plays a major role in several areas of mathematics and is of great interest
to other sciences.

In this section we take into account recent results obtained by vari-
ous authors that emerged in the recent years ago related to residues of
holomorphic foliations.

We begin this section with the classical Grothendieck residue, that
for more details we refer to [35, 49, 47]. Let us take a germ ω at 0 of
holomorphic n-form, a neighborhood U of 0 in Cn and a1, . . . , an germs of
holomorphic functions such that V (a1, . . . , an) = {0}. The Grothendieck
residue of ω at 0 is defined by

Res0

[
ω

a1, . . . , an

]
=

1

(2π
√
−1)n

∫
γ

ω

a1 · · · an
,

where γ is a n-cycle in U defined by

γ = {z ∈ U ; |a1(z)| = · · · = |an(z)| = ϵ}

and oriented by d(arg(a1)) ∧ · · · ∧ d(arg(an)) ≥ 0. We remark that the
above residue is the usual Cauchy residue at 0 of the meromorphic 1-form
ω/a1 when n = 1.

In order to formulate the first important result in theory foliation, that
relates the Baum-Bott residue of certain foliations to the Grothendieck
residue, let F be a holomorphic foliation of dimension one in a complex
compact manifold M of dimension n. We assume that F has only isolated
singularities. Let φ be a homogeneous symmetric polynomial of degree n

and p ∈ Sing(F) an isolated point. Then

Theorem 2.4. ([7], Theorem 1)

Resφ(F ; p) = Resp

[
φ(JX)

X1, . . . , Xn

]
,
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where X = (X1, . . . , Xn) is a germ of a holomorphic vector field at p, local
representative of F .

In [48], (3.12) Proposition, T. Suwa considers F a holomorphic dis-
tribution (not necessarily involutive) of codimension one and taking 0 (it
can be another point p) as an isolated singularity of this distribution, he
shows how to calculate the residues. We would like to remark that in the
survey [50], the authors study the residues to distribution (not necessarily
involutive).

Theorem 2.5. Let U be a polydisk about the origin 0 in Cn and let F =<

ω > be a codimension one holomorphic foliation on U with an isolated
singularity at 0. Then we have

Rescn(F ; 0) = (−1)n(n− 1)! dimCExt1O(ΩF ,O) in H0(0;Q) = Q.

In the same way to compute residues, F. Bracci and T. Suwa in [10]
consider smooth deformations of holomorphic foliations and verify that it
provides an effective way to get compute residues.

Theorem 2.6. Let (M̃, P̂ , π) be a deformation of manifolds and F̃ a de-
formation of foliations on M̃ of rank p. Suppose that NF̃ admits a C∞

locally free resolution. Let S
′
(F̃) ⊂ S(F̃) be a connect component of the

singular set of F̃ and let St := Mt ∩ S
′
(F̃). Assume that for all t ∈ P̂ the

set St is compact and St ̸= Mt. Let φ be a homogeneous symmetric polyno-
mial of degree d > n− p. Under this assumptions, the Baum-Bott residue
BBφ(Ft;St) is continuous in t ∈ P̂ . Namely, for any C∞ (2n− 2d)-form
τ̃ on M̃ such that i∗t (τ̃) is closed for all t ∈ P̂ ,

lim
t→t0

BBφ(Ft;St)(i
∗
t (τ̃)) = BBφ(Ft0 ;St0)(i

∗
t0(τ̃)).

It should be noted that for higher dimension foliations it is possible to
relate the Baum-Bott residue with the Grothendieck residue. Vishik in [51]
founds this relation with the hypothesis that the foliation has locally free
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tangent sheaf. In [7] Baum and Bott, before and independent of Vishik,
have proved a similar result using a generic assumption in the singular set
of foliation.

Let us consider F be a holomorphic foliation of codimension k on a
complex manifold M and φ a homogeneous symmetric polynomials of de-
gree k + 1. Note that degφ > n − dim(F), which is condition to Bott
vanishing theorem. We consider that the singular set of F has pure ex-
pected codimension, i.e., dim(Sing(F)) = k+1. In this case it is common
to use the notation Singk+1(F) to denotes the union of irreducible com-
ponents of the the singular set of the F of pure codimension k + 1.

If Z ⊂ Singk+1(F) is a pure dimension and irreducible component, we
consider Bp a (k + 1)-dimension ball centered at p sufficiently small and
transversal to Z at p. We remark that the restricted foliation F|Bp is an
one-dimensional foliation with isolated singularity at p. In [23] (Theorem
1.2), M. Corrêa and F. Lourenço relate the Baum-Bott residue of F in Z

with the Grothendick residue of F|Bp at p.

Theorem 2.7. Let F be a singular holomorphic foliation of codimension k

on a compact complex manifold M such that cod(Sing(F)) ≥ k+1. Then,

Resφ(F ;Z) = Resφ(F|Bp ; p)[Z],

where Resφ(F|Bp ; p) represents the Grothendieck residue at p of the one
dimensional foliation F|Bp on a (k + 1)-dimensional transversal ball Bp.

The next result is due to Fernandez-Perez and Tamara in [31] (Theorem
6.2). This provides another effective way to computing Baum-Bott residues
of codimension one holomorphic foliations. Before we need of the follow
definition

Definition 2.8. We say that the germ F is an almost Liouvillian foliation
at 0 ∈ Cn if there exists a germ of closed meromorphic 1-form γ0 and a
germ of holomorphic 1-form γ1 at 0 ∈ Cn such that

dω = (γ0 + γ1) ∧ ω.
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We say that F is a simple almost Liouvillian foliation at 0 ∈ Cn if we can
choose γ0 having only first-order poles.

Theorem 2.9. Let F be a germ at 0 ∈ Cn, n ≥ 3, of a simple almost
Liouvillian foliation defined by ω ∈ Ω1(Cn, 0) such that

dω = (γ0 + γ1) ∧ ω.

Let V be the divisor of poles of γ = γ1 + γ1 and V1, . . . , Vl the irreducible
components of V . Let Z be an irreducible component of Sing2(F). Then

BB(F ;Z) =
k∑

i=1

Res(γ0, Vj)V ar(F , Vj ;Z),

where V1, . . . , Vk are the irreducible components that contains Z and
V ar(F , Vj ;Z) represents the Varational index defined by Khanedani and
Suwa in [4].

In [11, 45] was developed the notion of Nash residue of foliations, that
immediately implies an aforementioned partial answer to the rationality
conjecture of Baum and Bott (see [7], p.287). Let M be a complex manifold
of dimension n and F a singular holomorphic foliation of dimension q on
M . Let us consider for each point x in M the following set

F (x) := {v(x); v ∈ Fx}, (2.1)

where Fx denotes the stalk of F at x. We observe that F (x) is a subspace
of tangent space TxM of dimension q if, and only if, x ∈ M \ Sing(F).
In general dim(F (x)) ≤ q. In the following, G(q, n) is the Grassmannian
bundle of q-planes in TM .

Using the express (2.1) we can define a section of G(q, n) outside of
singular set of F , as following

s : M \ Sing(F) −→ G(q, n)

gives by s(x) := F (x).
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We define Mν := Im(s) in G(q, n) and call it the Nash modification
of M with respect to foliation F . We consider Sing(F)ν := π−1Sing(F)

where π is the restriction map to Mν of the projection of the bundle G(q, n)

that is a birational map

π : Mν −→ M.

Moreover, it is biholomorphic from Mν \ Sing(F)ν to M \ Sing(F). In
some case, we can assume Mν as a smooth manifold (see [45]). We denote
by T̃ ν and Ñν , respectively, the tautological bundle and the tautological
quotient bundle on G(q, n). So, one has a short exact sequence

0 −→ T ν −→ π∗TM −→ Nν −→ 0,

where T ν and Nν are essentially the restrictions to Mν .
It is possible to show that the characteristic class φ(Nν), for a homo-

geneous symmetrical polynomial φ of degree d > n− dim(F), is localized
at Sing(F)ν give us the following residues

Resφ(N
ν ,F ; Sing(F)ν) ∈ H2(n−d)(Sing(F)ν ;C)

and we call it the Nash residue of F with respect to φ at Sing(F)ν .
In 1989, Sertöz in [45] (Theorem IV.4, p.238), has showed that the dif-

ference between the Baum-Bott residue and the Nash residue is an integer
number with the assumption that Mν is non singular.

Theorem 2.10. Let S be a connect component of singular set of F and
φ a homogeneous symmetrical polynomial of degree d > n− dim(F) then

Resφ(NF ,F ;S) = Resφ(N
ν ,F ;Sν) + k,

where k is a homology cycle in S and it is calculate by a Grassmaann graph
construction.

In 2000, Brasselet and Suwa in [11] (Theorem 4.1, p. 44), have given
a similar result of Sertöz droping the hypothesis that Mν is smooth.
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Theorem 2.11. Let φ be a homogeneous symmetric polynomial of degree
d > n− dim(F). If φ is with integral coefficients, then the difference

Resφ(NF ,F ;S)− Resφ(N
ν ,F ;Sν)

is in the image of the canonical homomorphism

H2(n−p)(S;Z) −→ H2(n−p)(S;C).

In the following result F. Bracci and T. Suwa have developed the
residue theory for foliations of adequate singular pairs (see [9]). In short,
we consider M a complex manifold of dimension m and let P ⊂ M be a
complex submanifold of dimension r, then we have a short exact sequence

0 −→ TP −→ TM |P −→ NP,M −→ 0,

where NP,M denotes the normal bundle of P in M . We pick X another
submanifold of M of dimension n which intersects P along a submanifold
Y ⊂ M of dimension n+r−m and such intersection is everywhere transver-
sal. We define (X,Y ) as adequate singular pair in M if r = m+ l−n and
the data satisfy the following

1) Y = X ∩ P ;

2) dim(Sing(X) ∩ P ) < l;

3) Xreg intersects P generically transversely.

Theorem 2.12. ([9], Theorem 2.1, p.7) Let (X,Y ) be an adequate sin-
gular pair in M and let F be a holomorphic foliation in X of dimension
d ≤ l which leaves Y invariant. Let Σ = (Sing(F) ∪ Sing(Y )) ∩ Y and
assume that dim(Σ) < l. Let Σ =

∑
γ Σγ be the decomposition into con-

nected components and let iγ : Σγ ↪→ Y denotes the inclusion. Let φ be a
symmetric homogeneous polynomial of degree t > l − d. Then
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i) For each compact connected component Σγ there exists a class
Resφ(F , Y ; Σγ) ∈ H2l−2t(Σγ ;C) called "residue", which depends only
on the local behavior of F near Σγ;

ii) If Y is compact we have

∑
γ

(iγ)∗Resφ(F , Y ; Σγ) = φ(NP,M ) ∩ [Y ] in H2l−2t(Y ;C).

We note that this "new concept" of residue of foliations can be un-
derstood as a generalization of the classical Camacho-Sad residue theorem
(see [16]).

CorrÃªa at al in [29] showed the follows residue formula for orbifolds.
Let X be a complex orbifold of dimension n and L be a line V -bundle over
X and considering some Chern classes of the bundle TX − L∨, moreover,
for each point p which vanishing ξ, let

πp : (Ũ , p̃) → (U, p),

be a smoothing covering of X at p and the notation ξ̃ = π∗
pξ, one has

Theorem 2.13. ([29], Theorem 3.1, p.2897) Let X be a compact orbifold
of dimension n with only isolated singularities, let L be a locally V -free
sheaf of rank 1 over X and L the associated line V -bundle. Suppose ξ is
a holomorphic section of TX ⊗L with isolated zeros. If P is an invariant
polynomial of degree n, then

∫
X
P (TX − L∨) =

∑
p|ξ(p)=0

1

#Gp
Resp̃

[
P (Jξ̃)

dz̃1 ∧ . . . ∧ dz̃n

ξ̃1 . . . ξ̃n

]
,

where Gp ⊂ Gl(n,C) denotes a small finite group.

All the results that are well known in residue theory consider the hy-
pothesis that the component of singular set is nondegenerate, see for in-
stance [7]. The paper [20] provides a slight improvement of the results
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given by Baum-Bott by considering the degenerate case with restrictions.
Let us consider v a holomorphic vector field on V and W a component of
singular set of v such that the vector field is degenerate along of W . M.
Dia proves the result of residue of v at W subject to the condition that
there is a biholomorphism between a neighborhood of W and a neighbor-
hood of the zero section of the normal bundle of W . See Théorème A, B,
C and D in [20].

2.4 Residues of logarithmic foliations of dimension one

This section is dedicated to show some results about residues logarith-
mic associates to holomorphic foliations of dimension one. For this we
refer to readers [2, 24, 21, 34, 38] and the references therein.

The general index of a vector field tangent to hypersurfaces was defined
and studied in terms of the homology of the complex of differential forms by
X. Gomez-Mont, L. Giraldo and P. Mardesić, see [34, 38]. The first result in
this section is due A. G. Aleksandrov in [2] which is about the logarithmic
index. The author defines a logarithmic index using differential forms with
logarithmic poles and determines the relation with the homological index.

Let M be a complex manifold of dimension n, and let Ωq
M , q ≥ 0,

and Der(M) be the sheaves of germs of holomorphic q-forms and vector
fields on M , respectively. Let D ⊂ M be a divisor which all of whose
irreducible components are of multiplicity one. Given V ∈ Der(M) a
vector field which has an isolated singularity at a point x ∈ D then the ιV -
homology groups of the complex (Ω•

D,x, ιV ) are finite-dimensional vector
spaces, where ιV : Ωq

M → Ωq−1
M is the interior multiplication (contraction).

We can define the homological index of the vector field V at the point
x ∈ D by

Indhom,D,x(V ) :=

n∑
i=0

(−1)i dimHi(ΩD,x, ιV ).

To talk about logarithmic index, given a divisor D we can consider the
coherent analytic sheaves Ωq

M (logD), q > 0 and DerM (logD) = TM (− logD)
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as in [2]. Consider a vector field V ∈ DerM (logD). As above, the interior
multiplication ιV defines the structure of a complex on Ω•

M (logD).

Lemma 2.14. ([2], Lemma 1, p.247) If all singularities of V are iso-
lated, then the ιV -homology groups of the complex Ω•

M (logD) are finite-
dimensional vector spaces.

With this preliminary result is well defined the logarithmic index of
the field V at the point x,

IndlogD,x(V ) :=

n∑
i=0

(−1)i dimHi(ΩD,x(logD), ιV ).

These index are related bellow.

Proposition 2.15. ([2], Proposition 1, p. 248) Suppose that a point x ∈
D is an isolated singularity of a vector field V ∈ Der(logD), the germs

Vi ∈ OM,x are determined by the expansion V =
∑

i Vi
∂

∂zi
, and JxV =

(V0, . . . , Vn)OM,x. Then

Indhom,D,x(V ) = dimOM,x/JxV − IndlogD,x(V ).

In [24] the authors consider logarithmic foliation along D and prove
the residue formulas, namely, Baum-Bott type formulas for non-compact
complex manifold, still considering the logarithmic vector field.

Theorem 2.16. ([24], Theorem 1, p. 6403) Let X̃ be an n-dimensional
complex manifold such that X̃ = X − D, where X is an n-dimensional
complex compact manifold and D is a smooth hypersurface on on X. Let
F be a foliation of dimension one on X with isolated singularities and
logarithmic along D. Suppose that IndlogD,p(F) = 0 for all p ∈ Sing(F)∩
D. Then ∫

X
cn(TX(− logD)− TF ) =

∑
p∈Sing(F)∩(X\D)

µp(F).
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In the same work, the authors consider that the divisor D is a normal
crossing hypersurface and one has

Theorem 2.17. ([24], Theorem 2, p. 6404) Let X̃ be an n-dimensional
complex manifold such that X̃ = X − D, where X is an n-dimensional
complex compact manifold, D is a normally crossing hypersurface on X.
Let F be a foliation on X of dimension one, with isolated singularities
(non-degenerates) and logarithmic along D. Then,∫

X
cn(TX(− logD)− TF ) =

∑
p∈Sing(F)∩(X̃)

µp(F).

In [21] the authors prove new versions of Gauss-Bonnet and PoincarÃ©-
Hopf theorems for complex ∂-manifolds of the type X̃ = X − D, where
dimX = n ≥ 3 and D is a reduced divisor. More precisely,

Theorem 2.18. ([21], Theorem 1.1 p. 495) Let X̃ be a complex manifold
such that X̃ = X − D, where X is an n-dimensional (n ≥ 3) complex
compact manifold and D is a reduced divisor on X. Given any (not neces-
sarily irreducible) decomposition D = D1∪D2, where D1, D2 have isolated
singularities and C = D1 ∩D2 is a codimension 2 variety and has isolated
singularities,

(i) (Gauss-Bonnet type formula) the following formula holds

∫
X

cn(Ω
1
X(log D)) = (−1)nχ(X̃)+µ(D1, S(D1))+µ(D2, S(D2))−µ(C, S(C)).

(ii) (Poincaré-Hopf type formula) if v is a holomorphic vector field on
X, with isolated singularities and logarithmic along D, we have that

χ(X̃) = PH(v,Sing(v))−GSV (v,D1, S(v,D1))−GSV (v,D2, S(v,D2))+

+GSV (v, C, S(v, C))+(−1)n−1 [µ(D1, S(D1)) + µ(D2, S(D2))− µ(C, S(C))] .
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2.5 Residues to flags

In the following, we review some results about residues of flag of folia-
tions which have emerged in recent years. For the background of flags, we
refer to [37, 41, 41, 27] and the references therein.

The next result ([37], Theorem 2) has a twofold proposal. The first
one it is shows that given a flag F = (F1,F2) of holomorphic foliations
on M we can talk about residues with an element of homology group, and
the second one, under the certain condition in M , one has the Baum-Bott
type theorem.

Theorem 2.19. Let F = (F1,F2) be a 2-flag of holomorphic foliations
on a compact complex manifold M of dimension n. Let φ1, φ2 be homo-
geneous symmetric polynomials, respectively of degrees d1 and d2, satis-
fying the Bott vanishing theorem to Flags. Then for each compact con-
nected component S of Sing(F) there exists a class, Resφ1,φ2(F ,NF ;S) ∈
H2n−2(d1+d2)(S;C), that we will call it of Baum-Bott Reisdue of Flag, such
that ∑

λ

(ιλ)∗Resφ1,φ2(F ,NF ;Sλ) = (φ1(N12).φ2(N2)) ⌢ [M ] (2.2)

in H2n−2(d1+d2)(M ;C), where ιλ denotes the embedding of Sλ in M .

To approach of a good expression to residues, we show how the residues
of foliations, in a flag, are related (see [37], Proposition 3, p. 1169).

Theorem 2.20. For a flag F = (F1,F2) on M with dim(F1) = codim(F2) =

1 and Sing(F1) ∩ Sing(F2) admitting isolated singularities (only) we have

Rescn(F2,N2; p) = (−1)n(n− 1)!Rescn(F1,N1; p),

where the residues involved are of the foliations F1 and F2.

To continue into the goal of to show expression to residue, we consider
F = (F1,F2) a flag on M with notation codim(Fi) = ki to i = 1, 2. Let us
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consider the notation that Singki+1Fi represents the union of irreducible
components of Sing(Fi) of pure codimension ki + 1.

Let us take an irreducible component Z ⊂ Singk1+1(F1) and a generic
point p ∈ Z. So, we pick Bp a small ball centered at p such that S(Bp) ⊂
Bp is a sub-ball of dimension n−k1−1(same dimension than the component
Z). Thus, de Rham class can be integrated over an oriented (2k1 + 1)-
sphere Lp ⊂ B∗

p and one has the notation

BBj(F ;Z) := (2πi)−k1−1

∫
Lp

θ12∧(dθ2)j∧(dθ12)k1−j for each 0 ≤ j ≤ k2.

For this particular flag, we get the formula to residue and the Baum-
Bott theorem, see ([37], Theorem 4, p.1173).

Theorem 2.21. Let F = (F1,F2) be a 2-flag of codimension (k1, k2) on a
compact complex manifold M . If codim(Sing(F)) ≥ k1 + 1, then for each
0 ≤ j ≤ k2 we have

ck1−j+1
1 (N12) ⌣ cj1(N2) =

∑
Z ∈ Singk1+1(F1)∪Singk1+1(F2)

λj
Z(F)[Z],

where λj
Z(F) = BBj(F , Z).

In 2020 Ferreira and Lourenço in [32] extend the residue theory to flag
of holomorphic distributions and prove some results of this residues. The
next result is relates about the isolates singularities.

Theorem 2.22. ([32], Theorem 1.2) Let F = (F1,F2) be a 2-flag of holo-
morphic distributions on a compact complex manifold M of dimension n,
φ1 and φ2 be homogeneous symmetric polynomials, respectively of degrees
d1 > 0 and d2 > 0 and p an isolated point of Sing(F). Then

Resφ1,φ2(F ,NF ; p) = 0.
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When we consider a particular manifold as the projective space M = P3

we obtain some advances in goal of calculate residue of flags. It follows
an effective way to calculate residue when the singular scheme of flag has
only one irreducible component, see ([32], Theorem 1.3).

Theorem 2.23. Let F = (F1,F2) be a 2-flag of holomorphic foliations on
P3 with deg(Fi) = di thus

(1 + d1 − d2)
∑

Z∈S1(F2)

deg(Z)Resφ2(F2|Bp ; p) =
∑

Z∈S1(F)

Resc1φ2(F ,NF ;Z),

(2.3)
where deg(Z) is the degree of the irreducible component Z, Resφ2(F2|Bp ; p)

represents the Grothendieck residue of the foliation F2|Bp at {p} = Z ∩Bp

with Bp a transversal ball and either φ2 = c21 or φ2 = c2.

We believe that if we work with residue currents, see [40], meanly in
degenerate case, we must give an express more general to calculate residues.

3 Some applications

This section is dedicates to show how to use the residue theory in open
problems.

3.1 Residues and the Poincaré problem

In 1891 Henri Poincaré, studying the algebraic integrability of equa-
tions and motivated by Darboux’s works, to appear the following question,
see [44]

"Is it possible to bound the degree of an irreducible curve such that is
invariant by a foliation in terms of the degree of foliation?"

This problem is similar to decide whether a holomorphic foliation on P2

admits a rational first integral. This question is known as the Poincaré
problem. Although it is well known that such a bound does not exist in
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general, see [19], under certain hypotheses, there are several works about
this problem which answer it partially and there are several generalizations
even for flags and for Pfaff systems; see for instance [14, 17, 19, 30, 33, 43,
46, 26, 27, 32, 25]. The residue theory, in special the Baum-Bott Theorem,
are powerful tool and obstructions of several problems related to foliations
with singularities.

After 100 years, in ([19], Theorem 1, p.891) Cerveau and Lins Neto
given a first partial answer to Poincaré problem. In order to present it
consider S a projective nodal curve, that is all its singularities are of normal
crossing type, with reduced homogeneous equation f = 0, of degree m.

Theorem 3.1. Let F be a foliation in CP(2) of degree n, having S as
separatrix. Then m ≤ n + 2. Moreover if m = n + 2 then f is reducible

and F is of logarithmic type, that is given by a rational closed form
∑

λi
dfi
fi

where λi ∈ C and the fi are homogeneous polynomials.

Some years later, Carnicer in ([17], Theorem, p.289) presents the same
quota to Poincaré problem with other hypotheses, namely, F does not
have dicritical singularities (i.e., singularity with infinitely many invariant
curves passing through it) into the curve.

Theorem 3.2. Let F be a foliation of P2 and let C be an algebraic curve
in P2. Suppose that C is invariant by F and there are no dicritical singu-
larities of F in C. Then

degC ≤ degF + 2.

M. G. Soares in ([46], Theorem B, p.496) extends the Poincaré problem
from P2 to Pn improving the above quota with another hypotheses and
proved the result by applying Baum-Bott Theorem. Let V ↪→ Pn, n ≥ 2,

be an irreducible non-singular algebraic hypersurface of degree d0 invariant
by Fd, a non-degenerated one-dimensional holomorphic foliation of degree
d ≥ 2. Then we have.
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Theorem 3.3.
d0 ≤ d+ 1.

In [12] Brunella says that the GSV-index is the obstruction to a positive
solution to Poincaré problem and gives a simple condition that implies the
non negativity of this index. Motivated by Brunella’s work, Corrêa and
Machado in [25] introduce a GSV type index for invariant varieties by
holomorphic Pfaff systems on projective manifolds. The authors prove,
with certain hypotheses, a non negativity property for this index. As a
consequence one has the result.

Theorem 3.4. Let ω ∈ H0(Pn,Ωk
Pn(d + k + 1)) be a holomorphic Pfaff

system of rank k and degree d. Let V ⊂ Pn be a reduced complete intersec-
tion variety, of codimension k and multidegree (d1, . . . , dk), invariant by
ω. Suppose that Sing(ω, V ) has codimension one in V , then

∑
i

GSV (ω, V, Si) deg(Si) = [d+ k + 1− (d1 + · · ·+ dk)](d1 . . . dk),

where Si denotes an irreducible component of Sing(ω, V ). In particular, if
GSV (ω, V, Si) ≥ 0, for all i, we have

d1 + · · ·+ dk ≤ d+ k + 1.

3.2 Residues and the non-existence of minimal sets

The residue theory can be used in problem of existence or not of non-
trivial minimal sets for foliations, as we list some works in the sequence.

The idea of the minimal set was firstly considered by Camacho, Lins
Neto and Sad in [17], with the main objective to understand more geomet-
rical information about the foliations.

Let F be a holomorphic foliation on a compact manifold X. A compact
non-empty subset M ⊂ X is said to be a non-empty minimal set for F if
the following properties are satisfied
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a) M is invariant by F ;

b) M∩ Sing(F) = ∅;

c) M is minimal with respect to properties a) and b).

In [17] the authors addresses the problem of the existence or not of
non-trivial minimal set for codimension one foliations of P2. More pre-
cisely, they prove a geometrical property of minimal sets, i.e., by applying
the Maximum Principle for harmonic functions, they prove that F has
at most one non-trivial minimal set. Moreover, under generic conditions
imposed on the singularities of foliation, all leaves accumulate on that set.
Anyway, in general, the question of existence of non-trivial minimal sets
for holomorphic foliations on P2 remains as an open problem.

In ([42], Theorem 1, p. 1370) Lins Neto studies the problem of the ex-
istence of non-trivial minimal set of codimension one holomorphic foliation
on Pn, n ≥ 3 and he proves the following result

Theorem 3.5. Codimension 1 foliations on Pn, n ≥ 3, have no non-trivial
minimal sets.

In ([15], Theorem 1.2, p.296] the authors, by using Baum-Bott Theo-
rem, have generalized Lins Neto’s result for codimension one holomorphic
foliations on projective manifolds with cyclic Picard group.

Theorem 3.6. Let X be a complex projective manifold of dimension at
least 3 and with Pic(X) = Z, and let F be a codimension one foliation on
X. Then every leaf L of F accumulates to Sing(F):

L ∩ Sing(F) ̸= ∅.

The Theorem 3.6 is a partial answer to Brunella’s conjecture, see ([13],
Conjecture 1.1, p.3102), in the special case when Pic(X) = Z. Recently, in
2021 M. Adachi and J. Brinkschulte have proved the Brunella’s conjecture
without hypotheses on manifold X , see ([1], Main Theorem, p.1).
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Theorem 3.7. Let X be a compact complex manifold of dimension ≥ 3.
Let F be a codimension one holomorphic foliation on X with ample normal
bundle NF . Then every leaf of F accumulates to Sing(F).

For higher codimensional foliations, Brunella’s conjecture has been
stated ([22], Conjecture 1.2, p. 1236) and still remains as an open prob-
lem. However, in [28] the authors by using a Brunella-Khanedani-Suwa
variational type residue theorem for currents invariant by holomorphic
foliations, provide conditions for the accumulation of the leaves to the in-
tersection of the singular set of a holomorphic foliation with the support
of an invariant current.
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