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RESUMO 

Myzus persicae (Sulzer) (1776) (Hemiptera: Aphididae) tem uma ampla distribuição geográfica 

e é considerado uma praga de importância econômica em várias culturas agrícolas. Este trabalho 

foi realizado para investigar como a exposição letal e subletal do M. persicae aos inseticidas 

sintéticos (ou seja, neonicotinóides, organofosforados e piretróides), juntamente com a variação 

de temperatura, afetam os traços biológicos e reprodutivos, e obtendo uma melhor compreensão 

do papel do estresse oxidativo nas respostas aos afídeos. Para este fim, primeiro melhoramos 

nosso protocolo de cultivo de pulgões testando o uso potencial de um hidrogel como substrato 

de criação. Também determinamos as curvas concentração-resposta de cinco inseticidas 

(clorpirifos, deltametrina, tiametoxam, lambda-cialotrina, tiametoxam + lambda-cialotrina e 

imidacloprido) para o afídeo verde sob quatro temperaturas diferentes (15, 20, 25, e 28°C). Em 

seguida, testamos o efeito de baixas concentrações (CL1, CL5, CL10, CL15, CL20 e CL30) de cada 

inseticida sobre a longevidade e a fecundidade do M. persicae. Em seguida, avaliamos as 

respostas de estresse oxidativo dos afídeos expostos a diferentes baixas concentrações de 

imidacloprido, medindo seu conteúdo de malondialdeído (MDA) e H2O2 em diferentes pontos 

de tempo (12 e 48 horas). Os resultados mostraram que as colônias de M. persicae podem ser 

mantidas ao longo do tempo através da produção de descendentes suficientes usando hidrogel. 

Além disso, as toxidades dos produtos químicos testados e seu efeito estimulante sobre a 

fecundidade e longevidade variaram de acordo com as temperaturas. Além disso, tal variação 

na resposta hormética poderia estar ligada, ainda que apenas parcialmente, às respostas ao 

estresse oxidativo induzido pela exposição a baixas concentrações de inseticidas. Portanto, os 

resultados obtidos aqui forneceram informações importantes sobre os mecanismos de adaptação 

desses organismos em ambientes desafiadores, o que será de suma importância para o desenho 

de estratégias de manejo de M. persicae em agroecossistemas. 

 

Palavras-chave: afídeos, ágar, condições de laboratório, fecundidade, hidrogel, hormese, 

longevidade 

  



 

GENERAL ABSTRACT 

 

Myzus persicae (Sulzer) (1776) (Hemiptera: Aphididae) has a wide geographic distribution and 

is considered a pest of economic importance in several agricultural crops. This work was carried 

out to investigate how lethal and sublethal exposure of M. persicae to synthetic insecticides 

(i.e., neonicotinoids, organophosphate, and pyrethroids) together with temperature variation, 

affect the biological and reproductive traits , and gaining a better understanding of the oxidative 

stress  role in the aphids responses. To this end, we first improved our aphid-rearing protocol 

by testing the potential use of a hydrogel a rearing substrate.  We also determined the 

concentration-response curves of five insecticides (chlorpyrifos, deltamethrin, thiamethoxam, 

lambda-cyhalothrin, thiamethoxam + lambda-cyhalothrin, and imidacloprid) for the green 

aphid under four different temperatures (15, 20, 25, and 28°C). Then, we tested the effect of 

low concentrations (LC1, LC5, LC10, LC15, LC20, and LC30) of each insecticide on the longevity 

and fecundity of M. persicae. Subsequently, we evaluated the oxidative stress responses of 

exposed aphids to different low concentrations of imidacloprid by measuring their 

malondialdehyde (MDA) and H2O2 contents at different time points (12 and 48 hours). The 

results showed that colonies of M. persicae can be maintained over time by producing sufficient 

offspring using hydrogel. Furthermore, the toxicities of the tested chemicals and their 

stimulatory effect on fecundity and longevity varied according to temperatures. In addition, 

such variation in hormetic response could be linked, eventhough only partially, to the oxidative 

stress responses induced by the exposure to low concentrations of insecticides. Therefore, the 

results obtained here have provided important information on the adaptation mechanisms of 

these organisms in challenging environments, which will be of paramount importance for the 

design of management strategies for M. persicae in agroecosystems. 

 

Keywords: agar, aphids, fecundity, hormesis, hydrogel, laboratory conditions, longevity 
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GENERAL INTRODUCTION 

Myzus persicae (Sulzer) (1776) (Hemiptera: Aphididae) known as the green peach aphid, 

is a polyphagous agricultural pest, feeding on more than 400 plant species, and is 

associated with crops of great economic importance worldwide (BLACKMAN; 

EASTOP, 2000; VAN EMDEN, HELMUT F; HARRINGTON, 2017). Through direct 

feeding, honeydew production and transmission of more than 100 plant viruses, this 

species generates expressive losses in the yield of crops of great economic importance 

depending on their level of infestation (BASS et al., 2014; DE LITTLE et al., 2016). 

The control of M. persicae is frequently based on the use of synthetic insecticides, and 

among the chemical groups most commonly used are organophosphates, carbamates, 

pyrethroids, and neonicotinoids. The intensive and widespread use of these insecticides 

has resulted in the occurence of resistance to many of them, posing a major threat to the 

efficient and sustainable control of aphids (BASS et al., 2014; MOTA-SANCHEZ; 

WISE, 2021). 

After  being sprayed in agricultural areas, pesticides can be degraded over time due to the 

action of several factors (i.e., drift and degradation) leading to sublethal exposures in 

insects (BIONDI et al., 2012; DESNEUX; DECOURTYE; DELPUECH, 2007; DUKE, 

2014). This exposure can impact the physiological and/or behavioral characteristics of 

individual insects (DESNEUX; DECOURTYE; DELPUECH, 2007), affecting positively 

their population dynamics (SIAL et al., 2018; YU et al., 2010). This phenomenon, defined 

as hormesis, is a biphasic effect resulting from stimulation at low dose and inhibition at 

high dose after pesticide exposure (CALABRESE; BALDWIN, 2003; GUEDES, RAUL 

NARCISO C; RIX; CUTLER, 2022). 

Aphids in agroecosystems showing the ability to survive exposure to low 

concentrations/doses of a toxic compound under  and manifest sublethal effects has been 

reported in several studies. The species reported  include M. persicae (RIX; 

AYYANATH; CUTLER, 2016; SIAL et al., 2018; TANG et al., 2019; WANG, PAN et 

al., 2017), Aphis gossypii Glover (CHEN et al., 2016; WANG, SIYI et al., 2017), Aphis 

craccivora Koch (FOUAD; EL-SHERIF; MOKBEL, 2022), and Aphis glycines 

Matsumura (QU, YANYAN et al., 2015, 2017). Insecticide-induced hormesis may be 

disadvantageous in applicability in pest management, as the adaptive mechanism and 

stress coping abilities of these insects may contribute to the resurgence of pest insects. 
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Environmental temperature has an important role in both the population dynamics, 

development rates, and seasonal occurrence of aphids (ALFORD; BLACKBURN; 

BALE, 2012; CAMPBELL et al., 1974; COCU et al., 2005; SOH et al., 2018), and the 

performance, properties, and distribution of pesticides used in pest insect management 

programs (HORN, 2019; JOHNSON, 1990). The influence of temperature on toxicity can 

be positive or negative depending on the mode of action of the insecticide and the insect 

species in question, in addition to the route of exposure, thus, the toxicity of products can 

increase/decrease with varying temperature (DENG et al., 2016; LIU, JIA et al., 2016; 

SWELAM et al., 2022; WANG, XIAO-YI; SHEN, 2007). 

The continuous maintenance of insect populations in laboratory with quality (in small 

scale for research or in large scale for mass rearing) becomes fundamental (PARRA, 

JOSÉ ROBERTO POSTALI; COELHO JR, 2022), and due to its economic importance, 

individuals of M. persicae are valuable models for scientific studies and control methods 

(GAVKARE; GUPTA, 2013; MITTLER; DADD, 1962). Thus, according to the need, 

methodologies that enable the maintenance and availability of M. persicae individuals in 

the laboratory are developed, increased or adapted. 

Given all the above, to date, most studies focus on the efficacy of insecticides in 

controlling pest aphids without taking into consideration thermal regimes and how these 

regimes shape their toxicity. The literature also lacks information on how sublethal effects 

act on the biological characteristics of individuals exposed to insecticides under 

temperature variations. Thus, it is increasingly important to understand the underlying 

processes and mechanisms involved in sublethal exposure of pesticides and their hormetic 

effects on M. persicae individuals to guide the development of effective integrated pest 

management strategies. 

This thesis presents four chapters in manuscript form. Chapter 1 is dealing with the 

methodology of rearing M. persicae in the laboratory, relative to the first objective of this 

study. In chapters 2, 3, and 4, investigations on the sublethal exposure of the species in 

question to different insecticides, single and in mixtures, under varying regimes of 

temperatures as well as the resulting potential oxidative responses are presented. A 

general literature review of the subject is presented in the "Theoretical Framework", 

followed by a "General Introduction". Thus, each chapter was started with a specific 

introduction to the investigation developed and its respective summary. 
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1. THEORETICAL FRAMEWORK 

 

1.1. Insecticides and their application on pest aphids 

Aphids are considered one of the main agricultural pests worldwide, and the control 

methods of these organisms basically focus on the use of agrochemicals within Integrated 

Pest Management (IPM) due to their effectiveness (ALTIERI; NICHOLLS, 2018; 

CARVALHO, 2017; GAVLOSKI, 2018; SANDHI; REDDY, 2020), and among the 

chemical groups most commonly used to control these individuals are: organophosphates, 

carbamates, pyrethroids, and neonicotinoids (MOTA-SANCHEZ; WISE, 2021). 

Organophosphates are one of the most successful chemical pesticides, used for over 70 

years in agricultural fields and effective against pests due to their broad-spectrum 

efficacy. They are esters of phosphoric and thiophosphoric acids and their toxicity 

depends mainly on their ability to inhibit acetylcholine esterase (AChE) activity 

(MORADI et al., 2019; PERRY et al., 2020). Chlorpyrifos is a synthetic insecticide from 

the organophosphorus chemical group that is non-systemic, broad-spectrum, efficient, 

and has been widely used to control various pests, including aphids (AHMAD; ASLAM, 

2005; LI, GUOYONG et al., 2022; SIMON, 2011). This insecticide is an 

acetylcholinesterase (AChE) inhibitor, induces oxidative stress, and can damage DNA 

(RASHEED et al., 2020). 

Pyrethroids are also commonly used to control many populations of pest aphids. They 

bind to voltage-dependent sodium channel protein, which alters the function of the pore 

channel, causing repetitive neurological impulses, thus potentially impairing any nerve 

activity and resulting in paralysis and death of the insect (HAUG; NAUMANN, 1990; 

NARAHASHI, 2002; SIMON, 2011; VAIS et al., 2000). Deltamethrin is a synthetic 

pyrethroid that acts as a rapid neurotoxic agent (GIBSON; RICE; SAWICKI, 1982; 

MALBERT-COLAS et al., 2020). They are classified as sodium channel modulators, 

where the molecule induces toxic responses in the central and peripheral nervous system 

of insects (HAUG; NAUMANN, 1990; SIMON, 2011), stimulating nerve cells to 

produce repetitive discharges and consequently causing paralysis in the insect 

(NARAHASHI, 2002; SODERLUND, 2012). Lambda-cyhalothrin is also a pyrethroid 

classified as a potent neurotoxic agent (DONG, BAO et al., 2022), it acts by interfering 

with the ionic conductance of nerve membranes by prolonging the Na+ current leading to 

insect paralysis and death (CLARK, J MARSHALL, 1997). It has an effective, rapid and 
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persistent potency and has been highly recommended in the management of pest aphids 

in agricultural areas (MENGER et al., 2022). 

Neonicotinoids are efficient agonists of the nicotinic acetylcholine receptor (nAChR), 

providing excitatory neurotransmission in the insect central nervous system (MATSUDA 

et al., 2001). Their success is related to high efficiency compared to organophosphates, 

carbamates and pyrethroids, low mammalian toxicity, high insect toxicity, unique mode 

of action and versatile applications (BASS et al., 2015; JESCHKE et al., 2011). 

Inside this chemical group, imidacloprid has become the main product used to control 

sucking insect pests, especially pest aphids (BASS et al., 2015; CUI et al., 2016). 

Imidacloprid is a systemic insecticide and agonist that activates the nicotinic 

acetylcholine receptor (nAChR) on postsynaptic membranes, its neurotoxins can cause a 

variety of behavioral/physiological effects (BUCKINGHAM et al., 1997; LIU, MING-

YIE; CASIDA, 1993; MATSUDA et al., 2001). Imidacloprid has been considered a safe 

insecticide because of its high toxicity to insects and low toxicity to mammals 

(BUCKINGHAM et al., 1997). Thiamethoxam is also a  neonicotinoid insecticide  acting 

as an agonist that binds to nicotinic acetylcholine receptors (nAChRs) in the insect 

nervous system, causing nerve stimulation, paralysis and death, and widely used in aphid 

control (CHO et al., 2011; SIMON, 2011; ULLAH et al., 2020).  

However, overuse of these chemical groups in agroecosystems led to many cases of 

increased tolerance and resistance development in aphid populations (FONTAINE; 

CADDOUX; BARRÈS, 2023; LI, YONG et al., 2016; WANG, ZI-JIAN et al., 2021). 

 

1.2. Sublethal effects and hormesis 

Insecticides are intended to control pest insects, and to cover different target sites in the 

physiology of organisms, they present a large number of chemical classes with various 

modes of action (GUPTA et al., 2019; SIMON, 2011). An optimal amount is required to 

effectively reduce crop damage attacked by these pests in agroecosystems (ABD EL-

MAGEED; SHALABY, 2011; NETO et al., 2019; RASHEED et al., 2020), however, 

various abiotic and biotic processes can alter the concentrations of applied insecticides 

(BANTZ et al., 2018; MÜLLER, 2018; TUDI et al., 2021). Pesticides can have their 

variable distribution and continuous degradation due to misapplication, drift, and 

formulation degradation over time in plants, animals, soil, and water (CUTLER et al., 

2022; GUEDES, N M P et al., 2010; MÜLLER, 2018; RIX; CUTLER, 2022). As a 

consequence, these products can cause sublethal exposures in target and non-target 
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organisms (DONG, JUNFENG et al., 2017; SERRÃO et al., 2022), that is, such exposure 

does not induce apparent mortality in the population, but potentially causes physiological 

or behavioral effects in individuals that survive exposure to the insecticide (DENG et al., 

2016; DESNEUX; DECOURTYE; DELPUECH, 2007; FOUAD; EL-SHERIF; 

MOKBEL, 2022; HE et al., 2013; ULLAH et al., 2019). 

This phenomenon defined as hormesis is a biphasic adaptive response characterized by 

stimulation at low doses and inhibitory effects at high doses of pesticides 

(AGATHOKLEOUS; CALABRESE, 2022; CALABRESE; BALDWIN, 2003; 

CUTLER et al., 2022). Hormesis has been observed in a multitude of organisms, and can 

cause various biological changes, including numerous metabolic and molecular 

processes, cognitive function, and immune response (CALABRESE; BALDWIN, 2003; 

CUTLER, 2013; DUKE, 2014; RIX; CUTLER, 2022), which can be short-term 

(improved performance and increased mating success) and long-term (increased 

longevity and performance in subsequent generations) (BERRY III; LÓPEZ-

MARTÍNEZ, 2020). Moreover, hormetic effects are not only limited to chemical 

stressors, such as pesticides, they can manifest after temperature stress, radiation and food 

restriction (BERRY III; LÓPEZ-MARTÍNEZ, 2020; CALABRESE; BLAIN, 2011; 

CUTLER, 2013; FEINENDEGEN, 2005; MIRONIDIS; SAVOPOULOU-SOULTANI, 

2010). 

The study of insecticide-induced hormesis in pest insects has become of utmost 

importance due to its potential implications in pest management. The uptake of a small 

amount of agrochemicals can contribute to a beneficial stimulatory effect on fecundity, 

fertility, longevity, intrinsic rate of increase, finite rate of increase, and net reproductive 

rate of pests (CALABRESE; BALDWIN, 2003; SHANG et al., 2021; SIAL et al., 2018; 

ULLAH et al., 2019). Currently, in the literature there is a range of studies on hormetic 

responses that cause stimulation under low doses of insecticides, and has been reported 

in various pest species, such as in aphids (KOO et al., 2015; LU; ZHENG; GAO, 2016; 

ZENG et al., 2016), caterpillars (DONG, JUNFENG et al., 2017; NOZAD-BONAB et 

al., 2017), thrips (CAO et al., 2019; KORDESTANI et al., 2021; LIANG, HUA-YU et 

al., 2021), whitefly (ESMAEILY et al., 2014; QU, CHENG et al., 2017; 

RAKOTONDRAVELO et al., 2019), and among other arthropods (CUTLER, 2013; 

GUEDES, RAUL NARCISO C; RIX; CUTLER, 2022; RIX; CUTLER, 2022). 

In this context, pesticide-induced hormesis becomes a disadvantageous response in 

agricultural fields. For being widely observed that after the application of chemicals, there 
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is the possibility of an increase in the growth of pest insect populations at a higher rate 

than would otherwise be the case. Thus, hormetic responses can quickly lead to resistance 

selection, pest resurgence, and/or secondary pest outbreaks (CUTLER, 2013; CUTLER 

et al., 2022; GUEDES, N M P et al., 2010). 

However, although there are many records of stimulatory effects induced by pesticides in 

the literature, they are usually not termed as hormetics effects, but rather as efficacy 

failures. Thus, there is a need for studies that deal with the mechanism of different types 

of hormesis as well as the cost of this adaptive response if insecticides are to continue 

being applied in the future in an environmentally acceptable way. 

 

1.3. Temperature and its effects on the insect life cycle 

As ectothermic organisms, insects are highly susceptible to abiotic changes in the 

environment (COLINET et al., 2015; GILBERT; RAWORTH, 1996). Temperature has 

an important role in regulating physiological functions in these organisms such as 

respiration, immunity, metabolism, growth, and reproduction (GONZÁLEZ‐TOKMAN 

et al., 2020; NEVEN, 2000). In temperate and polar regions, insects may have developed 

different strategies to survive recurrent environmental conditions that are inappropriate 

for their development (GILBERT; RAWORTH, 1996; TOUGERON et al., 2020). 

However, when physiological injuries occur under heat stress, insects may impact their 

biological fitness, such as, behavior, locomotion, dispersal, longevity, and survival 

(HOOPER, DAVID U et al., 2012; JOHNSTON et al., 2019; RODRIGUES; BELDADE, 

2020). 

Insects are vulnerable to high temperatures due to their small size and ectothermic 

physiology (GILBERT; RAWORTH, 1996; GULLAN; CRANSTON, 2014). In a climate 

scenario where conditions are extremely high, heat exposure can rapidly raise body 

temperature to lethal levels for these organisms, and can drive profound consequences in 

their life history characteristics (HARVEY et al., 2020; REBAUDO; RABHI, 2018). 

High temperatures can kill insect cells by denaturing proteins, altering membrane and 

enzyme structures and properties, can cause water loss (dehydration) due to their small 

size (CHAMPMAN, 1998; GULLAN; CRANSTON, 2014), and metabolic rates can 

increase and population doubling times can decrease as temperatures increase 

(GONZÁLEZ‐TOKMAN et al., 2020; NEVEN, 2000). 

Mironidis and Savopoulou-Soultani (2010) investigated the effects of temperatures on the 

survival and reproductive parameters of Helicoverpa armigera (Hübner) (Lepidoptera: 
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Noctuidae) adults, and revealed that increasing the duration of exposure to high 

temperatures resulted in a significant decrease in the survival rate of individuals. 

Not only high temperatures are responsible for this variation in the biological fitness of 

insects, but low temperatures also play an important role in the physiological and 

biological properties of species (CLARK, MELODY S; WORLAND, 2008; LEE, 2012). 

Insects can be susceptible to chilling, and due to injury from this condition, these 

organisms can show abnormalities and may even reach death (MARSHALL; 

GOTTHARD; WILLIAMS, 2020; TEETS; DENLINGER, 2013). 

Besides the temperature influencing the population dynamics of organisms, it can also 

affect the toxicity and relative efficacy of insecticides that are used in agricultural fields 

(JOHNSON, 1990; MAHMOODI et al., 2020). In this sense, abiotic factors become 

important, since, temperature influences the physiological processes of organisms 

involved in the detoxification and excretion of chemical compounds (DONG, BAO et al., 

2022; HOOPER, MICHAEL J et al., 2013; ILTIS et al., 2022). 

Understanding the mechanisms by which these organisms respond to this variation under 

thermal stressors is of utmost importance, as there is a great need to plan and formulate 

adaptation and mitigation strategies in Integrated Pest Management tactics, especially due 

to the increasing effects of global warming and climate change on natural systems. 

 

1.4. Aphids as pests and above all as study models for entomology and 

ecotoxicology 

The aphids are sucking insects phytophagous, having a size ranging from 2 to 3 mm, and 

are considered one of the most important pests in numerous crops, both in open field 

conditions and in protected crops due to thier high reproductive capacity (BLACKMAN; 

EASTOP, 2000; KENNEDY; STROYAN, 1959; VAN EMDEN, HELMUT F; 

HARRINGTON, 2017). Their reproduction occurs with several generations per year by 

thelytocous parthenogenesis; i.e., females giving rise to females; they are very adapted to 

the exploitation of new and temporary habitats and are also responsible for several direct 

and indirect damages (BUENO, 2005; NEBREDA; MICHELENA; FERERES, 2005). 

The direct damage caused by these organisms is due to the suction of sap, which leads to 

the shortening of the internodes of the plants and to the wilting and yellowing of the 

leaves, which do not develop normally and end up harming the growth of the host 

(DEDRYVER; LE RALEC; FABRE, 2010; RABBINGE et al., 1981; VAN EMDEN, 

HELMUT F; HARRINGTON, 2017). Indirectly, one of the main problems is the spread 
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of viruses on host plants in the field through a variety of aphid species (GAAFAR; 

ZIEBELL, 2020; QI et al., 2021; STEVENS; LACOMME, 2017). 

Aphids can attack a multitude of crops, causing losses and increasing production expenses 

(KENNEDY; STROYAN, 1959; VAN EMDEN, HELMUT F; HARRINGTON, 2017). 

Despite advances in the development of management techniques and sustainable 

production practices, current aphids’ control methods still focus largely on the use of 

agrochemicals within Integrated Pest Management (IPM) due to their effectiveness 

(ALTIERI; NICHOLLS, 2018; CARVALHO, 2017; GAVLOSKI, 2018; SANDHI; 

REDDY, 2020). 

Furthermore, besides being  one of the major agricultural pests worldwide, and from an 

applied design, aphids are exceptional models for studying a number of fundamental 

ecological and evolutionary topics, including reproductive mode variation, insect-plant 

interactions, virus transmission, phenotypic plasticity, symbiosis, and insecticide 

resistance (VAN EMDEN, HELMUT F; HARRINGTON, 2017). Studies on this 

important group of insects are extremely important to provide potential tools for efficient 

pest management measures. 

Among the aphid species, the species Myzus persicae Sulzer (1776) (Hemiptera: 

Aphididae) are associated with crops of great economic importance that are intensely 

controlled by chemical pesticides, and has developed resistance to almost all insecticides 

used (VAN EMDEN, H F et al., 1969; WANG, XIAO-YI; SHEN, 2007). Considering 

the set of direct and indirect damages, these aphids present potential to generate 

expressive losses in the yield of several crops, depending on the level of infestation 

(BLACKMAN; EASTOP, 2000; HEIE, 1986; PAVELA, 2018; PIMENTA; SMITH, 

1976; SALVADORI, 2000; SINGH; SINGH, 2015; VERESHCHAGINA; 

GANDRABUR, 2016). The wide distribution of M. persicae worldwide is due to its very 

high adaptability to various environmental conditions, its wide genetic variability and 

broad phenotypic plasticity. 

In view of the above, it is essential that studies aim to evaluate the efficiency of methods 

of population control of the aphid M. persicae and consequent reduction of damage 

caused in the yield of various crops. However, these studies are still a great challenge, 

because when conducting studies of biology and behavior, it is essential to structure the 

conditions provided to the insects, to have individuals in sufficient quantity and quality 

for the purpose of research (COHEN, 2001; OLIVEIRA et al., 2010; PARRA, J. R. P. et 

al., 2002). In this perspective, the refinement of these breeding techniques with the 
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addition of new technologies can enable the expansion and evolution of Integrated Pest 

Management programs (PARRA, J. R. P., 2012). 

 

1.5.Sublethal/hormesis effects studied on aphids 

As a result of the economic importance of pest aphids in agroecosystems, one of the key 

questions for scientists studying hormesis in the context of ecotoxicology is the 

consequence of the hormetic response on the biological fitness of these organisms in 

agricultural fields. Several recent studies are revealing that exposure to low doses of a 

contaminant can induce a hormetic response in pest aphids (AYYANATH et al., 2013; 

FOUAD; EL-SHERIF; MOKBEL, 2022; QU, YANYAN et al., 2015; ULLAH et al., 

2019). Pesticide-induced hormesis may be a new fundamental pillar in the field of 

ecotoxicology, as it may promote the evolution of adaptive coping mechanisms in these 

organisms in challenging environments. 

The chemical groups most commonly used for aphid control are organophosphates, 

carbamates, pyrethroids, and neonicotinoids (MOTA-SANCHEZ; WISE, 2021). 

However, as stated earlier, these insecticides can cause sublethal exposures to aphids by 

several factors, including pesticide misapplication, drift, and degradation over time 

(BIONDI et al., 2012; DESNEUX; DECOURTYE; DELPUECH, 2007; DUKE, 2014). 

Consequently, these exposures can influence the physiological and/or behavioral 

characteristics of individuals, such as changes in mortality rate, longevity and fecundity, 

immune capacity, and/or the sex ratio of specimens (DESNEUX; DECOURTYE; 

DELPUECH, 2007; LU; ZHENG; GAO, 2016; QU, YANYAN et al., 2015; SIAL et al., 

2018; WANG, PAN et al., 2017; YU et al., 2010). 

Moreover, these effects may be transgenerational, indirectly affect their offspring, and 

may induce changes in communities and ecosystem services (CHEN et al., 2016; 

FOUAD; EL-SHERIF; MOKBEL, 2022; GUO et al., 2013; JU et al., 2022; TANG et al., 

2019; WANG, SIYI et al., 2017). The induction of transgenerational hormetic responses 

may be a mechanism by which the parental generation can adapt the phenotype of their 

offspring for the adverse conditions they face (ULLAH et al., 2020; YUAN et al., 2017). 

The occurrence of pesticide-induced hormesis can arise at any time throughout the 

individual's life, and can be highly dependent on the type of insecticide and the species, 

as they can develop different adaptive patterns to exposure to low doses (CHO et al., 

2011). The consequences of hormetic responses on the biological fitness of these insects, 

such as increased survival, fecundity, and reproduction after exposure to sublethal 
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concentrations of insecticides has been reported in several aphid species, such as in M 

persicae (CHRISTOPHER CUTLER et al., 2009; JANMAAT et al., 2011; SIAL et al., 

2018; TANG et al., 2019; WANG, PAN et al., 2017; YU et al., 2010; ZENG et al., 2016), 

Aphis gossypii Glover (AMINI JAM et al., 2014; CHEN et al., 2016; CUI et al., 2018; 

LIANG, PING-ZHUO et al., 2019; MA et al., 2019; SHI et al., 2011; ULLAH et al., 

2019), Sitobion avenae (F.) (LU; ZHENG; GAO, 2016; MIAO et al., 2014; XIAO et al., 

2015; XIN et al., 2019) and Rhopalosiphum padi (Linnaeus) (LI, WENQIANG et al., 

2018; LU; ZHENG; GAO, 2016; XIN et al., 2019; ZUO et al., 2016). Thus, reproduction-

related traits represent one of the most important sublethal parameters that are studied in 

pesticide toxicology in pest insects due to their crucial outcomes at the population level 

(CUTLER et al., 2022; GUEDES, RAUL NARCISO C; RIX; CUTLER, 2022; RIX; 

CUTLER, 2022). 

As a result of damage, hormesis becomes a disadvantageous response in agricultural 

areas, since aphids surviving hormetic effects can accelerate population growth, develop 

resistance to various insecticides, ensuring resurgence and/or secondary outbreaks of this 

pest (CUTLER, 2013; CUTLER et al., 2022; GUEDES, N M P et al., 2010). Thus, 

comprehensive knowledge of the effects of sublethal concentrations on pest aphids is 

essential to improve sustainable pest management strategies. 

 

1.6. The impact of temperature on sublethal effects on aphids 

Global climate change has significant impacts on agroecosystems, and agricultural crops 

and their corresponding pests are directly and indirectly affected (AMJAD BASHIR et 

al., 2022; SHRESTHA, 2019; SKENDŽIĆ et al., 2021), and understanding the potential 

risks and economic losses of agribusiness in many different regions is becoming a 

determining factor in the strategic planning of agricultural activities in the context of 

global warming (DUBOVITSKI et al., 2021). 

Abiotic disturbances, particularly upper and lower thermal effects, check insect pest 

multiplication and abundance, generation time, emergence, flight, and dispersal rate 

(NAEEM-ULLAH et al., 2020; SKENDŽIĆ et al., 2021). In addition, this climate 

disruption can create new ecological niches that provide opportunities for insect pests to 

establish and distribute into new geographic regions (GUTIERREZ; PONTI, 2014). 

As mentioned earlier, extreme temperature values have an important impact on all levels 

of a biological organization, from the whole organism to the molecular level 

(CAMMELL; KNIGHT, 1992; GILBERT; RAWORTH, 1996; TANYI; NGOSONG; 
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NTONIFOR, 2018), and temperature is also important in the activity and performance of 

insecticides used in pest insect management programs (HORN, 2019; LI, HAIPING et 

al., 2006). For pest aphids, high temperatures can have negative impacts on populations 

by slowing development and reducing fecundity, i.e., high temperatures can be 

detrimental to embryo development and therefore population growth may be slowed in 

subsequent generations (ALFORD; BLACKBURN; BALE, 2012; CAMPBELL et al., 

1974; COCU et al., 2005; DAVIS; RADCLIFFE; RAGSDALE, 2006; SOH et al., 2018). 

Interactions between low temperatures and insect physiological responses can also 

rapidly alter their biological fitness (BAYLEY et al., 2018; MARSHALL; GOTTHARD; 

WILLIAMS, 2020; OVERGAARD; GERBER; ANDERSEN, 2021; SINCLAIR et al., 

2003). Aphids have the ability to rapidly acclimate to low temperatures, and this 

significantly interferes with the development time, longevity, mortality, and reproduction 

of individuals (DURAK; DURAK, 2021; MICHAUD; BAIN; ABDEL-WAHAB, 2018). 

This cold tolerance of aphids can progressively increase over subsequent generations and 

can be lost as quickly as it is acquired (POWELL; BALE, 2008). Saeidi et al. (2017) 

showed that a 1- to 3-hour exposure to 0.0°C was sufficient to increase the survival of the 

Russian wheat aphid, Diuraphis noxia (Kurdjumov), by four times. 

Heating or cooling can cause accelerated degradation of chemical compounds (HOOPER, 

MICHAEL J et al., 2013), and as we already know, insecticides in the field can be 

degraded by these abiotic factors over time, potentially causing sublethal exposures to 

aphids (BIONDI et al., 2012; DESNEUX; DECOURTYE; DELPUECH, 2007). From an 

applied perspective, climate change may have the potential to alter the benefits/costs 

balance of pesticide use in the agricultural context, and in this regard, in the literature 

there is little detailed knowledge about the thermal modulation of pesticide side effects 

on pests, especially on aphids. In this sense, it is of utmost importance that further studies 

are conducted to have a better understanding of the uptake and elimination of insecticides 

with thermal fluctuation and how these effects affect the biological processes of pest 

aphids. 
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Abstract 

Background 

Proper and cost-effective rearing methodologies are critical for successful insects’ 

production. In this context, standard laboratory rearing of aphids uses plant leaf discs 

floating on agar layer. Due to high cost of agar, we tested a hydrogel, a synthetic polymer, 

as an affordable alternative for laboratory rearing of the green peach aphid. 

Methods 

Initially, we compared the effects of three concentrations of hydrogel (0.3g, 0.6g and 

0.9g) and 10% agar on the ability of aphids to complete their life cycle. Then, using age-

stage, two-sex life tables, we assessed the suitability of the hydrogel (0.6 gr) as substrate 

for two different host plants (e.i; Brassica oleraceae and Nicandra physalodes) under two 

different temperatures in aphids’ production. Subsequently, we tested the response of the 

produced aphids in toxicological bioassays. 

 

Results 

Our findings showed that, similarly to the agar, the hydrogel concentration of 0.6 grs 

allowed the production of aphids in high numbers without affecting their life cycle 

parameters or their reproductive outputs. Furthermore, the most significant differences 

between the evaluated treatments resulted mostly from the combined effects of the host 

plants and the temperatures. Therefore, colonies of M. persicae can be maintained over 

time producing sufficient offspring using N. physalodes leaves on layer of hydrogel (0.6 

g) at 20°C. Moreover, in toxicological bioassays the use of higher hydrogel 

concentrations (0.9 grs) is recommended.  

Conclusions 
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The hydrogel can be adopted as a viable alternative to replace the widely used agar-based 

methodology for the green peach aphid rearing. 

Keywords: hydrogel, aphids rearing, agar, temperature, Nicandra physalodes 

 

Background 

The rearing of insects for mass production or scientific inquiry is a great challenge. The 

production and multiplication of affordable and high-quality insects to be employed in 

the many important purposes of basic and applied research demands to structure the 

provided insect-rearing conditions (Cohen, 2003, 2001; Oliveira et al., 2010; Parra et al., 

2002). One of the key applications of insect rearing is the pest management and obtaining 

experimental subjects in sufficient quantity and quality that will respond accurately in 

various bioassays is crucial (Huynh et al., 2021). In this perspective, the refinement of 

insect-rearing techniques can improve the accuracy of designed and advocated Integrated 

Pest Management strategies (Parra, 2012). 

Aphids, such as the green peach aphid Myzus persicae Sulzer (1776) (Hemiptera: 

Aphididae), are widely distributed pests associated with many crops of economic 

importance. Due to the direct and indirect damages they cause, aphids have the potential 

to generate expressive losses in several crops (Blackman and Eastop, 2000; Heie, 1986; 

Pavela, 2018; Pimenta and Smith, 1976; Salvadori, 2000). Aphids are also frequently used 

as model organisms to study various fundamental questions related to insect biology, 

physiology, ecology, and evolution within the basic and applied life sciences. Studies 

aiming to evaluate the efficiency of pest control methods and leading to consequent 

reduction of damages caused in the field are some of the examples of aphids’ use in 

applied research (Toledo et al., 2020). Consequently, the rearing and multiplication of 

these insects are of great importance, and methodologies that enable the production and 
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maintenance of their colonies in the laboratory have been developed, improved, or 

adapted according to the research needs.  

Several methods for rearing aphids in the laboratory have already been developed, 

including the use of plants grown in pots, and/or artificial diets (Van Emden and Wild, 

2020; Gavkare and Gupta, 2013; Gorham, 1942; Mittler and Dadd, 1962). In 1960, for 

the purposes of their work on wing polymorphism in aphids, (Johnson and Birks 1960), 

developed a rearing technique for Aphis craccivora Koch using leaf discs of Vicia faba 

L. floating on a modified Hougland-Snyder culture solution. Later on, (Milner 1981) used 

leaf discs attached to the surface of 1% agar gel and obtained positive results for the 

maintenance of aphid colonies. Consequently, this method became the aphid reference 

rearing method and has been since widely used to maintain aphid colonies under 

laboratory conditions (Conti et al., 2010; Leite et al., 2008; Li and Akimoto, 2018; 

Michelotto et al., 2005; Simões Santos Rando et al., 2011; Valente et al., 2014). 

Agar, used as substrate in Milner’s methodology, stands out for its high carbohydrate 

concentration and nutrient-rich chemical structure, being a substance of gelatinous 

consistency, which is obtained from red seaweed and formed by a combination of agarose 

and agaropectin (Armisen and Gaiatas, 2009). The importance and efficiency of agar as 

a substrate supporting the leaves in aphids’ laboratory rearing with different foci is well 

established in the literature (Michelotto et al., 2005; Simões Santos Rando et al., 2011; 

Tang et al., 2019; Wang et al., 2018). Although this protocol is feasible, it is important to 

recognize that cost-effectiveness is of utmost importance for large-scale rearing of aphids 

aiming different purposes. In that respect, other potential media with gelling properties 

include hydrophilic gels called hydrogels. They are synthetic polymers and are 

traditionally prepared using chemical polymerization methods, absorbing large amounts 

of water without dissolving (it expands to about 200-800 times the original volume 

(Neethu et al., 2018; Shibayama and Tanaka, 1993). This property has led to many 
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practical applications of this material, particularly in agriculture, improving water supply 

to plants. However, there is a huge knowledge gap regarding the real potential, 

applicability and cost-effectiveness of hydrogels as insects’ rearing substrates. 

Here, we hypothesized that hydrogel can be used as alternative substrate for the agar in 

M. persicae rearing under laboratory conditions. Firstly, we determined the most adequate 

concentrations of hydrogel that allowed normal aphid life cycle. Then, we tested its 

suitability under two different temperatures and using leaf-discs of two different host 

plants. Finally, we assessed the response of the produced aphid to exposure to a 

neonicotinoid insecticide. 

Results 

Establishing the hydrogel concentration  

The results of one-way analysis of variance (ANOVA I) showed no statistically 

significant differences between the three different hydrogel concentrations (0.3g, 0.6g, 

and 0.9g) and the control (agar at 10%) for female fecundity when reared on N. 

physalodes leaf discs at 15 ± 2°C (p=0.07) (Figure 1A) and at 20°C (p =0.24) (Figure 

1B). Similarly, the female’s survival was not different between the treatments (Agar, 

0.3g, 0.6g and 0.9g) when reared on N. physalodes plants at 15 ± 2°C (χ2= 1.643; df = 3; 

p = 0.65) (Figure 1C), and at 20 ± 2°C (χ2= 7.872; df = 3; p = 0.05) (Figure 1D). 

Based on these results, the subsequent bioassays were carried out using only two hydrogel 

concentrations (0.6g, and 0.9g) and the control (agar at 10%). The hydrogel concentration 

of 0,3g/100ml was desecrated due to the higher viscosity of the substrate layer causing 

aphids’ drowning. 

Life table study for two sexes by age and developmental stage of M. persicae 

The change of stage structure during the life history of M. persicae can be observed in 

the curves of the age-stage survival rate (Sxj) (Figure. 2). The survival rate Sxj gives the 

probability that a newborn nymph will survive to age x while in stage j. The lx is the 
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probability that a newly hatched nymph survives to age x; in this regard, the lx curve is a 

simplified version of Sxj (Chi and Su, 2006). 

In the data set evaluated, the survival rate of M. persicae for the treatments (BA15, BH15, 

NA15, NH15, BA20, BH20, NA20, and NH20) was between 75.5% and 100% for the 

first instar, between 57% and 100% for the second instar, between 51% and 97.9% for 

the third instar, and between 51% and 91.8% for the fourth instar. The overlaps between 

different stages during the developmental period demonstrate the varying developmental 

rates among individuals (Figure 2). 

The mean durations of M. persicae stages among the different treatments (BA15, BH15, 

NA15, NH15, BA20, BH20, NA20 and NH20) showed significant differences (paired 

bootstrap test, p < 0.05) as shown in Table 1. In general, shorter nymphal development 

times, longevity and consequently total duration of the life cycle were found when the 

aphids were reared under 20 °C compared to 15 °C. When the treatments were compared 

within the temperature of 20 °C, the total cycle and stages’ durations were always longer 

for the aphids reared on N. physalodes plants and using hydrogel as rearing substrate. 

When the temperature of 15 °C is considered, similar life cycles were found for the aphids 

reared on the N. physalodes plants and using either substrate (Agar or hydrogel) while 

shorter life cycles were found for the females kept on B. oleraceae and on hydrogel 

compared to agar.   

Regarding the reproductive parameters (Table 2), the rearing temperature had little effects 

as the females’ fecundity was similar when they were reared on the same combination of 

plant and substrate under the two temperatures tested (20 vs. 15 ºC) except when reared 

on the B. oleraceae leaf discs on agar. In addition, females’ fecundity was constantly 

higher when reared on the N. physalodes plants independently of the temperatures and 

the rearing substrate (agar or hydrogel). Similar trends were generally observed for the 
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other reproductive parameters assessed (effective fecundity, the mean number of days of 

viviparity, APOP, TPOP…). 

At the population level (Table 3), rearing the aphids’ females using hydrogel resulted in 

a higher increase (intrinsic and finite) and reproductive (gross and net) rates 

independently of the temperature and the rearing host. The generation time was affected 

mainly by the rearing temperature rather than the other factors (rearing substrates and 

plants). 

Response to neonicotinoid insecticide exposure  

The response of M. persicae adults to imidacloprid exposure was investigated by foliar 

discs immersion methods under two different temperatures (20 and 15 °C) and using 

treated B. oleraceae foliar discs deposited on layers of hydrogel (0.6 or 0.9 gr) or 10% 

agar (Figure 3). The LC50 concentrations for imidacloprid in B. oleraceae Agar 15°C and 

B. oleraceae Hydrogel 15°C 0.6g and 0.9g (Figure 3A) were 0.212, 0.079 and 0.144 a.i. 

mg/ml respectively, while their LC50 concentrations in B. oleraceae Agar 20°C, and B. 

oleraceae Hydrogel 20°C 0.6g and 0.9g (Figure 3B) were 0.088, 0.072 and 0.111 a.i. 

mg/ml respectively. 

Based on the obtained LC50s and the calculated toxicity ratios (TR= LC50s of hydrogel/ 

LC50s of agar) (Figure 3), the resulting dose-response curves were similar indicating no 

differences between the responses of aphids within the same temperature regime 

(Hydrogel-0.9 gr 15°C :TR = 0.7 [0.5 – 1.00]; Hydrogel-0.9 gr 20°C: TR = 1.3 [0.9 – 

1.7]; Hydrogel-0.6 gr 20°C: TR = 0.8 [0.4 – 1.6]). The only exception was the Hydrogel-

0.6 gr at 15°C (TR = 0.4 [0.2 – 0.8]) that presented an LC50 significantly lower than the 

LC50 of the agar under the same temperature (15°C). 

Discussion 

The importance of insect rearing and multiplication is increasing for basic research and 

for the more applied field of pest management (Anderson, 2021). Given the need for 
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laboratory rearing of M. persicae for a variety of applications, a standard, cost-effective, 

reliable, and easy-to-use rearing methodology is necessary to provide the optimal 

requirements for the insects and thus to produce individuals that manifest normal 

biological and reproductive characteristics of the species and when used in scientific 

studies produces reliable responses. Here, we established and tested a low-cost, efficient 

aphid-rearing methodology using hydrogel. The established methodology allowed the 

normal production of aphids in high numbers and did not affect either the life cycle 

parameters or the reproductive outputs of M. persicae, being, therefore, a viable 

alternative to replacing the widely used agar-based methodology.  

Agar is a well-known solidifying agent widely used in studies of biological aspects 

involving aphids’, and other insects’, rearing (Conti et al., 2010; Michelotto et al., 2005; 

Valente et al., 2014). Agar has been employed mainly to guarantee, during rearing or 

experiments period, the turgidity of leaves used as the host for tested insects. For example, 

agar at 1% was used as a supporting substrate for leaves of Vicia faba L. aimed to evaluate 

the biological aspects of Acyrthosiphon pisum Harris ((Li and Akimoto 2018). The use of 

agar allowed the maintenance of suitable conditions of the leaves for approximately two 

weeks. However, its cost is high, making its large-scale use unfeasible and highlighting 

the need to develop more affordable alternatives that reduce this cost without affecting 

the quality of produced insects. 

In agriculture, hydrogels can be used as soil conditioners, where their main function is 

the retention and availability of water for agricultural crops (Sayed et al., 1991). However, 

as far as we know, there are no previous reports on the use of hydrogels as substrates for 

insects rearing. Our initial findings showed that the tested hydrogel dosages were good 

water retainers, causing the leave discs to stay turgid during the experiment period. The 

aphids were able to reproduce and develop in the three concentrations of hydrogel tested 

in a similar way to the aphids reared using the agar. Nevertheless, our observations 
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indicated that the hydrogel concentration of 0.3 g has a more liquid consistency, which 

may cause a greater mortality of aphids due to drowning, and the concentration of 0.9 g 

has a stiffer consistency, which may need a more frequent replacement of the hydrogel 

layer during the experiment and or rearing times. Thus, the hydrogel concentration of 

0.6g was considered to provide better conditions for the leaves and aphids, and thus more 

viable for use in the subsequent bioassays.  

In the present study, we constructed Age-stage, Two-sex life tables to evaluate the fitness 

of M. persicae under the different rearing substrates, temperatures, and host plants. Such 

life tables have been frequently used to study different aspects of the life history of many 

insects including aphids (Jahan et al., 2014; Khurshid et al., 2022; Maroofpour et al., 

2021; Özgökçe et al., 2018; Zeng et al., 2016).  The reproduction results showed that adult 

females could reproduce in all treatments with high intrinsic (r) and finite growth rate (λ) 

for M. persicae reared on both host plants but using hydrogel under the temperature of 20 

°C. Furthermore, the life table analysis indicated that the most significant differences in 

the development times observed between the evaluated treatments resulted mostly from 

the combined effects of the host plants and the temperatures while the rearing substrate 

did not show discrepant impacts on the development of the reared individuals. It is worth 

noting that fecundity is an important parameter for aphid populations and is usually 

influenced by a variety of factors, including temperature and host plant quality (Davis et 

al., 2006; Van Emden et al., 1969; Liu and Meng, 1999; Shu-Sheng, 1991). In addition, 

aphid development can also be affected due to feeding on different host plants (Ali et al., 

2021; Jahan et al., 2014; La Rossa et al., 2013).In general, the mean development time of 

aphids decreases with increasing temperature depending on the temperature range 

required for the survival of each species (Baral et al., 2022; Liu et al., 2021). The absence 

of any negative effect of hydrogel on the reproductive and biological parameters 

reinforces its suitability as substrate for rearing the aphid M. persicae that can be used 
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under different temperature conditions and with different host-plants. Accordingly, N. 

physalodes combined with hydrogel (0.6g) at a temperature of 20°C proved to be the 

highest performing and most favorable treatment for rearing M. persicae, possessing the 

ability to produce offspring under controlled conditions and with great potential for mass 

rearing.  

In the toxicology bioassay, the responses of the aphids to exposure to imidacloprid at 

20°C were not different between the treatments supported by the similar LC50s obtained 

and showing no interferences of the hydrogel as rearing substrate in such responses. 

However, at 15°C we observed a higher mortality when the hydrogel concentration was 

0.6 g compared with the hydrogel concentration of 0.9g and agar. Such high mortality 

was associated with high mortality in the untreated control due to aphids’ drowning. 

Therefore, we recommend the use of slightly higher hydrogel concentrations (0.9 or 

higher) for bioassays where mortality is the principal assessed endpoint and when 

experiments’ durations are short (up to 72 hours). 

Besides being a suitable rearing substrate not interfering with the insect’s biological and 

reproductive output as demonstrated by our findings and taking in consideration its lower 

cost ($12 per kg) when compared with the conventionally used agar ($114 per kg) as well 

as the small quantities needed, the hydrogel can be recommended for use in different 

laboratory experiments targeting the aphids M. persicae. 

Conclusions  

Here, we presented and validated an innovative hydrogel-based methodology of aphid 

rearing under laboratory conditions, aiming an optimal cost/benefit and that proved to be 

effective. We highlighted that the hydrogel concentration of 0.6g presented satisfactory 

conditions to maintain the turgidity of N. physalodes leaves, allowing colonies of M. 

persicae be maintained over time producing sufficient offspring with suitable quality for 

toxicological bioassays. Further investigations are yet to be done to check the possibilities 
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of scaling-up the methodology for mass-production of aphids, to ascertain the suitability 

of the produced aphids for wide range of research experiments and to test the suitability 

of the methods and the potential of its extension and/or adaptation for other insect species.  

Materials and methods 

Host Plants 

As host plants, we tried two species from the Brassicaceae and Solanaceae Families. 

Thus, entire leaves or foliar disks of the cabbage Brassica oleraceae var. acephala and 

the shoo-fly plant Nicandra physalodes (L.) Gaert were used for the green aphid rearing 

and for the subsequent experiments. 

Seedlings of B. oleraceae (40-day old) and N. physalodes (14-day old) were purchased 

from a local farm supply store in Lavras Brazil, transplanted in 10-liter pots and cultivated 

under greenhouse conditions. The cultivation substrate (8 kg per pot) consisted of a 

mixture (2:1) of soil and commercial substrate Carolina Soil®. Plant watering (daily) and 

weed management (fortnightly) were done manually and no pesticides application was 

used. 

Insect 

The M. persicae females’ are from an established laboratory colony since 2016 at the 

Entomology Department of Federal University of Lavras (UFLA), and were kept in the 

Laboratory of Molecular Biology and Ecotoxicology (M.E.E.T) at UFLA. The colony is 

reared in a climate-controlled chamber, with temperature maintained at 20 ± 2°C, relative 

humidity at 70 ± 10%, and photophase of 16 hours. The age of aphid females’ cohorts 

was standardized, before experiments, by placing about 100 newly hatched nymphs (less 

than two days) on leaf discs (12 cm diameter) of N. physalodes plants and held for about 

8 days to ensure that all aphids are the same age (and growth stage) at the beginning of 

each bioassay. 

Rearing substrates  
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The hydrogel (Agrogel Gel Hidroretentor – Planting Gel) and the agar (Agar-agar 

(nacional) 500g - Dinâmica CAS 9002-18-0) were used as rearing substrates by placing 

entire leaves or leave-disks on approximately 5 mm of either agar or hydrogel layers in 

Petri dishes. The Agar solution (10% w/v) was prepared by diluting and homogenizing 

10 grams of the agar powder in 100mL of distilled water. Then, the solution was heated 

in a microwave to the boiling point and left to cool (~50 ºC) before being poured (100; 4 

and 2 mL) into petri dishes (12; 5.6 and 3cm) as 5 mm high layer and left to solidify 

before being used. The hydrogel solution was prepared following the same procedure but 

without the boiling steps. A preliminary test was carried out to determine the most suitable 

dose of hydrogel to be used (see the following section). 

Establishing the hydrogel concentrations  

Considering the reported high moisture retention of hydrogel, an optimal mixing ratio is 

required to obtain maximum effectiveness of the method. In this sense, three hydrogel 

doses (0.3g, 0.6g and 0.9g) were initially compared to agar (10%) as substrates for aphid 

rearing under two temperatures (15 and 20 ºC).  After weighted, each hydrogel dose was 

placed inside a glass Petri dish (12 cm diameter) to which a 100mL of distilled water were 

added. After homogenization, the solution was left to hydrate for half an hour to reach its 

maximum water absorption capacity and to form the gel-like layer. The agar gel was 

prepared as described above. A leaf disc (12 cm diameter) of N. physalodes was placed 

with the abaxial surface upwards on the top of the substrate layer. Twenty female adults 

(less than 48 h old) were randomly collected from the green aphid colony and transferred 

to each leaf disc (considered a repetition). Each plate was covered with white towel paper, 

and secured with a rubber band, in order to prevent the aphids from escaping but to allow 

aeration inside the plate.   Five repetitions were made for each treatment (dose x substrate 

x temperature), thus totalizing 100 adults for each treatment. The plates were placed in 
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two climate-controlled chambers, with temperatures maintained at 20 ± 2°C or 15± 2°C, 

under the same conditions of relative humidity (70 ± 10%), and photophase (16 hrs). 

Twice a week, the surviving females were moved to a new leaf disk in a new petri dish 

to avoid microorganisms contamination. 

Female longevity was evaluated daily until death, and female fecundity was assessed by 

daily counting and removing the newly hatched nymphs. 

Based on the results of this section, the dose of 0.6g was chosen to carry out the bioassays 

of the life table, and the doses 0.6g and 0.9g to the response of aphids to exposure to 

synthetic insecticide. In both bioassays, the agar 10% was sued as a control. 

Construction of age-stage, two-sex life tables of M. persicae under the different 

rearing substrates, temperatures, and host plants 

Following the same methodology described previously, Petri dishes (3 cm diameter) were 

prepared using 0.6g of hydrogel and 10% agar and containing one leaf disc of N. 

physalodes or of B. oleraceae. Newly hatched females (less than 24h) were collected from 

a same-age colony and in the Petri dishes (3 cm diameter) containing leaf discs (1 

nymph/disc). Each plate (repetition) was sealed with plastic film and several small holes 

were made to allow for gas exchange. Fifty plates were used for each treatment (host-

plant x substrate x temperature). The treatments were named as follows: B. oleraceae 

Agar 15ºC (BA15), B. oleraceae Hydrogel 15ºC (BH15), N. physalodes Agar 15ºC 

(NA15), N. physalodes Hydrogel 15ºC (NH15), B. oleraceae Agar 20ºC (BA20), B. 

oleraceae Hydrogel 20ºC (BH20), N. physalodes Agar 20ºC (NA20), and N. physalodes 

Hydrogel 20ºC (NH20). The experiments were conducted under the same conditions of 

photoperiod and relative humidity as previously described. 

To follow the development until adults, each aphid was inspected daily. At each change 

of stadium, the exuvia was removed and discarded. For the adult females obtained, 

longevity/mortality and the number of nymphs laid per day during the whole life were 
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recorded in appropriate tables. The collected data were used to construct an age-stage, 

two-sex life table for each treatment. 

 

Response to neonicotinoid insecticide exposure  

To detect the potential effects of the rearing method on the response to insecticide 

exposure, a toxicity bioassay with the neonicotinoid insecticide imidacloprid (Evidence 

700 WG) was performed. The bioassay determined the dose-response curve, under two 

temperatures ( 15 and 20 ºC) using the leaf-dip method proposed by the Insecticide 

Resistance Action Committee (IRAC, 2009). Briefly, leaf discs (5.6 cm in diameter) of 

cabbage (B. oleraceae) were cut and individually immersed for about 6 seconds in the 

insecticide and control solutions, then placed at room temperature to dry, for about 2 

hours. Subsequently, the leaf discs were placed with the abaxial surface downwards in 

Petri dishes (5.6 cm diameter) on a layer of hydrogel (0.6 or 0.9 gr) and 10% agar and 

sealed with plastic film. The 0.3g dose was not tested due to its higher viscosity, causing 

higher mortality of aphids.  The following concentrations of insecticide were tested: 

0.0028; 0.0084; 0.014; 0.028; 0.084; 0.14; 0.28; 0.42; 0.98; 1.4 and 2.8 a.i. mg/ml. Five 

replicates of 20 adult aphids (up to 48 hours) were made for each concentration, totalizing 

100 adults for each treatment. The insecticide was diluted with distilled water containing 

0.01% (v/v) Tween 20, and for the control, only distilled water containing 0.01% (v/v) 

Tween 20 was used. 

After 48 hours of the exposure, aphid mortality was assessed under a magnifying glass 

(Zeiss Stemi 2000C – Stereo Microscope 1.5x). Aphids that did not respond when poded 

with a fine brush were considered dead. 

 

Data analysis 
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Fecundity data were subjected to a one-way analysis of variance (ANOVA), and survival 

results were subjected to survival analysis using Kaplan-Meier estimators (log-rank 

method) with SigmaPlot 12.0 (Systat Software, San Jose, CA, USA). The overall 

similarity between survival times and median survival times (LT50 values) was tested 

using the χ2 log-rank test, and pairwise comparisons between curves were performed 

using the Holm-Sidak test (P < 0.05). 

Life tables were constructed using the TWOSEX-MSCHART Program (Chi, 2004) and 

were analyzed according to the two-sex life table theory of the age stage (Chi et al., 2020). 

Briefly, the TWOSEX-MSChart computer program was used to investigate the 

parameters linked to stage differentiation, longevity, and fecundity; such as the intrinsic 

rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), mean generation 

time (T), gross reproduction rate (GRR), adult pre-viviparity period (APOP), total pre-

viviparity period (TPOP), viviparity days (Od), age-stage specific survival rates (sxj), 

age-specific survival rate (lx), age-specific fecundity (mx), age-specific maternity (lxmx), 

age-stage specific life expectancy (exj), age-stage reproductive value (vxj) following (Chi 

and Liu 1985) and (Chi 1988). The standard errors of the population parameters were 

estimated via bootstrap technique with 100.000 resampling and the differences between 

the population parameters of treatments were compared using the paired bootstrap test 

based on the confidence intervals of differences implemented in TWOSEX-MSChart (Chi 

et al., 2020; Huang et al., 2018; Huang and Chi, 2013). All figures were constructed using 

SigmaPlot 12.0 (Systat Software Inc., San Jose, CA, USA). 

Lethal concentrations of the insecticide imidacloprid for aphids in the concentration-

mortality bioassays were estimated by probit analysis using PROC PROBIT (SAS 9.4; 

SAS Institute, Cary, NC.) and 95% confidence intervals for resistance ratios were 

estimated following (Robertson et al., 2017) and considered significant when not 
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including the value 1. Mortality data were corrected for natural mortality using Abbott's 

Formula (Abbott, 1925) prior to analysis. 
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Table 1. Developmental periods, adult longevity and life cycle duration of Myzus persicae reared on leaf disks of the cabbage Brassica oleraceae 1 

and the shoo-fly plant Nicandra physalodes on agar or hydrogel layers under two different temperatures (15 and 20 °C) 2 

  3 

N = number of specimens at each developmental stage; N1 = 1st instar aphid, N2 = 2nd instar aphid, N3 = 3rd instar aphid, and N4 = 4th instar aphid; (*): Mean total life history 4 
for females. Developmental stage, longevity and life cycle are given as Means(days) ± SE. Different letters in the same line indicate statistical differences based on paired 5 
bootstrap test. 6 
 7 

 8 

 

 

 

 

Parameters 

 

 

 

 

Stage 

15°C 20°C 

 AGAR  HYDROGEL  AGAR  HYDROGEL 

 B. oleraceae  N. physalodes  B. oleraceae  N. physalodes  B. oleraceae  N. physalodes  B. oleraceae  N. physalodes 

N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE 

Development 

time 

(days) 

N1 44 2.57 ± 0.16 a  47 1.83 ± 0.11 b  37 2.24 ± 0.13 a 42 2.45 ± 0.41 a  45 1.53 ± 0.08 c  48 1.50 ± 0.07 c 45 1.6 ± 0.08 bc  49 1.65 ± 0.07 bc  

N2 36 2.58 ± 0.14 a  46 2.30 ± 0.12 a  28 2.61 ± 0.13 a  41 2.32 ± 0.10 a 44 1.57 ± 0.1b c  48 1.77 ± 0.07 b  45 1.53 ± 0.07 b  49 1.71 ± 0.07 bc 

N3 32 2.72 ± 0.15 a 44 2.48 ± 0.08 a 25 2.56 ± 0.17 a   38 2.82 ± 0.15 a 42 1.52 ± 0.09 b 47 1.66 ± 0.09 b 43 1.7 ± 0.07 b 47 1.57 ± 0.07 b 

 N4 30 3.30 ± 0.19 a  43 3.16 ± 0.12 a  25 3.40 ± 0.22 a  33 3.15 ± 0.16 a 32 1.94 ± 0.12 b 44 2.05 ± 0.05 b 41 2.05 ± 0.10 b 45 2.09 ± 0.07 b 

 N1-N4 30 11.3 ± 0.21 a 43 9.72 ± 0.16 b  25 10.80 ± 0.23 a  33 10.79 ± 0.16 a 32 6.41 ± 0.20 d  44 6.98 ± 0.10 c 41 6.83 ± 0.12 cd 45 7 ± 0.10 c 

Longevity 

(days) 

Female 30 16.1 ± 1.13 b 43 19.3 ± 1.32 ab  25 14.08 ± 1.05 bc 33 22.73 ± 1.96 a 32 5.97 ± 0.53 e 44 9.45 ± 0.56 d  41 7.76 ± 0.66 d 45 12.18 ± 1.02 c 

Life cycle* N1 - 

Female 
48 19.46 ± 1.61 b  48 26.65 ± 1.54 a 49 14.84 ± 1.58 cde 47 25.19 ± 2.32 a 48 10.21 ± 0.59 f 48 15.65 ± 0.63 d 49 13.08 ± 0.77 e 49 18.18 ± 1.05bc 
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Table 2. Reproductive parameters of females of Myzus persicae reared on leaf disks of the cabbage Brassica oleraceae and the shoo-fly plant 

Nicandra physalodes on agar or hydrogel layers under two different temperatures (15 and 20 °C) 

 

Effective fecundity: only those females that performed viviparity; APOP: Pre-viviparity period of the adult female; TPOP: Total pre-viviparity period (from N1 to adult female); 

(*): nymphs/female; All reproductive parameters are given as Means ± SE. Different letters in the same line indicate statistical differences based on paired bootstrap test. 

 

 

 

  15°C  20°C 

  AGAR  HYDROGEL  AGAR  HYDROGEL 

  B. oleraceae  N. physalodes  B. oleraceae  N. physalodes  B. oleraceae  N. physalodes  B. oleraceae  N. physalodes 

Parameters N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE N Mean ± SE 

Total fecundity 30 27.43 ± 2.90 b  43 32.26 ± 2.33 c  25 16.24 ± 2.09 ab 33 33.33 ± 3.05 ab  32 8.53 ± 1.73 d 44 36.55 ± 2.80cd 41 11.93 ± 1.63 a 45 39.71 ± 3.54 a 

Effective 

fecundity 
30 27.43 ± 2.90 b 43 32.26 ± 2.33ab 24 16.92 ± 2.06 c 33 33.33 ± 3.05 ab 26 10.5 ± 1.94 d 44 36.55 ± 2.80 a 35 13.97 ± 1.68cd 44 40.61 ± 3.51 a 

Viviparity (days) 30 11.87 ± 1.02 ab  43 13.02 ± 0.89 a 24 8.5 ± 0.84 bc 33 14.73 ± 1.15 a 26 4.54 ± 0.49 e 44 8.18 ± 0.53 c 35 6.49 ± 0.56 d 44 10.2 ± 0.87 b 

APOP 30 1.23 ± 0.16 ab 43 1.07 ± 0.10 ab 24 1.46 ± 0.22 a  33 1.24 ± 0.01 ab 26 1.85 ± 0.24 a 44 0.86 ± 0.07 b 35 1.14 ± 0.15 ab 44 0.95 ± 0.06 b 

TPOP 30 12.27 ± 0.22 a 43 10.79 ± 0.18 b 24 12.38 ± 0.26 a  33 12.03 ± 0.17 a  26 8.23 ± 0.23 c  44 7.84 ± 0.08 c 35 8.03 ± 0.13 c 44 7.95 ± 0.12 c 

Maximum total 

fecundity*  
- 70   - 76 - 44  - 75 - 37 - 76 - 40 - 84 

Maximum daily 

fecundity* 
- 7  - 8 -  7 - 7 - 9 - 10 - 6 - 12 
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Table 3. Population parameters of Myzus persicae reared on leaf disks of the cabbage Brassica oleraceae and the shoo-fly plant Nicandra 

physalodes on agar or hydrogel layers under two different temperatures (15 and 20 °C) 

 

Different letters in the same line indicate statistical differences based on paired bootstrap test. 
 

 15°C 20ºC 

 AGAR HYDROGEL AGAR HYDROGEL 

 B. oleraceae N. physalodes B. oleraceae N. physalodes B. oleraceae N. physalodes B. oleraceae N. physalodes 

Population parameter Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE 

Intrinsic rate of increase, r (day−1) 0.15 ± 0.01 d  0.12 ± 0.01 e 0.20 ± 0.01 b  0.16 ± 0.01 d  0.15 ± 0.02 cde 0.19 ± 0.01 bc 0.29 ± 0.01 a  0.28 ± 0.01 a  

Finite rate of increase, λ (day−1) 1.16 ± 0.01 c 1.12 ± 0.01 d 1.22 ± 0.01 b 1.17 ± 0.01 c 1.16 ± 0.02 cd 1.21 ± 0.01 bc 1.34 ± 0.01 a 1.33 ± 0.01 a 

Gross reproductive rate (offspring per 

individual), GRR 

40.39 ± 2.94 b 22.35 ± 3.24 bc 46.02 ± 2.81 b 47.65 ± 3.15 b 22.73 ± 5.67 c 32.47 ± 6.15 c 57.46 ± 3.17 a 64.28 ± 2.96 a 

Net reproductive rate (offspring per 

individual), R0 

17.14 ± 2.60 b 8.28 ± 1.56 cd 28.89 ± 2.50 ab 23.40 ± 3.06 b 5.68 ± 1.27 d 9.97 ± 1.48 c 33.5 ± 2.92 a 36.46 ± 3.56 a 

The mean length of a generation, T (days) 18.62 ± 0.31 a 17.54 ± 0.45 b 16.77 ± 0.33 b 19.53 ± 0.40 a 11.12 ± 0.25 d 11.89 ± 0.32 cde 11.87 ± 0.15 e 12.42 ± 0.21 c 
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ARTICLE II 

 

Sublethal effects of organophosphate and pyrethroid under temperature variations 

on biological characteristics of Myzus persicae (Sulzer) (Hemiptera, Aphididae) 

Version prepared according to Journal of Thermal Biology 
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Highlights 

• The variation in thermal regimes influenced the toxicity of chlorpyrifos and 

deltamethrin. 

• Exposure of M. persicae to mild insecticidal stress can result in stimulatory 

(hormetic) effects. 

• Sublethal concentrations of chlorpyrifos and deltamethrin combined with 

temperature variation induced stimulation in female reproduction and survival. 

 

Abstract 

Aphids in agroecosystems are exposed to numerous forms of stresses. Exposure of these 

organisms to low doses of agrochemicals can induce biological stimulation (hormesis), 

resulting in implications for the management of these insects in agricultural fields. To 

discuss issues related to the nature of dose-response and possible consequences on the 

biological fitness of the pest aphid Myzus persicae (Sulzer) (Hemiptera, Aphididae), the 

aim of the work was to investigate the lethal and sublethal exposure of organophosphate 

and pyrethroid along with temperature variation on the behavior of this species. Two 

insecticides (chlorpyrifos and deltamethrin) and four different temperatures (15, 20, 25 

and 28°C) were selected for the toxicity bioassays. For this, the dose-response curve of 

the insecticides was determined, and after that, the sublethal concentrations (LC1, LC5, 

LC10, LC15, LC20 and LC30) were selected for the evaluations of the biological 

characteristics of M. persicae. The results showed that high temperature (28°C) induced 

higher toxicities at lower concentrations of chlorpyrifos and deltamethrin. We also 

observed that there were significant changes in fecundity and survival of individuals 

exposed to low concentrations of the insecticides when compared to unexposed 

individuals. These results report that hormesis in the individuals was induced by these 

stressors, however, the hormetic effects on the individuals varied between temperature 
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regimes. We highlight the importance of considering the hormetic effects of insecticides 

together with temperature variation under the response mechanisms of M. persicae, 

therefore, these findings contribute to a better understanding of the impact on the future 

management of this pest. 

Keywords: aphids, fecundity, hormesis, longevity, pesticides 

 

1. Introduction 

Myzus persicae (Sulzer) is a pest aphid, popularly known as the green peach aphid, is a 

polyphagous species that exhibits wide distribution worldwide, feeds on more than 400 

plant species from about 40 different families, and transmits more than 100 plant viruses 

(Blackman and Eastop, 2000; Meng et al., 2014; van Emden and Harrington, 2017). The 

intensive infestation of these organisms in the field can cause serious damage to plants 

and generate significant yield losses in economically important crops (Bass et al., 2014; 

de Little et al., 2016; Saljoqi et al., 2009). 

As a result of its economic importance, M. persicae is one of the most studied species and 

target of intense chemical control programs worldwide. Thus, aphid populations are 

exposed to large amounts of pesticides in agricultural systems, and among the chemical 

groups most commonly used to control these individuals are: organophosphates, 

carbamates, pyrethroids, and neonicotinoids (Mota-Sanchez and Wise, 2021). 

However, their doses can differ in space and time by several factors, including 

misapplication, drift, and degradation over time (Biondi et al., 2012; Desneux et al., 2007; 

Duke, 2014). Consequently, this sublethal exposure can cause a range of effects on 

physiological and/or behavioral characteristics of individuals (Cutler et al., 2022; Guedes 

et al., 2022; Sial et al., 2018). 
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Hormesis is a biphasic phenomenon resulting from low dose stimulation and high dose 

inhibition following insect exposure to insecticides (Calabrese and Baldwin, 2003; 

Guedes et al., 2022). Individuals that survive exposure to a toxic compound at 

concentrations, low or sublethal doses (Desneux et al., 2007), may exhibit an 

improvement in their biological fitness, such as, longevity rate, fecundity, immune 

capacity, and/or sex ratio of specimens (Lu et al., 2016; Qu et al., 2015; P. Wang et al., 

2017). Agrochemical-induced hormetic effects have been reported in several aphid 

species, such as in M persicae (Zeng et al., 2016), Aphis gossypii Glover (Koo et al., 

2015), Sitobion avenae (F.), and Rhopalosiphum padi (Linnaeus) (Lu et al., 2016). In 

view of this, hormesis becomes a disadvantageous response, since, it can favor species 

increase, resurgence and/or secondary outbreaks of pests (Cutler, 2013; Guedes et al., 

2022; Rix and Cutler, 2022). 

The stimulatory effects induced by hormetic exposures to pesticides can be highly 

dependent on chemical group and insect species (Cho et al., 2011). Chlorpyrifos is a 

synthetic insecticide of the organophosphorus chemical group that is non-systemic, 

broad-spectrum, efficient, and has been widely used to control various pests, including 

aphids (Ahmad and Aslam, 2005; Li et al., 2022; Simon, 2011). This insecticide is an 

acetylcholinesterase (AChE) inhibitor, induces oxidative stress, and can damage DNA 

(Rasheed et al., 2020). Sublethal concentrations of chlorpyrifos under individuals of 

Daphnia carinata King (Cladocera) resulted in reproductive hormetic effects in the 

second generation (Zalizniak and Nugegoda, 2006). On the other hand, sublethal 

concentrations of chlorpyrifos affected the population dynamics of Rhopalosiphum padi 

(Linnaeus), decreasing the population development rate, survival and fecundity of these 

individuals (Duan et al., 2015; Guiying et al., 2014). 
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Deltamethrin is a synthetic agrochemical of the pyrethroid group and acts as a rapid 

neurotoxic agent (Gibson et al., 1982; Malbert-Colas et al., 2020). They are classified as 

sodium channel modulators, where the molecule induces toxic responses in the central 

and peripheral nervous system of insects (Haug and Naumann, 1990; Simon, 2011), 

stimulating nerve cells to produce repetitive discharges, and consequently causes 

paralysis in the insect (Narahashi, 2002; Soderlund, 2012). Guedes et al. (2010) evaluated 

concentrations of deltamethrin on a resistant strain of Sitophilus zeamais Motsch. 

(Coleoptera: Curculionidae), and showed that exposure to this insecticide rapidly boosted 

reproduction, generating significant increases in population growth, and increasing the 

frequency of resistant insects in this population. 

Aphids are affected not only by agrochemical exposure in agricultural systems, but can 

also be significantly impacted by climate change in that environment. Temperature is a 

key abiotic factor that regulates population dynamics, development rates, and seasonal 

occurrence of aphids (ectothermic organisms) (Alford et al., 2012; Campbell et al., 1974; 

Cocu et al., 2005; Soh et al., 2018). In addition, temperature also affects the activity, 

performance, and properties of insecticides, such as differences in product volatility and 

stability (Horn, 2019; Johnson, 1990). In this sense, knowledge of the interaction of 

temperature on insecticide exposure against pest insects is of utmost importance, given 

the impacts on possible decision-making in pest management. 

The economic implications of aphids in agriculture raise many questions about how their 

population dynamics might change under varying stressors, however, most studies focus 

on the efficiency/effectiveness of insecticides in controlling these pests. Information is 

still lacking in the literature on how these individuals might react from agrochemical 

exposure in relation to temperature changes. Therefore, the aim of this work was to 

investigate how lethal and sublethal exposure of insecticides of different chemical groups 
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(organophosphate and pyrethroid) together with temperature variation affect the 

biological characteristics of M. persicae. 

 

2. Material and Methods 

2.1.Insect, insecticide and temperature variation 

The experiment was carried out in the Laboratory of Molecular Biology and 

Ecotoxicology (M.E.E.T) at the Entomology Department of UFLA. 

The M. persicae colony was established from an already established laboratory rearing. 

Aphid age standardization was performed with about 100 newly hatched nymphs, which 

were placed on leaf discs (12 cm diameter) of Nicandra physalodes plants under 6% 

hydrogel, and held for about 8 days. This method was used to ensure that all aphids are 

the same age (and growth stage) at the beginning of each bioassay. The colony was kept 

in a climate-controlled chamber, with temperature maintained at 20 ± 2°C, relative 

humidity at 70 ± 10%, and photophase of 16 hours. 

The insecticides evaluated were organophosphate (CAPATAZ®) and pyrethroid 

(DELTAMAX 25 CE). Serial dilutions were prepared using distilled water containing 

0.01% (v/v) Tween 20, and were used immediately after preparation in order to minimize 

any chemical decomposition. 

To evaluate the effects of temperature variation on responses to insecticide exposure, four 

temperatures were selected: 15, 20, 25, and 28ºC. All bioassays were maintained in 

climate-controlled chambers (BOD, ELETROlab) with relative humidity at 70 ± 10% and 

and photophase of 16 hours. 

Temperature coefficients were calculated as the ratio of the highest to lowest LC50 values, 

and were considered positive if toxicity increases with increasing temperature, negative 

if toxicity decreases with increasing temperature, and no effect if unaffected by increasing 
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temperature (Sparks et al., 1982). The effects of temperature coefficients were "no effect" 

= < 2, "slight" = (2-5), and "strong" = > 5, following the methodology of (Liu et al., 2016). 

 

2.2.Exposure to insecticide by foliar immersion 

The evaluation of insecticide toxicity was based on dose-response curves and evaluated 

by the foliar immersion method proposed by the Insecticide Resistance Action Committee 

(IRAC, 2009).  

Initial preliminary tests were conducted to determine the range of experimental doses for 

each insecticide. Then, at least seven concentrations were used to establish dose-response 

curves with a target mortality ranging from 0% to 100%. Concentrations ranged from 

0.028x10-6 to 0.028x102 a.i. mg/ml for chlorpyrifos and from 0.015x10-6 to 0.015x102 a.i. 

mg/ml for deltamethrin. The insecticides were diluted with distilled water containing 

0.01% (v/v) Tween 20, and for the control, only distilled water containing 0.01% (v/v) 

Tween 20 was used. 

Leaf discs (5.6 cm in diameter) of Brassica oleraceae var. acephala were cut and 

individually dipped for about 6 seconds in the insecticide and control solutions, and then 

placed at room temperature to dry for about 2 hours. The leaf discs were placed with the 

abaxial surface upwards in Petri dishes (5.6 cm diameter) under 10% agar, and sealed 

with plastic film, with several small holes made to allow gas exchange and humidity 

stabilization. 

Five replicates were made for each bioassay, and each replicate was inoculated with 20 

adult aphids aged up to 48 hours, totaling 100 adults for each treatment. Aphid mortality 

was assessed under a magnifying glass (Zeiss Stemi 2000C – Stereo Microscope 1.5x) 

after 48 hours of the exposure period. Aphids that did not move their legs when touched 

with a fine brush were considered dead. 
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2.3.Sublethal exposure bioassay of the parental generation 

For sublethal exposure, the concentrations LC1, LC5, LC10, LC15, LC20 and LC30 of the 

insecticides were selected (Table 1). Leaf discs were dipped into the insecticide solutions 

and the control solution, and were placed in Petri dishes as described above. 100 adult 

females were casually distributed on the treated leaves. 

After 48 hours, 50 females were removed from the Petri dishes and individualized in a 

Petri dish with a new leaf disc not treated with insecticide. The dishes were filled with 

10% agar and sealed with plastic wrap. The leaf discs not treated with insecticide were 

replaced every 5 days during the experiment, and kept in climate-controlled chambers. 

The experiment had fifty repetitions for each treatment. The initial fecundity rates of the 

aphid during the pre-treatments with the sublethal doses of the insecticide were not 

recorded, because the nymphs were not removed during this period. After exposure, 

fecundity and longevity of the adults were checked daily during their life. The newly 

hatched nymphs were counted and removed daily. 

 

2.4.Statistics 

The mortality rate of adults was corrected for the natural mortality observed in controls 

(i.e., cabbages treated with distilled water) prior to analysis. Dose-mortality curves were 

estimated by probit analyses using the PROC PROBIT procedure (SAS Institute, Cary, 

NC, USA), with a Probit regression method analysis, to obtain 95% confidence intervals. 

Sublethal concentrations between LC1 and LC30 were calculated using SAS - Statistical 

Analysis Systems. Fecundity data were subjected to one-way analysis of variance 

(ANOVA), and survival results were subjected to survival analysis, which was performed 

using Kaplan-Meier estimators (log-rank method) with SigmaPlot 12.0 (Systat Software, 
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San Jose, CA, USA). The overall similarity between survival times and median survival 

times (LT50 values) was tested using the χ2 log-rank test, and pairwise comparisons 

between curves were performed using the Holm-Sidak test (P < 0.05). 

 

3. Results 

3.1.Exposure to the insecticide by leaf dipping 

The toxicity of chlorpyrifos and deltamethrin to M. persicae adults was investigated 48 

hours after exposure to leaf immersion. The effects of treatments on aphid responses to 

increasing concentrations of imidacloprid depended on the classes of insecticides and the 

different temperatures, resulting in significant differences in the LC50s of the treatments. 

In general, higher temperatures induced greater toxicities at lower concentrations. The 

dose-response curves represented in Figure 1 showed the different responses found for 

each temperature evaluated. 

The toxicity of chlorpyrifos at different temperatures on adults of M. persicae showed 

that there was a significant difference in the LC50 of the temperatures (Figure 1a – Table 

2). It was found that the increase in temperature caused a decrease in the concentration 

(a.i. mg/ml) to kill 50% of the population. At 15°C, chlorpyrifos had a LC50 = 0.0086, at 

20°C a LC50 = 0.0070, at 25°C a LC50 = 0.0017, and at 28°C a LC50 = 0.0020. We can 

see that temperatures 15°C and 20°C did not show significant differences between each 

other, but differed from 25°C and 28°C, and temperatures 25°C and 28°C did not show 

significant differences between each other. 

The toxicity of deltamethrin also showed that there was a significant difference in LC50 

between temperatures (Figure 1b – Table 2). It was found that increasing the temperature 

caused the concentration (a.i. mg/ml) to decrease to kill 50% of the population. For the 

temperature of 15°C, deltamethrin showed a LC50= 0.0042, for 20°C it showed a LC50= 
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0.0046, for 25°C it obtained a LC50= 0.0053, and for 28°C it obtained a LC50= 0.0011. 

We can see that the temperatures 15°C, 20°C, and 25°C did not show significant 

differences among themselves, but they show significant differences at 28°C. 

Table 3 shows the temperature coefficients between the ranges of 15-20°C, 15-25°C, 15-

28°C, 20-25°C, 20-28°C and 25-28°C in adult females of M. persicae exposed to 

chlorpyrifos and deltamethrin. In the chlorpyrifos, the ranges between 15-25°C, 15-28°C, 

20-25°C and 20-28°C showed a slight temperature coefficient, and the other temperatures 

had no effect. The ranges between 15-28°C, 20-28°C and 25-28°C of deltamethrin 

showed slight temperature coefficient, and the other temperatures no effect.  

 

3.2.Parental generation sublethal exposure bioassay 

3.2.1. Chlorpyrifos 

Exposure within 48 hours in M. persicae adults to chlorpyrifos LCs had a significant 

effect on the longevity and fecundity of exposed individuals (F0 generation) (Figure 2). 

Initial aphid fecundity rates during pretreatment with the sublethal doses of the insecticide 

were not recorded because no nymphs were removed during this period. After exposure, 

fecundity was evaluated daily. 

Fecundity of females with the sublethal doses of chlorpyrifos (a.i. mg/ml) compared to 

the control at 15°C temperature (Figure 2a) was significantly increased after exposure to 

LC1, LC5, and LC20, while LC15 and LC30 was significantly reduced (H = 8.607; df = 6; 

P < 0.001). At 20°C temperature (Figure 2c), fecundity was significantly reduced at LC20 

and LC30, on the other hand, when females were exposed to LC10 fecundity was 

significantly increased when compared to the control (H = 50.959; df = 6; P < 0.001). At 

25°C (Figure 2e), the increase in fecundity occurred when the aphids were exposed to 

LC15 and LC20, and the reduction occurred at LC30 (H = 9.195; df = 6; P < 0.001). At 28°C 
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(Figure 2g), the highest fecundity occurred in the control, resulting in a decrease at 

concentrations LC1, LC5, LC10, LC20 and LC30 (H = 49.518; df = 6; P < 0.001). 

Compared to the control group (13.66 days) at 15°C temperature (Figure 2b), adult 

longevity of F0 was significantly increased at all concentrations, where LC1 showed the 

highest mean lethal time (21.58 days) (χ2 = 35.854; df = 6; P < 0.001). At 20°C 

temperature (Figure 2d), longevity was significantly increased at LC10 (12.29 days) when 

compared to the control (9.38 days), on the other hand, there was no significant difference 

when females were exposed to LC1, LC20 and LC30 (9.32, 9.25 and 8.59 days respectively) 

when compared to the control (χ2 = 22.727; df = 6; P < 0.001). At 25°C temperature 

(Figure 2f), no significant difference was found in the longevity of females (χ2 = 9.903; 

df = 6; P < 0.129). Finally, at 28°C temperature, there was no significant difference 

between control (5 days) and LC15 (4.30 days), on the other hand, there was a decrease in 

survival at LC1, LC5, LC10, LC20 and LC30 (3.84, 3.64, 3.95, 4.14 and 3.98 days 

respectively) (χ2 = 47.404; df = 6; P < 0.001) (Figure 2h). 

 

3.2.2. Deltamethrin 

In relation to pyrethroid, 48-hour exposure of M. persicae adults to LCs of deltamethrin 

also had a significant effect on the longevity and fecundity of exposed individuals (F0 

generation) (Figure 3). 

Fecundity of females with the sublethal doses of deltamethrin (a.i. mg/ml) compared to 

the control at 15°C temperature (Figure 3a) was significantly reduced after exposure at 

LC5, LC10, LC15, LC20 and LC30, while the LC1 concentration there was no significant 

difference compared to the control (H = 74.448; df = 6; P < 0.001). At 20°C temperature 

(Figure 3c), fecundity was significantly reduced at LC5, LC10, LC15 and LC30, on the other 

hand, when females were exposed to LC1 and LC20 fecundity was significantly increased 
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when compared to the control (H = 57.071; df = 6; P < 0.001). At 25°C (Figure 3e), the 

increase in fecundity occurred when aphids were exposed to LC5 and LC10, and the 

reduction occurred at LC15, LC20 and LC30 (H = 133.048; df = 6; P < 0.001). At 28°C 

(Figure 2g), fecundity increased in LC1, LC5, LC10 and LC20, and decreased significantly 

in LC30 (H = 31.165; df = 6; P < 0.001). 

Compared with the control group (9.82 days) at 15°C temperature (Figure 3b), adult 

longevity of F0 was significantly increased at LC1 and LC5 (10.95 and 10.39 days), and 

decreased at LC10, LC15 and LC20 (8.16, 8.36 and 8.32 days) (χ2 = 22.323; df = 6; P < 

0.001). At 20°C temperature (Figure 3d), longevity increased significantly by LC1 (14.07 

days) when compared to control (12.23 days), on the other hand, survival decreased by 

LC30 (9.91 days) (χ2 = 31.622; df = 6; P < 0.001). At 25°C temperature (Figure 3f), 

longevity increased significantly by LC5 (6.30 days) when compared to the control (5.35 

days), and decreased by LC20 (3.98 days) (χ2 = 38.545; df = 6; P < 0.001). At 28°C 

temperature there was a significant increase in concentrations LC1, LC5, LC10, LC15, LC20 

and LC30 (5.04, 5.0, 5.02, 5.02, 5.09 and 4.48 days) compared to the control (4.08 days) 

(χ2 = 31.908; df = 6; P < 0.001)  (Figure 3h). 

 

4. Discussion 

Sublethal effects of agrochemicals on fecundity, longevity, and even behavior change are 

commonly observed in agricultural pests after exposure to low concentrations of 

insecticides in agricultural areas (Cutler et al., 2022; Ding et al., 2018; Fouad et al., 2022). 

In the present study, we investigated how the thermal regime molds the toxicity of 

chemicals, and selected different sublethal concentrations of two insecticides from 

different chemical groups (organophosphate and pyrethroid) along with different 

temperatures (15, 20, 25, and 28°C) to ascertain the biological consequences of the 
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hormetic responses of the aphid species M. persicae. The results obtained revealed that 

the toxicity of the insecticides was influenced by the different temperature levels. 

Moreover, it was observed that low concentrations of chlorpyrifos and deltamethrin 

combined with heat stress significantly affected the development and reproduction of M. 

persicae. Thus, comprehensive knowledge about the negative impact of sublethal 

concentrations of insecticides are of utmost importance for optimal management 

strategies against pest aphids. 

The assessment of lethal concentrations is a very useful tool to compare the toxicity of 

chemicals with different active ingredients and different formulations. It is known that 

the toxicity and relative efficacy of insecticides can vary due to several factors, such as 

the difference in their mode of action and chemical structure of different active 

ingredients (Mahmoodi et al., 2020), and even temperature, which can affect their 

physical and chemical properties, such as stability, vaporization, penetration, activity, 

degradation, absorption and translocation (Johnson, 1990). 

The results of this work showed that the different responses of aphids were due to the 

influence of the four different temperature levels on the toxicity of the chemicals. 

According to the LC50 of the insecticides, high temperature (28°C) induced high toxicity 

at lower concentrations of chlorpyrifos and deltamethrin (Figure 1). 

The analysis shows that increased temperature (25 and 28°C) may be sufficient to cause 

a significant increase in chlorpyrifos toxicity (see values in Table 2) than milder 

temperatures (15 and 20°C). This, in turn, will increase the mortality of individuals at 

lower concentrations of the product at higher temperatures. In the case of deltamethrin, 

the significant increase in toxicity occurred only at the highest temperature (28°C) (table 

2). The reason for this is that, organophosphate and pyrethroid are very effective against 

sucking insect pests (Golvankar et al., 2019; Haddi et al., 2018, 2012; Irshaid and Hassan, 
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2011; Shang et al., 2021; Todorova et al., 2020), and may exhibit positive temperature 

coefficient, i.e., the toxicity of the insecticide increases with increasing temperature (Li 

et al., 2006; Mansoor et al., 2015). Previous investigations have shown that the toxicity 

of insecticides against agricultural pests depends on the thermal regime, for example, 

Khan and Akram (2014) explored the relationship between temperature and the toxicity 

of insecticides of different classes under Musca domestica L., (Diptera: Muscidae), and 

observed that the toxicity of chlorpyrifos, profenofos, emamectin, and fipronil had a direct 

relationship with the temperature range tested, showing positive temperature coefficient, 

on the other hand, cypermethrin and deltamethrin showed negative association with 

temperature, where there was a decrease in pyrethroid toxicity at higher temperatures. 

Jaleel et al. (2020) showed that there was positive correlation between temperature and 

toxicity of deltamethrin under Plutella xylostella L. (Lepidoptera: Plutellidae), and 

revealed that temperature in the range of 20-25 °C is ideal for the management program 

of these individuals. 

Although the relationship between the insecticides and temperature tested in this study 

was clearly shown, the exact mechanism has not been fully investigated. In this sense, it 

is of utmost importance that further studies be conducted to have a better understanding 

of the uptake and elimination of insecticides with temperature change and how these 

effects affect the biological processes of M. persicae. 

In addition to direct exposure with chemical insecticides, it is already well known in the 

literature that agricultural pests are often exposed to low doses of the products in the field 

due to their variable distribution and continuous degradation (Cutler et al., 2022; Guedes 

et al., 2022; Rix and Cutler, 2022). This exposure causes several sublethal effects to 

organisms and is defined as hormesis. Hormesis is a biphasic phenomenon resulting from 

low dose stimulation and high dose inhibition following insect exposure to insecticides 
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(Cutler et al., 2022; Duke, 2014; Rix and Cutler, 2022). The study of pesticide-induced 

hormetic responses in insects has become extremely important due to its potential in 

implicating pest management. The uptake of a small amount of insecticides after exposure 

to these concentrations may contribute to a beneficial stimulatory effect on the biological 

fitness of organisms, such as, fecundity, fertility, longevity, intrinsic rate of increase, 

finite rate of increase, and net reproductive rate of pest aphids (Calabrese and Baldwin, 

2003; Shang et al., 2021; Sial et al., 2018; Ullah et al., 2019). 

In the literature several authors have reported insecticide-induced hormesis on pest 

aphids, including M. persicae (Rix et al., 2016; Sial et al., 2018; Tang et al., 2019; P. 

Wang et al., 2017), Aphis gossypii Glover (Chen et al., 2016; S. Wang et al., 2017), Aphis 

craccivora Koch (Fouad et al., 2022), Aphis glycines Matsumura (Qu et al., 2017, 2015). 

However, little is known in the literature about how the sublethal effects of insecticides 

of different active ingredients in conjunction with temperature variation interferes with 

the biological aspects of aphids, especially M. persicae. The results obtained in the 

present study showed that significant changes occurred in fecundity and survival in 

females of M. persicae due to the two combined stressors (temperature and insecticides), 

and the hormetic responses of each product varied within the thermal regimes (Figure 2 

and 3). Stimulatory effects on the development and reproduction of individuals observed 

here, can also be observed in other studies. Shang et al. (2021) evaluated the effect of low 

concentration deltamethrin (LC30) under five successive generations of Aphis gossyppi 

after the initial aphid (G0) was exposed for 24 hours, and concluded that fecundity values 

were significantly increased, and offspring population growth of these two generations 

was significantly promoted. 

The ability of M. persicae to cope with diverse stressors may be achieved by physiological 

and biochemical mechanisms. The reason for this is that, sublethal exposure of 
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insecticides at different temperatures may have caused adaptive responses that increased 

the cellular defenses of individuals, and consequently increased performance 

(reproduction and survival) beyond that observed in untreated individuals. In addition to 

this fact, we observed that as the temperature increased, the range of sublethal 

concentrations that caused the hormetic responses in the organisms shifted. It is worth 

noting that at 20°C the sublethal effects occurred due to chemical stress, as the aphids 

were reared at this temperature. Against this backdrop, it is important that further studies 

be conducted to understand why hormetic effects at certain temperatures are directly 

linked at specific sublethal concentration ranges and how the defense mechanisms of 

individuals are affected by this relationship between stressors. 

As stated earlier, the toxicity of chemicals and the development and behavior in insects, 

can be strongly affected by changes in temperature (Johnson, 1990; Neven, 2000). When 

physiological injuries occur under different stressors, insects exhibit impacts on their 

biological and physiological fitness during their lifetime (González‐Tokman et al., 2020; 

Neven, 2000). In this study, the combination of chemical stress (chlorpyrifos and 

deltamethrin) and high temperatures (25 and 28°C) imposed a higher fitness and 

physiological cost on this species decreasing its tolerance and performance. The 

importance of considering these stressors in insects is corroborated by other authors. The 

results of the study by Deng et al. (2016) showed that low concentrations of chlorpyrifos 

stimulated the development and fecundity of Plutella xylostella (L.), however, the 

variation of temperature (25 and 38°C) determined a significant high fitness cost among 

strains of this species. 

In our comparisons, we observed that aphid responses were influenced by increasing 

concentrations of the insecticides and temperature variation. The toxicity of the 

insecticides was influenced by temperature variation. Based on the present study, 
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fecundity and survival values of these individuals were significantly increased when 

compared to the control, however, high temperatures with chemical stress caused a higher 

adaptive cost for this species, decreasing the efficiency of individuals to survive and 

produce offspring. Therefore, these findings suggest that short-term exposure to sublethal 

concentrations of chlorpyrifos and deltamethrin may induce hormesis in M. persicae. 

In conclusion, the continued degradation of insecticides in fields results in frequent 

exposure of sublethal concentrations under pest insects, and may contribute to the 

resurgence of pest insects. This exposure results in organisms with improved stress 

coping abilities and resilience. Therefore, it is of utmost importance that further 

ecotoxicological studies are conducted, to provide a fundamental contribution to our 

understanding of how pesticide-induced stimulation is influenced by temperature 

variation. 

 

5. Conclusions 

The increase in temperature influenced the toxicity of chlorpyrifos and deltamethrin on 

M. persicae individuals, showing that these agrochemicals have a positive temperature 

coefficient. It is very important to know the relation of temperature with the toxicity of 

chemicals for integrated pest management, this will allow the selection of products to be 

more effective in certain environmental conditions. 

 

Due to the variable distribution and degradation of pesticides in the field, aphids are 

exposed to low concentrations of the product. The increased survival and fecundity of M. 

persicae subjected to insecticides of different chemical groups under temperature 

variation exemplifies the adaptive nature of hormesis induced by these stressors. 
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Figures captions 

 

Figure 1. Toxicity of Chlorpyrifos (a), and Deltamethrin (b) to Myzus persicae adults 

under four temperature regimes (15, 20, 25 and 28°C). The lines denote the estimated 

lethal concentration (LC) values based on concentration-mortality bioassays using probit 

analyses. Symbols show the mean mortality for each insecticide concentration applied to 

each M. persicae population. Vertical bars represent the standard error of the mean (SE). 

 

Figure 2. Effects of sublethal exposure to the organophosphate chlorpyrifos on fecundity 

(a, c , e ,g) and longevity ( b, d, f , h) of  Myzus persicae females to at 15°C (a ; b), 20°C 

(c ; d), 25°C (e ; f) and 28 ± 2°C (g ; h)  

 

Figure 3. Effects of sublethal exposure to the pyrethroid deltamethrin on fecundity (a, c 

, e ,g) and longevity ( b, d, f , h) of  Myzus persicae females to at 15°C (a ; b), 20°C (c ; 

d), 25°C (e ; f) and 28 ± 2°C (g ; h).  
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FIGURE 1  
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FIGURE 2  
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FIGURE 3  
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Table 1. Sublethal concentrations of chlorpyrifos and deltamethrin used under varying 

temperatures  

 

Chlorpyrifos  Deltamethrin  

 LCs Active ingredient 

(mg/ml)  

 LCs Active ingredient 

(mg/ml) 

15°C  15°C 

LC1 0.002164 LC1 0.000658 

LC5 0.003269 LC5 0.001137 

LC10 0.004074 LC10 0.001522 

LC15 0.004725 LC15 0.001853 

LC20 0.005317 LC20 0.002167 

LC30 0.006443 LC30 0.002795 

20°C 20°C 

LC1 0.001677 LC1 0.000932 

LC5 0.002581 LC5 0.001497 

LC10 0.003247 LC10 0.001927 

LC15 0.003791 LC15 0.002284 

LC20 0.004288 LC20 0.002616 

LC30 0.005240 LC30 0.003261 

25°C 25°C 

LC1 0.000064 LC1 0.001227 

LC5 0.000170 LC5 0.001890 

LC10 0.000286 LC10 0.002379 

LC15 0.000407 LC15 0.002779 

LC20 0.000537 LC20 0.003144 

LC30 0.000846 LC30 0.003844 

28°C 28°C 

LC1 0.000194 LC1 0.000090 

LC5 0.000393 LC5 0.000190 

LC10 0.000573 LC10 0.000283 

LC15 0.000738 LC15 0.000370 

LC20 0.000903 LC20 0.000457 

LC30 0.001254 LC30 0.000647 

 

LCs: lethal concentrations. 
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Table 2. Relative toxicity of organophosphate and pyrethroid (i.e., chlorpyrifos and 1 

deltamethrin) to individuals of Myzus persicae. 2 

 3 

Insecticides Temperatures N LC50 (95% CI) mg (a.i)/ml  χ2 P TR 

Chlorpyrifos 15°C 100 0.0086 (0.0067 – 0.0105) a 12.97 0.01 5.05 

20°C 100 0.0070 (0.0065 – 0.0076) a  7.06 0.13 4.11 

25°C 100 0.0017 (0.0013 – 0.0022) b 5.55 0.23 - 

28°C 100 0.0020 (0.0017 – 0.0026) b 10.84 0.09 1.17 

Deltamethrin 15°C 100 0.0042 (0.0037 – 0.0047) a 7.38 0.19 3.81 

20°C 100 0.0046 (0.0040 – 0.0052) a 6.16 0.18 4.18 

25°C 100 0.0053 (0.0047 – 0.0058) a 4.49 0.10 4.81 

28°C 100 0.0011 (0.0010 – 0.0013) b 5.21 0.26 - 

N: number of individuals tested. 4 
LC50 (95%): lethal concentration to cause mortality in 50% of individuals 5 
CI: confidence intervals. 6 
a.i.: active ingredient 7 
χ2: Chi-square for lack-of-fit to the probit model. 8 
P: Probability associated with the chi-square statistic. 9 
TR= calculated by dividing the LC50s of the different temperatures by the smallest LC50 10 
 11 

  12 
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Table 3. Temperature coefficients of chlorpyrifos and deltamethrin on Myzus persicae 1 

adults. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

The effects of temperature coefficients were "no effect" = < 2, "slight" = (2-5), and "strong" = > 5 14 

 15 

Chlorpyrifos 

Temperatures Temperature coefficients 

15 – 20°C 1.21 No effect 

15 – 25°C 4.94 Slight 

15 – 28°C 4.09 Slight 

20 – 25°C 4.07 Slight 

20 – 28°C 3.38 Slight 

25 – 28°C 1.20 No effect 

Deltamethrin 

Temperatures Temperature coefficients 

15 – 20°C 1.10 No effect 

15 – 25°C 1.25 No effect 

15 – 28°C 3.70 Slight 

20 – 25°C 1.14 No effect 

20 – 28°C 4.08 Slight 

25 – 28°C 4.66 Slight 
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Figure 1. 

Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after  exposure to low concentrations of chlorpyrifos 
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Figure 2. Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after exposure to low concentrations of deltamethrin. 
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Lethal and Sublethal effects of thiamethoxam and lambda cyhalothrin, used 

isolated or in mixture, under temperature variations on the biological traits of 

Myzus persicae (Sulzer) (Hemiptera, Aphididae) 

Version prepared according to Ecotoxicology 
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Abstract 

Myzus persicae (Sulzer) is one of the most destructive and cosmopolitan insects in 

agroecosystems, and current management of this pest relies mainly on insecticides 

applications. Given that aphids in agricultural environments are often exposed to 

sublethal doses of insecticides, the aim of the work was to investigate the lethal and 

sublethal (LC1, LC5, LC10, LC15, LC20 and LC30) exposure of a mixture of neonicotinoid 

and pyrethroid (thiamethoxam + lambda cyhalothrin), and their isolated ingredients under 

temperature variation (15, 20, 25 and 28°C) on the biological characteristics of M. 

persicae. The results showed that the mixture caused a synergistic effect and induced 

greater efficacy compared to the active ingredients alone. The toxicity of the mixture on 

female responses was influenced by the different temperature levels, the high temperature 

(28°C) induced high toxicity at lower concentrations of thiamethoxam + lambda-

cyhalothrin. Stimulatory effects, i.e. hormesis, on reproduction and survival duration of 

the parental generation were observed in both the mixture and the isolated products under 

the temperature regimes. Our results contributed to a better understanding of the 

mechanism of the stimulatory response of M. persicae under chemical and thermal stress, 

and how they affect the biological organization of this species, thus, these findings are 

useful and could help optimize the use of these insecticides against this pest. 

Key words: aphids, biological traits, hormesis, pesticides, toxicology.  

 

Introduction 

Advances in various integrated pest management (IPM) programs have been significant 

in agroecosystems, however, control of Myzus persicae (Sulzer) continues to be 

predominantly accomplished using chemical insecticides (Saljoqi et al. 2009; Bass et al. 

2014). The intensive infestation of M. persicae in the field causes serious damage to 



99 
 

 

 

plants and generates expressive losses in the yield of economically important crops (Van 

Emden et al. 1969; Zagonel et al. 2002; de Little et al. 2016; Özgökçe et al. 2018). This 

species feeds on over 400 plant species from about 40 different families, and transmits 

over 100 plant viruses (Blackman and Eastop 2000; Meng et al. 2014; Van Emden and 

Harrington 2017). At present, the neonicotinoid and pyrethroid chemical groups are 

among the most widely used for the control of this species (Nauen and Denholm 2005; 

Bass et al. 2014; Tang et al. 2017; Sretenovic et al. 2019).  

In agricultural areas, insecticides can have variable distribution due to misapplication, 

drift, and formulation degradation over time (Guedes et al. 2010; Müller 2018; Cutler et 

al. 2022; Rix and Cutler 2022). As damage, these agrochemicals can cause sublethal 

exposures in organisms (Dong et al. 2017; Serrão et al. 2022), that is, sublethal doses of 

insecticides can result in a wide range of effects on the population dynamics of individuals 

(physiological or behavioral) (Desneux et al. 2007; He et al. 2013; Deng et al. 2016; Ullah 

et al. 2019a; Fouad et al. 2022). 

This case can be defined as hormesis, that is a biphasic phenomenon resulting from low 

dose stimulation and high dose inhibition following insect exposure to insecticides 

(Calabrese and Baldwin 2003; Guedes et al. 2022). Hormetic responses in individuals that 

survive exposure to a toxic compound at sublethal concentrations/doses (Desneux et al. 

2007), can cause an improvement in their biological fitness, such as, longevity rate, 

fecundity, immune capacity, and/or sex ratio (Qu et al. 2015; Lu et al. 2016; Wang et al. 

2017a). In the literature, hormesis has been reported in various pest species, such as in 

aphids (Koo et al. 2015; Lu et al. 2016; Zeng et al. 2016), caterpillars (Dong et al. 2017; 

Nozad-Bonab et al. 2017), thrips (Cao et al. 2019; Kordestani et al. 2021; Liang et al. 

2021), whiteflies (Esmaeily et al. 2014; Qu et al. 2017a; Rakotondravelo et al. 2019). In 

this view, hormesis is relevant in agricultural systems, because insecticide-induced 
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hormetic effects may favor species increase, resurgence and/or secondary outbreaks of 

pests (Guedes et al. 2010; Cutler 2013; Cutler et al. 2022). 

In agroecosystems, insecticide mixtures are often used to improve the efficacy and reduce 

the cost of pest treatment in crops (Abd El-Mageed and Shalaby 2011; Kandil et al. 2022). 

The use of pyrethroids in combination with neonicotinoid insecticides is common 

(Stanneck et al. 2012; Wang et al. 2015; Zhu et al. 2017), and among the mixtures that 

have been used against a variety of pests around the world is lambda-cyhalothrin together 

with thiamethoxam (Fazolin et al. 2016; Barros et al. 2019; Kambrekar et al. 2021). Wang 

et al. (2020) showed that combining a lethal dose of thiamethoxam with lambda 

cyhalothrin showed synergistically increased toxicity to bees, the mortality of the mixture 

was greater than the sum of the mortalities induced by each insecticide separately. 

Thiamethoxam is an insecticide from the neonicotinoid chemical group and acts as an 

agonist that binds to nicotinic acetylcholine receptors (nAChRs) in the insect nervous 

system, causing nerve stimulation, paralysis, and death (Cho et al. 2011; Simon 2011; 

Ullah et al. 2020). Lambda-cyhalothrin is a pyrethroid classified as a potent neurotoxic 

agent (Dong et al. 2022). Pyrethroids bind to voltage-dependent sodium channel protein, 

which alters the function of the pore channel, causing repetitive neurological impulses, 

thus potentially impairing any nerve activity (Haug and Naumann 1990; Narahashi 2002; 

Simon 2011). Thus, it can be deduced that the activation of the nervous system by 

neonicotinoids facilitates the interaction of pyrethroids by the complementary mode of 

action of these two classes of insecticides, which results in this synergistic effect 

(Taillebois and Thany 2022) 

It has been generally recognized that temperature can affect both the population 

dynamics, development rates, and seasonal occurrence of insects (Campbell et al. 1974; 

Cocu et al. 2005; Alford et al. 2012; Soh et al. 2018), as well as the activity, performance, 
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properties of insecticides, and their distribution (Johnson 1990; Horn 2019). (Khan and 

Akram 2014) evidenced that the toxicity of chlorpyrifos, profenofos, emamectin and 

fipronil to Musca domestica L. revealed a direct relationship with the temperature range 

tested, and an inverse relationship between temperature and toxicity of cypermethrin, 

deltamethrin and spinosad was observed. Bearing in mind the need, knowledge of the 

combination of temperature on the toxicity of insecticides against agricultural pests is of 

utmost importance for the development of effective pest management plans based on the 

various seasons of the year. 

Most studies have focused on the efficacy of insecticides in controlling pest aphids 

without taking into consideration how thermal regimes shape their toxicity. In the 

literature, information is also lacking on how sublethal effects act on the biological 

characteristics of individuals exposed to mixtures of insecticides and their active 

ingredients alone under temperature variation. Therefore, the aim of the work was to 

investigate how sublethal exposure of a mixture of thiamethoxam + lambda-cyhalothrin 

and their isolated active ingredients, together with temperature variation, affect the 

behavior of M. persicae. The results of this study may be useful for optimizing Integrated 

Pest Management (IPM) programs and understanding the recorded outbreaks of M. 

persicae in agricultural areas. 

 

Material and Methods 

Insect, insecticides and temperature variation 

The experiment was carried out in the Laboratory of Molecular Biology and 

Ecotoxicology (M.E.E.T) at the Entomology Department of UFLA. 

The M. persicae colony was established from an already established laboratory rearing. 

Aphid age standardization was performed with about 100 newly hatched nymphs, which 



102 
 

 

 

were placed on leaf discs (12 cm diameter) of Nicandra physalodes plants under 6% 

hydrogel, and held for about 8 days. This method was used to ensure that all aphids are 

the same age (and growth stage) at the beginning of each bioassay. The colony was kept 

in a climate-controlled chamber (BOD, ELETROlab), with temperature maintained at 20 

± 2°C, relative humidity at 70 ± 10%, and photophase of 16 hours. 

The insecticides evaluated were a neonicotinoid and pyrethroid mixture: thiamethoxam + 

lambda-cyhalothrin (ENGEO PLENO™ S), a neonicotinoid: thiamethoxam (ACTARA® 

250 WG), and a pyrethroid: lambda-cyhalothrin (Termimax Lambda 10.6% SC). Serial 

dilutions were prepared using distilled water containing 0.01% (v/v) Tween 20, and were 

used immediately after preparation in order to minimize any chemical decomposition. 

To evaluate the effects of temperature variation on responses to insecticide exposure, four 

temperatures were selected: 15ºC, 20ºC, 25ºC, and 28ºC. All bioassays were maintained 

in a climate-controlled chamber with relative humidity at 70 ± 10% and and photophase 

of 16 hours. 

Temperature coefficients were calculated as the ratio of the highest to lowest LC50 values, 

and were considered positive if toxicity increases with increasing temperature, negative 

if toxicity decreases with increasing temperature, and no effect if unaffected by increasing 

temperature (Sparks et al. 1982). The effects of temperature coefficients were "no effect" 

= < 2, "slight" = (2-5), and "strong" = > 5, following the methodology of (Liu et al. 2016). 

 

Exposure to insecticide by foliar immersion 

The evaluation of insecticide toxicity was based on the dose response curve and evaluated 

by the leaf dipping method proposed by the Insecticide Resistance Action Committee 

(IRAC 2009). 
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Initial preliminary tests were conducted to determine the experimental dose range for each 

insecticide. Next, at least seven concentrations were used to establish dose-response 

curves with a target mortality ranging from 0% to 100%. Concentrations of the 

commercial product ranged from 1.2e-4 to 2.2e-2 ml/ml for thiamethoxam + lambda-

cyhalothrin, from 0.15 to 150 mg/ml for thiamethoxam, and from 0.9 to 9e-4 ml/ml for 

lambda-cyhalothrin. The insecticides were diluted with distilled water, and for the control 

only distilled water was used. 

Leaf discs (5.6 cm in diameter) of Brassica oleraceae var. acephala were cut and 

individually dipped for about 6 seconds in the insecticide and control solutions, and then 

placed at room temperature to dry for about 2 hours. The leaf discs were placed with the 

abaxial surface upwards in Petri dishes (5.6 cm diameter) under 10% agar, and sealed 

with plastic film, with several small holes made to allow gas exchange and humidity 

stabilization. 

Five replicates were made for each bioassay, and each replicate was inoculated with 20 

adult aphids aged up to 48 hours, totaling 100 adults for each treatment. Aphid mortality 

was assessed under a magnifying glass (Zeiss Stemi 2000C – Stereo Microscope 1.5x) 

after 48 hours of the exposure period. Aphids that did not move their legs when touched 

with a fine brush were considered dead. 

 

Sublethal exposure bioassay of the parental generation 

For sublethal exposure, the concentrations LC1, LC5, LC10, LC15, LC20 and LC30 of the 

insecticides were selected (Table 1). Leaf discs were dipped into the insecticide solutions 

and the control solution, and were placed in Petri dishes as described above. 100 adult 

females were casually distributed on the treated leaves. 
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After 48 hours, 50 females were removed from the Petri dishes and individualized in a 

Petri dish with a new leaf disc not treated with insecticide. The dishes were filled with 

10% agar and sealed with plastic wrap. The leaf discs not treated with insecticide were 

replaced every 5 days during the experiment, and kept in climate-controlled chambers. 

The experiment had fifty repetitions for each treatment. The initial fecundity rates of the 

aphid during the pre-treatments with the sublethal doses of the insecticide were not 

recorded, because the nymphs were not removed during this period. After exposure, 

fecundity and longevity of the adults were checked daily during their life. The newly 

hatched nymphs were counted and removed daily. 

 

Statistics 

The mortality rate of adults was corrected for the natural mortality observed in controls 

(i.e., cabbages treated with distilled water) prior to analysis. Dose-mortality curves were 

estimated by probit analyses using the PROC PROBIT procedure (SAS Institute, Cary, 

NC, USA), with a Probit regression method analysis, to obtain 95% confidence intervals. 

Sublethal concentrations between LC1 and LC30 were calculated using SAS - Statistical 

Analysis Systems. Fecundity data were subjected to one-way analysis of variance 

(ANOVA), and survival results were subjected to survival analysis, which was performed 

using Kaplan-Meier estimators (log-rank method) with SigmaPlot 12.0 (Systat Software, 

San Jose, CA, USA). The overall similarity between survival times and median survival 

times (LT50 values) was tested using the χ2 log-rank test, and pairwise comparisons 

between curves were performed using the Holm-Sidak test (P < 0.05). 

 

Results 

Exposure to the insecticide by leaf dipping 
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The toxicity of thiamethoxam + lambda-cyhalothrin, thiamethoxam, and lambda-

cyhalothrin to adults of M. persicae was investigated 48 hours after exposure to leaf 

immersion. The effects of treatments on aphid responses to increasing concentrations of 

insecticides depended on the chemical groups and the different temperatures. The dose-

response curves represented in Figure 1 showed the different responses found for each 

insecticide evaluated. 

The toxicity of the mixture (thiamethoxam + lambda-cyhalothrin) at different 

temperatures on adults of M. persicae showed that there was a difference in the LC50s of 

the different temperatures (Figure 1A – Table 2). It was found that increasing the 

temperature to 28°C caused the concentration needed to kill 50% of the population 

(ml/ml) to decrease. For the temperature of 15°C, the mixture showed a LC50= 8.34x10-

4, for 20°C it showed a LC50= 5.54x10-4, for 25°C it obtained a LC50= 7.14x10-4, and for 

28°C it obtained a LC50= 4.77x10-5. 

The toxicity of thiamethoxam also showed that there was a difference in the LC50 of the 

temperatures (Figure 1B – Table 2). It was found that the temperature 25°C caused an 

increase in the concentration (ml/ml) to kill 50% of the population compared to the other 

temperatures. For the temperature of 15°C, thiamethoxam showed a LC50= 1.24, for 20°C 

it showed a LC50= 1.29, for 25°C it obtained a LC50= 3.16, and for 28°C it obtained a 

LC50= 1.08. 

The toxicity of lambda-cyhalothrin also showed variation in LC50 across temperatures 

(Figure 1C – Table 2). For the temperature of 15°C, lambda cyhalothrin showed a LC50= 

0.161 ml/ml, for 20°C it showed a LC50= 0.163 ml/ml, for 25°C it obtained a LC50= 0.078 

ml/ml, and for 28°C it obtained a LC50= 0.126 ml/ml. 

Table 3 shows the temperature coefficients between the ranges of 15-20°C, 15-25°C, 15-

28°C, 20-25°C, 20-28°C and 25-28°C in adult females of M. persicae exposed to mixture 
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(thiamethoxam + lambda-cyhalothrin), thiamethoxam and lambda-cyhalothrin. In the 

mixture, the ranges between 15-28°C, 20-28°C and 25-28°C showed a strong temperature 

coefficient, and the other temperatures had no effect. The ranges between 15-25°C, 20-

25°C and 25-28°C of thiamethoxam showed mild temperature coefficient, and the other 

temperatures no effect. And in lambda-cyhalothrin, the ranges between 15-25°C and 20-

25°C showed mild temperature coefficient, and the other temperatures no effect. 

 

Parental generation sublethal exposure bioassay 

Thiamethoxam + lambda-cyhalothrin  

Exposure within 48 hours in M. persicae adults to the LCs in the mixture resulted in a 

significant effect on the longevity and fecundity of exposed individuals (F0 generation) 

(Figure 2). The fecundity of females with the sublethal doses of the mixture compared to 

the control at 15°C temperature (Figure 2A) there was no significant difference after 

exposure at LC5, while on exposure at LC1, LC10, LC15, LC20 and LC30 was significantly 

reduced (H = 63.270; df = 6; P < 0.001). At 20°C temperature (Figure 2C), fecundity was 

significantly reduced at LC15 and LC30, on the other hand, when females were exposed to 

LC1 and LC5 fecundity was significantly increased when compared to the control (H = 

104.993; df = 6; P < 0.001). At 25°C (Figure 2E), there was no difference when aphids 

were exposed to LC1 and LC5, and the reduction occurred at LC10, LC15, LC20 and LC30 

(H = 132.216; df = 6; P < 0.001). At 28°C (Figure 2G), the highest fecundity occurred at 

LC5 (H = 25.154; df = 6; P < 0.001). 

Compared to the control group (11.09 days) at 15°C temperature (Figure 2B), the mean 

longevity (LT50) of adults was increased by LC1, LC20 and LC30 (12.65, 12.23 and 11.92 

days respectively), and significantly reduced by LC5, LC10 and LC15 (11.04, 10.74 and 

9.49 days) (χ2 = 17.709; df = 6; P < 0.001). At 20°C temperature (Figure 2D), longevity 
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increased by LC5, LC20, LC1 and LC10 (15.20, 15.0, 13.49 and 12.80 days respectively) 

when compared to the control (11.89 days), on the other hand, longevity decreased 

significantly by LC15 and LC30 (10.66 and 8.82 days) (χ2 = 100.174; df = 6; P < 0.001). 

At 25°C temperature (Figure 2F), compared to the control (6.50 days) longevity increased 

by LC5 (7.12 days), and significantly reduced at LC1, LC10, LC15, LC20 and LC30 (6.45, 

5.80, 5.82, 5.02 and 4.79 days) (χ2 = 45.601; df = 6; P < 0.001). Finally, at 28°C 

temperature, the highest mean longevity was at exposure at LC5 (5.96 days), and 

longevity decreased at LC1, LC10, LC15, LC20 and LC30 (5.43, 5.02, 5.26, 5.17 and 5.58 

days) compared to the control (5.83 days) (χ2 = 17.262; df = 6; P < 0.001)  (Figure 2H). 

 

Thiamethoxam  

In relation to the neonicotinoid, 48-hour exposure in M. persicae adults to LCs of 

thiamethoxam also had a significant effect on the longevity and fecundity of exposed 

individuals (F0 generation) (Figure 3). 

The fecundity of females exposed to the sublethal doses of thiamethoxam  compared to 

the control at temperature 15°C was significantly reduced after exposure at LC10, LC15, 

LC20, and LC30, while concentration LC1 and LC5 had no significant difference from the 

control (H = 213.092; df = 6; P < 0.001) (Figure 3A). At 20°C temperature (Figure 3C), 

there was no significant difference at LC1, on the other hand, when females were exposed 

to LC5, LC10, LC15, LC20 and LC30 fecundity decreased significantly when compared to 

the control (H = 209.224; df = 6; P < 0.001). At 25°C temperature (Figure 3E), there was 

no significant difference when aphids were exposed to LC1 and LC5, and the reduction 

occurred at LC10, LC15, LC20 and LC30 (H = 248.912; df = 6; P < 0.001). At 28°C (Figure 

2G), fecundity was significantly decreased at all concentrations LC1, LC5, LC10, LC15, 

LC20 and LC30 (H = 26.289; df = 6; P < 0.001). 
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Regarding the average lethal time (LT50), compared to the control group (12.90 days) at 

15°C temperature (Figure 3B), the average longevity of adults was increased by LC1 

(13.42 days), and significantly reduced by LC5, LC10, LC15, LC20 and LC30 (12.13, 8.89, 

7.95, 8.17 and 5.61 days respectively) (χ2 = 181.261; df = 6; P < 0.001). At 20°C 

temperature (Figure 3D), longevity was reduced at all concentrations LC1, LC5, LC10, 

LC15, LC20 and LC30 (9.42, 9.69, 7.59, 8.61, 8.10 and 5.09 days respectively) when 

compared to the control (9.95 days) (χ2 = 105.181; df = 6; P < 0.001). At 25°C temperature 

(Figure 3F), compared to the control (6.37 days) longevity increased by LC1 and LC5 

(7.49 and 7.14 days), and decreased significantly by LC10, LC15, LC20 and LC30 (4.54, 

4.96, 4.50 and 4.50 days) (χ2 = 103.309; df = 6; P < 0.001). At 28°C temperature, 

longevity was reduced at all concentrations LC1, LC5, LC10, LC15, LC20 and LC30 (5.88, 

5.24, 5.06, 5.80, 6.02 and 5.12 days respectively) when compared to the control (6.14 

days) (χ2 = 12.915; df = 6; P < 0.001)  (Figure 3H). 

 

Lambda-cyhalothrin  

In relation to pyrethroid, 48-hour exposure in M. persicae adults to the CLs of lambda-

cyhalothrin also had a significant effect on the longevity and fecundity of exposed 

individuals (F0 generation) (Figure 3). 

Fecundity of females with the sublethal doses of lambda-cyhalothrin compared to the 

control at temperature 15°C (Figure 4A) was significantly reduced after exposure at all 

concentrations LC1, LC5, LC10, LC15, LC20 and LC30 (H = 56.611; df = 6; P < 0.001). At 

20°C temperature (Figure 4C) it was also significantly reduced after exposure at all 

concentrations LC1, LC5, LC10, LC15, LC20 and LC30 (H = 166.873; df = 6; P < 0.001). At 

25°C temperature (Figure 4E), there was no significant difference when aphids were 

exposed to LC1, fecundity increased significantly at LC5 and LC30, and reduction occurred 
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at LC10, LC15 and LC20 (H = 100.969; df = 6; P < 0.001). At 28°C (Figure 4G), fecundity 

increased significantly at LC1, LC5, LC10 and LC15, while at concentrations LC20 and LC30
 

there was no significant difference from the control (H = 21.352; df = 6; P < 0.001). 

In relation the average lethal time (LT50) compared to the control group (13.13 days) at 

15°C temperature (Figure 4B), the average longevity of adults was decreased at all 

concentrations LC1, LC5, LC10, LC15, LC20 and LC30 (9.02, 9.61, 9.63, 11.55, 7.90 and 

8.57 days respectively) (χ2 = 46.847; df = 6; P < 0.001). At 20°C temperature (Figure 

4D), longevity increased by LC5 (12.22 days), and decreased by LC1, LC10, LC15, LC20 

and LC30 (9.34, 10.25, 5.85, 4.38 and 6.43 days respectively) when compared to the 

control (11.29 days) (χ2 = 175.192; df = 6; P < 0.001). At 25°C temperature (Figure 4F), 

compared to the control (6.46 days) longevity increased at all concentrations LC1, LC5, 

LC10, LC15, LC20 and LC30 (6.69, 7.81, 7.55, 6.78, 7.19 and 9.11 days respectively) (χ2 = 

28.045; df = 6; P < 0.001). At 28°C temperature compared to the control (4.64 days) 

longevity also increased at all concentrations LC1, LC5, LC10, LC15, LC20 and LC30 (6.55, 

6.42, 7.22, 5.80, 5.49 and 5.02 days respectively) (χ2 = 35.608; df = 6; P < 0.001)  (Figure 

4H). 

 

Discussion 

The use of agrochemicals remains one of the main pest management strategies in 

agriculture, and while the application of insecticides (lethal doses) can cause rapid death 

of target pests, the variable distribution and continuous degradation of insecticides can 

expose insects to reduced doses/concentrations, leading to various sublethal effects, 

involving physiological and behavioral changes in individuals (Desneux et al. 2004; 

Guedes et al. 2010; Cutler et al. 2022; Rix and Cutler 2022). Furthermore, using 

insecticide mixtures is an advantageous way both to decrease the amount of chemicals 
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used and to delay the emergence of pest resistance mechanisms (Darriet and Chandre 

2013; Taillebois and Thany 2016, 2022). In the present study, we investigated the 

biological consequences of M. persicae under different lethal and sublethal 

concentrations along with different temperatures of a mixture of a neonicotinoid and 

pyrethroid (thiamethoxam + lamda-cylaothrin) and their isolated active ingredients. It 

was observed that the aphid responses in the lethal evaluations were due to the synergistic 

effect of the combination of the insecticides, and by the influence of four different 

temperature levels on the toxicity of the insecticides (Figure 1). It was also observed that 

low concentrations of the mixture and its active ingredients alone with heat stress 

significantly affected the development and reproduction of M. persicae (Figure 3 and 4). 

It is known that the toxicity and relative efficacy of insecticides can vary due to several 

factors, such as the difference in their mode of action, chemical structure of different 

active ingredients (Mahmoodi et al. 2020), and also by abiotic factors (temperature), 

which can affect their physical and chemical properties, such as stability, vaporization, 

penetration, activity, degradation, absorption and translocation (Johnson 1990). 

Furthermore, the use of two or more insecticides (with different or similar modes of 

action) in a mixture can have synergistic or additive effects (Darriet and Chandre 2013; 

Zhu et al. 2017; Shojaei et al. 2018; Alvim and dos Reis Martinez 2019). In the present 

study, we clearly observed that by LC50 of the mixture of thiamethoxam with lambda 

cyhalothrin induced greater efficacy on M. persicae individuals than when they were 

applied alone. This synergistic effect found in the present study may be linked to the 

complementary modes of action of these two classes of insecticides (pyrethroids and 

neonicotinoids). Pyrethroids act on sodium channels (Haug and Naumann 1990; Field et 

al. 2017) and neonicotinoids act as agonists of nicotinic acetylcholine receptors (Matsuda 

et al. 2001), but which also overstimulates voltage-sensitive sodium channels (Bodereau-
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Dubois et al. 2012). Pyrethroids are known to preferentially bind to open (activated) 

sodium channels and keep them open after binding (Vais et al. 2000). Therefore, 

activation of the nervous system by neonicotinoids facilitates the interaction of 

pyrethroids with their molecular target (Taillebois and Thany 2022). 

The effect of using a mixture of compounds is characterized as synergism (if the 

combined toxicity is greater than the sum of the toxicity of each individual ingredient), 

additive (if the combined toxicity is equal to the sum of the toxicity of each individual 

ingredient), or antagonism (if the combined toxicity is less than the sum of the toxicity of 

each individual ingredient) (Mahmoodi et al. 2020; Taleh et al. 2021; Taillebois and 

Thany 2022). Previous investigations have shown that the toxicity of mixtures with 

thiamethoxam + lambda-cyhalothrin against agricultural pests can show different effects, 

for example, Kambrekar et al. (2021) evaluated aphid populations in wheat after 

application of Thiametoxam + Lambda cyhalothrin, Thiamethoxam, Lambda cyhalothrin, 

Quinalphos and Dichlorvos, and revealed that the mixture was superior in reducing aphid 

populations during spray schedules. On the other hand, Neto et al. (2019) performed 

laboratory evaluation of seven insecticide formulations against M. persicae, and base on 

the LC50 values showed that chlorfenapyr was the most toxic, followed by lambda-

cyhalothrin, pymetrozine, thiamethoxam + lambda-cyhalothrin, thiamethoxam + 

chlorantraniliprole, thiamethoxam and chlorantraniliprole. In this view, we propose that 

the toxicity of combinations of neonicotinoids and pyrethroids can be very different 

depending on the subtypes of the products, mode of application, and target species. 

The results of this work indicated that only the mixture showed different responses of 

aphids under the influence of the four different temperatures (Figure 1 - Table 2). The 

analysis shows that increasing the temperature (28°C) could be enough to cause a 

significant increase in the toxicity of the mixture (see the values in Table 2) than the other 
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temperatures (15, 20 and 25°C). This, in turn, increased the mortality of individuals at 

lower concentrations of the product at the higher temperature. It is already known in the 

literature that insecticide toxicity can increase or decrease with increasing temperature 

(Li et al. 2006; Mansoor et al. 2015). A possible hypothesis that explains this increase in 

toxicity could be that the synergistic effect of the mixture potentiated a greater penetration 

of thiamethoxam + lambda cyhalothrin in individuals at higher temperatures. Thus, given 

the need to obtain information on the relationship between temperature and the toxicity 

of insecticides of different classes, it is of utmost importance that further studies be 

conducted to have a better understanding of the uptake and elimination of insecticides 

with temperature change and how these effects affect the biological processes of M. 

persicae. 

Agricultural pests are often exposed to low doses/concentrations of insecticides in 

agroecosystems due to the variable distribution and continuous degradation of the 

products (Desneux et al. 2004; Duke 2014; Cutler et al. 2022). Uptake of a small amount 

of insecticides after exposure to these concentrations may contribute to a beneficial 

stimulatory effect on fecundity, fertility, longevity, intrinsic rate of increase, finite rate of 

increase, and net reproductive rate of pest aphids (Calabrese and Baldwin 2003; Cutler 

2013; Duke 2014; Sial et al. 2018; Ullah et al. 2019b; Cutler et al. 2022; Rix and Cutler 

2022). 

This effect is termed as hormesis (a biphasic dose-response phenomenon resulting in low-

dose stimulation and high-dose inhibition of after insecticide exposure) (Cutler et al. 

2022; Guedes et al. 2022), and several authors have already reported hormesis induced 

by various insecticides on pest aphids, including M. persicae (Rix et al. 2016; Wang et 

al. 2017a; Sial et al. 2018; Tang et al. 2019), Aphis gossypii Glover (Chen et al. 2016; 

Wang et al. 2017b), Aphis craccivora Koch (Fouad et al. 2022), Aphis glycines 
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Matsumura (Qu et al. 2015, 2017b). However, little is known about the sublethal effects 

of insecticide mixtures and their isolated active ingredients combined with temperature 

variation on pest aphids, especially on M. persicae. The results obtained in the present 

study showed that exposure of sublethal concentrations of these chemicals combined with 

temperature variation generated significant stimuli on fecundity and survival in females 

of M. persicae, however, and the hormetic responses of each product varied within the 

thermal regimes (Figure 2, 3 and 4). 

The ability of M. persicae to cope with different stressors may be achieved by 

physiological and biochemical mechanisms. The reason for this is that sublethal exposure 

to the mixture and its isolated ingredients combined with different temperatures may have 

caused adaptive responses that increased the cellular defenses of the individuals, and 

consequently increased performance (reproduction and survival) beyond that observed in 

untreated individuals. In addition, we observed that as the temperature change occurred, 

the range of sublethal concentrations that caused the hormetic responses in the organisms 

shifted. It is worth noting that at 20°C the sublethal effects occurred due to chemical 

stress, as the aphids were kept at this temperature. In this context, it is important that 

further studies be conducted to understand why hormetic effects at certain temperatures 

are directly linked at specific sublethal concentration ranges and how the defense 

mechanisms of individuals are affected by this relationship between the mixture and its 

isolated actives combined with temperature. 

Some studies corroborate the results found here, Zambrano et al. (2021) evaluated the 

impact of the application of an insecticide based on a mixture of lambda cyhalothrin and 

thiamethoxam on pest populations and some natural enemies, and showed that 

populations of A. gossypii were higher in plots treated with lambda cyhalothrin + 

thiamethoxam. Previous investigations have shown that low application doses of 
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thiamethoxam and lambda cyhalothrin alone also caused induced hormesis effects on pest 

populations (Wang et al. 2017a; Sial et al. 2018; Li et al. 2019; Ullah et al. 2020; Zhang 

et al. 2021; Ju et al. 2022). 

As previously stated, temperature can affect both the toxicity and efficacy of chemicals 

(Johnson 1990), and can have effects on development and behavior in insects (Neven 

2000). The present study identified that, the combination of chemical (thiamethoxam + 

lambda-cyhalothrin, thiamethoxam and lambda-cyhalothrin) and thermal stresses of high 

temperatures (25 and 28°C) imposed a higher physical and physiological fitness cost on 

M. persicae adults, negatively affecting their performance under fecundity and survival 

of individuals. Therefore, high temperatures trigger physiological damage in aphid 

populations, negatively impacting their biological fitness (Barlow 1962; Asin and Pons 

2001; Davis et al. 2006; Satar et al. 2008). These results can be explained by the fact that 

thermal and chemical stress together can be detrimental to embryo development (Harrison 

and Barlow 1973), and therefore, reduced fecundity may occur and population growth 

may be retarded in subsequent generations (Wang and Shen 2007; Srigiriraju et al. 2010; 

Etheridge et al. 2019). 

In conclusion, the continuous degradation in agroecosystems of neonicotinoid and 

pyrethroid insecticides alone or in combination with each other, results in frequent 

exposure of sublethal concentrations under pest insects. The study of hormesis induced 

by these insecticides in insects becomes of utmost importance due to its potential 

implication in pest management, as the adaptive mechanism and stress coping abilities of 

these insects may contribute to the resurgence of pest insects. In addition, temperature 

may interact positively or negatively with the expression of tolerance of insecticide-

exposed individuals. Therefore, all these results contributed to a better understanding of 

how pesticide-induced hormesis is influenced by temperature variation, and expanded our 
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knowledge about the side effects of these pesticides used in the agrosystem. This 

knowledge can contribute to rationalize the application of insecticides and optimize the 

control of M. persicae populations in agricultural areas. 

 

 

Conclusions 

In the present study, we highlight the fact that the mixture of thiamethoxam + lambda-

cyhalothrin caused synergistic effect and induced greater efficacy compared to the active 

ingredients alone. This may be a relevant and efficient strategy for the control of M. 

persicae populations in agricultural areas. 

 

The toxicity of the mixture on female responses was influenced by the different 

temperature levels. The high temperature (28°C) induced a high toxicity in lower 

concentrations of thiamethoxam + lambda-cyhalothrin, while in thiamethoxam and 

lambda-cyhalothrin used alone, the toxicity was mild and without effect in temperature 

variation. The knowledge of the correlation of temperature with the toxicity of chemicals 

is of utmost importance for integrated pest management. The absorption and elimination 

of insecticides with temperature change can affect the biological processes of individuals. 

 

Exposure of sublethal concentrations of the parental generation in both the mixture and 

isolated products under the temperature regimes markedly increased the longevity and 

fecundity of adult females of M. persicae. The results exemplify the adaptive nature of 

hormesis induced by these stressors, affecting levels of biological organization in this 

species. 
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Figures captions 

 

Fig 1 (a) Toxicity of thiamethoxam + lambda-cyhalothrin, (b) Toxicity of thiamethoxam, 

(c) Toxicity of lambda-cyhalothrin on Myzus persicae adults at four temperatures (15, 20, 

25 and 28°C). Lines denote the estimated lethal concentration (LC) values based on 

concentration-mortality bioassays using probit analyses. Symbols show the mean 

mortality for each insecticide concentration applied to each M. persicae population. 

Vertical bars represent the standard error of the mean (SE) 

 

Fig 2 Effects of sublethal exposure to the neonicotinoid + pyrethroid (thiamethoxam + 

lambda-cyhalothrin) on fecundity (a, c, e, g) and longevity (b, d, f, h) of Myzus persicae 

females to at 15°C (a; b), 20°C (c; d), 25°C (e; f) and 28 ± 2°C (g; h). 

 

Fig 3 Effects of sublethal exposure to the neonicotinoid thiamethoxam on fecundity (a, c, 

e, g) and longevity (b, d, f, h) of Myzus persicae females to at 15°C (a; b), 20°C (c; d), 

25°C (e; f) and 28 ± 2°C (g; h). 

 

Fig 4 Effects of sublethal exposure to the pyrethroid lambda-cyhalothrin on fecundity (a, 

c, e, g) and longevity (b, d, f, h) of Myzus persicae females to at 15°C (a; b), 20°C (c; d), 

25°C (e; f) and 28 ± 2°C (g; h).  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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Table 1. Sub-lethal concentrations of Lambda-cyalothrin, Thiametoxam and Thiametoxam + Lambda-cyalothrin used under different temperatures 

(15; 20; 25 and 28 °C) 

Thiametoxam + Lambda-cyalothrin 15°C Thiametoxam 15°C Lambda-cyalothrin 15°C 

Lethal concentration (LC) Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

LC1 0.0000778 LC1 0.062 LC1 0.005 

LC5 0.0001559 LC5 0.149 LC5 0.013 

LC10 0.0002259 LC10 0.238 LC10 0.023 

LC15 0.0002900 LC15 0.327 LC15 0.034 

LC20 0.0003537 LC20 0.421 LC20 0.046 

LC30 0.0004887 LC30 0.633 LC30 0.074 

Thiametoxam + Lambda-cyalothrin 20°C Thiametoxam 20°C Lambda-cyalothrin 20°C 

Lethal concentration (LC) Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

LC1 0.00002700 LC1 0.022 LC1 0.008 

LC5 0.00006547 LC5 0.073 LC5 0.020 

LC10 0.00010507 LC10 0.139 LC10 0.032 

LC15 0.00014445 LC15 0.213 LC15 0.044 

LC20 0.00018585 LC20 0.298 LC20 0.056 

LC30 0.00028057 LC30 0.519 LC30 0.084 

Thiametoxam + Lambda-cyalothrin 25°C Thiametoxam 25°C Lambda-cyalothrin 25°C 

Lethal concentration (LC) Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

LC1 0.00002857 LC1 0.090 LC1 0.003 

LC5 0.00007312 LC5 0.255 LC5 0.008 

LC10 0.00012105 LC10 0.445 LC10 0.013 

LC15 0.00016987 LC15 0.648 LC15 0.019 

LC20 0.00022252 LC20 0.874 LC20 0.024 
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LC30 0.00034537 LC30 1.419 LC30 0.038 

Thiametoxam + Lambda-cyalothrin 28°C Thiametoxam 28°C Lambda-cyalothrin 28°C 

Lethal concentration (LC) Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

Lethal concentration 

(LC) 

Commercial product 

ml/ml 

LC1 0.0000005 LC1 0.051 LC1 0.012 

LC5 0.0000019 LC5 0.124 LC5 0.024 

LC10 0.0000038 LC10 0.201 LC10 0.035 

LC15 0.0000062 LC15 0.277 LC15 0.045 

LC20 0.0000092 LC20 0.358 LC20 0.055 

LC30 0.0000170 LC30 0.543 LC30 0.075 
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Table 2. Relative toxicity of neonicotinoid and pyrethroid (i.e., thiametoxam + lambda-

cyhalothrin, thiametoxam and lambda-cyhalothrin) to individuals of Myzus persicae. 

 

Insecticides Temperatures N LC50 (95% CI) ml /ml χ2 P TR 

Thiametoxam 

+ Lambda-

cyhalothrin 

15°C 100 0.00083 (0.00055– 0.0012) a 9.35 0.05 176.59 

20°C 100 0.00055 (0.00046 – 0.00065) a 8.87 0.11 117.02 

25°C 100 0.00071 (0.00060 – 0.00085) a 7.50 0.19 151.06 

28°C 100 0.0000047 (0.000036 – 0.000061) b 7.5 0.11 - 

Insecticides Temperatures N LC50 (95% CI) ml/ml χ2 P TR 

Thiametoxam 15°C 100 1.24 (1.02– 1.49) 5.27 0.38 1.14 

20°C 100 1.29 (1.06 – 1.56) 11.43 0.12 1.19 

25°C 100 3.16 (2.67 – 3.71) 10.77 0.21 2.92 

28°C 100 1.08 (0.89 – 1.28) 10.53 0.10 - 

Insecticides Temperatures N LC50 (95% CI) ml/ml χ2 P TR 

Lambda-

cyhalothrin 

15°C 100 0.161 (0.135 – 0.195) 9.83 0.13 2.06 

20°C 100 0.163 (0.134 – 0.197) 4.63 0.32 2.08 

25°C 100 0.078 (0.059 – 0.101) 1.11 0.77 - 

28°C 100 0.126 (0.106 – 0.150) 5.81 0.12 1.61 

N: number of individuals tested. 

LC50 (95%): lethal concentration to cause mortality in 50% of individuals 

CI: confidence intervals. 

χ2: Chi-square for lack-of-fit to the probit model. 

P: Probability associated with the chi-square statistic. 

TR= calculated by dividing the LC50s of the different temperatures by the smallest LC50 
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Table 3. Temperature coefficients of thiamethoxam + lambda-cyhalothrin, thiamethoxam 

and lambda-cyhalothrin on Myzus persicae adults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effects of temperature coefficients were "no effect" = < 2, "slight" = (2-5), and "strong" = > 5 

  

Thiametoxam + Lambda-cyhalothrin 

Temperatures Temperature coefficients 

15 – 20°C 1.50 No effect 

15 – 25°C 1.16 No effect 

15 – 28°C 17.49 Strong 

20 – 25°C 1.28 No effect 

20 – 28°C 11.60 Strong 

25 – 28°C 14.96 Strong 

Thiametoxam 

Temperatures Temperature coefficients 

15 – 20°C 1.04 No effect 

15 – 25°C 2.54 Slight 

15 – 28°C 1.14 No effect 

20 – 25°C 2.44 Slight 

20 – 28°C 1.19 No effect 

25 – 28°C 2.92 Slight 

Lambda-cyhalothrin 

Temperatures Temperature coefficients 

15 – 20°C 1.01 No effect 

15 – 25°C 2.07 Slight 

15 – 28°C 1.28 No effect 

20 – 25°C 2.09 Slight 

20 – 28°C 1.29 No effect 

25 – 28°C 1.61 No effect 
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Figure 1. Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after intoxication with thiametoxam + lambda-cyhalothrin. 
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Figure 2. Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after intoxication with thiametoxam. 
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Figure 3. Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after intoxication with lambda-cyhalothrin. 
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ARTICLE IV 

 

Lethal, sublethal effects and oxidative stress of imidacloprid on the biological traits 

of Myzus persicae (Sulzer) (Hemiptera, Aphididae) under varying temperatures 

Version prepared according to Science of the Total Environment. 
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Abstract 

Imidacloprid is a neonicotinoid insecticide widely used to control insect pest aphids, and 

given the fact that aphids are often exposed to low concentrations of insecticides in 

agroecosystems, the aim of the work was to investigate the lethal and sublethal (LC1, LC5, 

LC10, LC15, LC20 and LC30) exposure of neonicotinoid (imidacloprid) under temperature 

variation (15, 20, 25 and 28°C), and evaluate the oxidative stress responses to the 

sublethal concentration of imidacloprid (LC1) under temperature variation and at two-

time intervals (12 and 48 hours), through the content of malondialdehyde (MDA) and 

H2O2, on the biological characteristics of Myzus persicae Sulzer (1776) (Hemiptera: 

Aphididae). The results showed that high temperatures (25 and 28°C) induced higher 

toxicities at lower concentrations of imidacloprid. Stimulatory effects on reproduction 

and survival duration of the parental generation were observed in of individuals exposed 

to low concentrations of imidacloprid, inferring that hormesis in individuals was induced 

by these stressors. In addition, the accumulation of H2O2 and MDA evidenced the 

occurrence of oxidative stress in adults of this species. Given that the variable distribution 

and degradation of insecticides in the field result in a range of concentrations over time 

and space, hormetic responses may have significant implications for the design of control 

strategies and pest resistance management practices in agricultural areas. Therefore, the 

findings found in this study contribute to a better understanding of the response 

mechanism of M. persicae under two stressors (temperature and insecticide). 

 

Key words: aphids, hormesis, MDA and H2O2, toxicity. 
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Highlights 

• The variation of thermal regimes influenced the toxicity of imidacloprid. 

• Exposure of M. persicae to mild insecticide stress can result in stimulatory (hormetic) 

effects. 

• Sublethal concentrations of imidacloprid combined with temperature variation induced 

stimulation in female reproduction and survival. 

• Low concentration of imidacloprid (LC1) combined with variation in temperature 

regimes accumulated MDA and H2O2, causing oxidative stress in individuals of M. 

persicae. 

 

1. Introduction 

The green peach aphid, Myzus persicae (Sulzer), is an agricultural pest that exhibits wide 

distribution worldwide, feeding on more than 400 plant species (Blackman and Eastop, 

2000; Van Emden and Harrington, 2017). Through its direct feeding, honeydew 

production, and transmission of more than 100 plant viruses, this species generates 

significant yield losses in economically important crops (Bass et al., 2014; de Little et al., 

2016). 

In agricultural areas, aphids can be exposed to a wide variety of stressors, from 

temperature and nutritional stress (Kansman et al., 2020; Soh et al., 2018), to 

agrochemicals (Tang et al., 2019). Temperature is a key abiotic factor that regulates 

population dynamics, development rates, and seasonal occurrence of these individuals 

(ectothermic organisms) (Alford et al., 2012; Baral et al., 2022; Cocu et al., 2005). In 

addition, temperature is also important in the activity and performance of insecticides 

used in pest insect management programs (Horn, 2019), it affects insecticide properties 

such as differences in volatility, product stability, and insect metabolism (Johnson, 1990). 
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This relationship can be seen in the study by Swelam et al. (2022), which reported that 

increased temperature caused greater toxicity of fipronil against the larvae of Spodoptera 

littoralis (Boisd.). 

Currently, aphid control methods basically focus on the use of agrochemicals, which 

includes organophosphates, carbamates, pyrethroids, and neonicotinoids (Bass et al., 

2014; Devonshire et al., 1998). However, insecticides in the field can be degraded over 

time by several factors, such as their variable distribution due to misapplication, drift, and 

degradation of the formulation over time (Cutler et al., 2022; Guedes et al., 2010; Müller, 

2018; Rix and Cutler, 2022). Individuals that are exposed to sublethal doses of pesticides 

can manisfest various effects on their population dynamics, whether physiological or 

behavioral (Deng et al., 2016; Desneux et al., 2007; He et al., 2013; Ullah et al., 2019). 

These effects characterized as hormesis, can cause an improvement in the biological 

fitness (longevity, fecundity, immune capacity, and/or sex ratio) of individuals (Lu et al., 

2016; Qu et al., 2015; P. Wang et al., 2017). 

Neonicotinoids, are modulators of nicotinic acetylcholine receptors (nAChRs), and 

effectively control M. persicae (Wang et al., 2016; Watson et al., 2011). After its 

introduction into the field, imidacloprid has become the main product used to control 

sucking insect pests, and is the most popular insecticide in the world (Bass et al., 2015; 

Cui et al., 2016). Several previous studies have investigated the effects of sublethal doses 

of imidacloprid on life traits of M. persicae (Christopher Cutler et al., 2009; Janmaat et 

al., 2011; Rix et al., 2016; Yu et al., 2010). Zeng et al. (2016) indicated in their study, that 

the nymphal period, female longevity, TPOP and mean generation time (T) of M. persicae 

were significantly prolonged, when early adults were exposed to LC30 of imidacloprid. In 

this view, hormesis is relevant in agricultural systems, because insecticide-induced 



140 
 

 

 

hormetic effects may favor species increase, resurgence and/or secondary outbreaks of 

pests (Cutler, 2013; Cutler et al., 2022; Guedes et al., 2010). 

All aerobic organisms are subjected to the production of reactive oxygen species (ROS) 

as metabolic products, and in general, ROS production and antioxidant extraction 

processes are in balance (Boardman et al., 2012). However, heat stress and insecticide 

exposure can upset this balance, generating oxidative stress and causing accumulation of 

high levels of ROS, resulting in lipid peroxidation (LPO) through destruction of cellular 

lipids (Dong et al., 2022; Khurshid et al., 2021; Lalouette et al., 2011; Zhang et al., 2022). 

The most common ROS include superoxide (O2‾), hydrogen peroxide (H2O2), and 

hydroxyl radical (∙OH) (Jones and Sies, 2007; Sharma et al., 2012). Hence, controlled 

modulation of ROS levels in organisms is extremely important, as oxidative stress 

responses are implicated in modulating hormetic responses. Khurshid et al. (2021) 

reported that temperature changes affect the activities of antioxidant enzymes, high 

temperature stress in M. persicae resulted in increased lipid damage by ROS. 

In the context of all this, the knowledge of the combination of temperature on the toxicity 

of insecticides against aphids is of utmost importance in making pest management 

decisions, therefore, there is a need for more precise studies to provide functional 

evidence that may be crucial to define the magnitude and mutual influence of different 

stressors (thermal and chemical) on the defense mechanisms used by M. persicae. 

Therefore, the aim of the work was to investigate how lethal and sublethal exposure of 

imidacloprid together with temperature variation affect the behavior of M. persicae. In 

addition, our goal was also to provide a clearer understanding of the patterns and 

manifestation of oxidative stress in the hormetic responses of these individuals under two 

stressors (thermal and chemical). 
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2. Material and Methods 

2.1.Insect, insecticide and temperature variation 

The experiment was carried out in the Laboratory of Molecular Biology and 

Ecotoxicology (M.E.E.T) at the Entomology Department of UFLA. 

The M. persicae colony was established from an already established laboratory rearing. 

Aphid age standardization was performed with about 100 newly hatched nymphs, which 

were placed on leaf discs (12 cm diameter) of Nicandra physalodes plants under 6% 

hydrogel, and held for about 8 days. This method was used to ensure that all aphids are 

the same age (and growth stage) at the beginning of each bioassay. The colony was kept 

in a climate-controlled chamber (BOD, ELETROlab), with temperature maintained at 20 

± 2°C, relative humidity at 70 ± 10%, and photophase of 16 hours. 

The class of insecticide evaluated was the neonicotinoid imidacloprid (Evidence 700 

WG). Serial dilutions were prepared using distilled water containing 0.01% (v/v) Tween 

20, and were used immediately after preparation in order to minimize any chemical 

decomposition. 

To evaluate the effects of temperature variation on responses to insecticide exposure, four 

temperatures were selected: 15ºC, 20ºC, 25ºC, and 28ºC. All bioassays were maintained 

in a climate-controlled chamber with relative humidity at 70 ± 10% and and photophase 

of 16 hours. 

Temperature coefficients were calculated as the ratio of the highest to lowest LC50 values, 

and were considered positive if toxicity increases with increasing temperature, negative 

if toxicity decreases with increasing temperature, and no effect if unaffected by increasing 

temperature (Sparks et al., 1982). The effects of temperature coefficients were "no effect" 

= < 2, "slight" = (2-5), and "strong" = > 5, following the methodology of (Liu et al. 2016). 

 



142 
 

 

 

2.2. Exposure to insecticide by foliar immersion 

The evaluation of insecticide toxicity was based on the dose response curve and evaluated 

by the foliar immersion method proposed by the Insecticide Resistance Action Committee 

(IRAC, 2009).  

Initial preliminary tests were conducted to determine the experimental dose range for 

insecticide. Next, at least seven concentrations were used to establish dose-response 

curves with a target mortality ranging from 0% to 100%. Concentrations of the active 

ingredient ranged from 2.8e-4 to 2.8 mg/ml for imidacloprid. The insecticide was diluted 

with distilled water, and for the control only distilled water was used. 

Leaf discs (5.6 cm in diameter) of Brassica oleraceae var. acephala were cut and 

individually dipped for about 6 seconds in the insecticide and control solutions, and then 

were placed at room temperature to dry, for about 2 hours. The leaf discs were placed 

with the abaxial surface downward in Petri dishes (5.6 cm diameter) under 10% agar, and 

sealed with plastic film, with several small holes made to allow gas exchange and 

humidity stabilization. 

Five replicates were made for each bioassay, and each replicate was inoculated with 20 

adult aphids aged up to 48 hours, totaling 100 adults for each treatment. Aphid mortality 

was assessed under a magnifying glass (Zeiss Stemi 2000C – Stereo Microscope 1.5x) 

after 48 hours of the exposure period. Aphids that did not move their legs when touched 

with a fine brush were considered dead. 

 

2.3. Sublethal exposure bioassay of the parental generation 

For sublethal exposure, the concentrations LC1, LC5, LC10, LC15, LC20 and LC30 of the 

insecticides were selected (Table 1). Leaf discs were dipped into the insecticide solutions 
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and the control solution, and were placed in Petri dishes as described above. 100 adult 

females were casually distributed on the treated leaves. 

After 48 hours, 50 females were removed from the Petri dishes and individualized in a 

Petri dish with a new leaf disc not treated with insecticide. The dishes were filled with 

10% agar and sealed with plastic wrap. The leaf discs not treated with insecticide were 

replaced every 5 days during the experiment, and kept in climate-controlled chambers. 

The experiment had fifty repetitions for each treatment. The initial fecundity rates of the 

aphid during the pre-treatments with the sublethal doses of the insecticide were not 

recorded, because the nymphs were not removed during this period. After exposure, 

fecundity and longevity of the adults were checked daily during their life. The newly 

hatched nymphs were counted and removed daily. 

 

2.4. Oxidative stress 

2.4.1.  Sample Preparation 

About 800 adult females up to 48 hours old were placed on leaf discs (12 cm diameter) 

of B. oleraceae plants under 10% agar. The leaf discs were dipped in the insecticide 

solutions and the control solution, and were placed in Petri dishes as described in subitem 

2.4. The sublethal concentration LC1 of the insecticide Evidence 700 WG was selected 

and evaluated for each temperature, thus, 3.00x10-3; 3.70x10-3; 3.36x10-3; 1.13x10-4 and 

1.58x10-4 a.i. mg/ml was used for 15°C, 20°C, 25°C Eq (Average of LC1 of 15° C and 

20°C), 25°C and 28°C respectively. 

After 12 and 48 hours of exposure to the insecticide along with temperature, 400 mg of 

adult aphids were weighed and macerated in liquid N with PVPP and homogenized in 

1500 µL of 0.1% Trichloroacetic Acid (TCA). Samples were centrifuged at 12000 g for 

15 min at 4°C. The supernatants were collected and reserved at -20°C to start the 
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biochemical assays. The assays were performed with three replicates for each treatment, 

containing 0.4 g of adult females per microtube (1.5 ml). 

 

2.4.2.  Measurement of malondialdehyde (MDA) and hydrogen peroxide 

(H2O2) content 

Malondialdehyde (MDA) content was determined by quantification of lipid peroxidation 

by the TBARS method, according to the method described by (Buege and Aust 1978). 

The supernatant (125 µl) was mixed with 250 µl of the mixture of 0.5% (w/v) 

thiobarbituric acid (TBA) and 10% trichloroacetic acid (TCA) and used for the MDA 

assay. The absorbance of each sample was measured at 535 nm and corrected for non-

specific turbidity by subtracting the absorbance at 600 nm. The values were expressed as 

ɳmol of MDA.g-1 fresh material (MF). 

Following the protocol of (Velikova et al. 2000) hydrogen peroxide (H2O2) was 

measured. The supernatant (45µl) was collected and reacted with 45µl of 10mM 

potassium phosphate buffer (pH 7.0) and 90µl of 1M potassium iodide. Absorbance 

measurements were performed at 390 nm. The level of H2O2 production was calculated 

from a standard curve, using H2O2 250 µM, at concentrations from 0 to 45 µmol. The 

values were expressed as ɳmol of H2O2.g-1MF. 

All experiments were performed in duplicates. 

 

2.5. Statistics 

The mortality rate of adults was corrected for the natural mortality observed in controls 

(i.e., cabbages treated with distilled water) prior to analysis. Dose-mortality curves were 

estimated by probit analysis using the PROC PROBIT procedure (SAS Institute, Cary, 

NC, USA), with a Probit regression method analysis, to obtain 95% confidence intervals. 
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Sublethal concentrations between LC1 and LC30 were calculated using SAS - Statistical 

Analysis Systems. Fecundity data were subjected to one-way analysis of variance 

(ANOVA), and survival results were subjected to survival analysis, which was performed 

using Kaplan-Meier estimators (log-rank method) with SigmaPlot 12.0 (Systat Software, 

San Jose, CA, USA). The overall similarity between survival times and median survival 

times (LT50 values) was tested using the χ2 log-rank test, and pairwise comparisons 

between curves were performed using the Holm-Sidak test (P < 0.05). 

Analysis of variance (ANOVA) of biochemical results was performed in SigmaPlot 12.0 

(Systat Software, San Jose, CA, USA), considering a P value < 0.05 as significant. 

 

3. Results 

3.1. Exposure to the insecticide by leaf dipping 

The toxicity of imidacloprid to adults of M. persicae was investigated 48 hours after 

exposure to leaf immersion. The mortality of aphids showed significant differences in the 

LC50 of the temperatures. The effects of treatments on aphid responses to increasing 

concentrations of imidacloprid depended on the different temperatures. In general, higher 

temperatures induced higher toxicities at lower concentrations. The dose-response curves 

represented in Figure 1 showed the different responses found for each temperature 

evaluated. 

For the temperature of 15ºC imidacloprid presented a LC50= 0.21 mg a.i /ml, for 20ºC it 

presented a LC50= 0.08 mg a.i /ml, for 25°C it obtained a LC50= 0.008 mg a.i /ml, and for 

28°C it obtained a LC50= 0.01 mg a.i /ml (Figure 1 – Table 2). 

Table 3 shows the temperature coefficients between the ranges of 15-20°C, 15-25°C, 15-

28°C, 20-25°C, 20-28°C and 25-28°C in adult females of M. persicae exposed to 

imidacloprid. The ranges between 15-25°C, 15-28°C, 20-25°C and 20-28°C showed a 
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strong temperature coefficient, and the 15-20°C showed a slight temperature coefficient 

and 25-28°C had no effect.  

 

3.2. Parental generation sublethal exposure bioassay 

Exposure within 48 hours in M. persicae adults to imidacloprid LCs had a significant 

effect on the longevity and fecundity of exposed individuals (F0 generation) (Figure 2). 

Initial aphid fecundity rates during pretreatment with the sublethal doses of the insecticide 

were not recorded because no nymphs were removed during this period. After exposure, 

fecundity was assessed daily. 

The fecundity of females with the sublethal doses of imidacloprid at 15°C temperature 

(Figure 2A) was significantly reduced only after exposure to LC10, LC15, LC20 and LC30, 

while LC1 and LC5 showed no significant differences compared to the control (H = 

172.507; df = 6; P < 0.001). At 20°C temperature (Figure 2C), fecundity was significantly 

reduced at LC20 and LC30, on the other hand, when females were exposed to LC1 fecundity 

was significantly increased when compared to the control (H = 151.891; df = 6; P < 

0.001). At 25°C (Figure 2E), the reduction in fecundity occurred when the aphids were 

exposed to LC30 (H = 42.049; df = 6; P < 0.001). At 28°C (Figure 2G), fecundity increased 

significantly at LC5, LC10, LC15 and LC20 (H = 28.987; df = 6; P < 0.001). 

Compared to the control group (13.06 days) at 15°C temperature (Figure 2B), adult 

longevity of F0 was not significantly different at concentrations LC1 and LC5 (14.15 and 

11.85 days), but was significantly reduced when adults were exposed to LC10, LC15, LC20 

and LC30 (7.59; 7.30; 6.81; 5.75 days) (χ2 = 182.098; df = 6; P < 0.001). At 20°C 

temperature (Figure 2D), longevity was significantly reduced at LC30 (2.64 days) when 

compared to the control (6.34 days), on the other hand, when females were exposed to 

LC1 and LC5 longevity was significantly increased compared to the control (χ2 = 143.289; 
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df = 6; P < 0.001). At 25°C temperature (Figure 2F), female longevity when exposed to 

LC10 was significantly higher (9.08 days) relative to the control (8.36 days), and was 

significantly reduced at concentrations LC1 and LC30 (7.25 and 7.36 days) (χ2 = 23.303; 

df = 6; P < 0.001). However, no significant difference was found in the longevity of 

females at the 28°C temperature (χ2 = 6.564; df = 6; P < 0.001)  (Figure 2H). 

 

3.3. Measurement of malondialdehyde (MDA) and hydrogen peroxide (H2O2) 

contents 

The influence of low concentration of imidacloprid at different temperatures (15, 20, 25 

Eq, 25 and 28°C) and exposure time (12 and 48h) on malondialdehyde (MDA) and 

hydrogen peroxide (H2O2) contents in M. persicae is presented in Figure 3. The results 

showed that treatment with LC1 at 15 and 28°C (2.9x10-3 and 1.5x10-4 a.i. mg/ml) led to 

a higher accumulation of hydrogen peroxide (H2O2) (Figure 3A) within 12 hours (1.033 

and 1.234 µmol H2O2g-1MF), whereas in the case of malondialdehyde (MDA) (Figure 

3B) the highest accumulation occurred in LC1 (1.5x10-4 a.i. mg/ml) at 28°C (1.00 µmol 

MDAg-1MF). 

The hydrogen peroxide (H2O2) content (Figure 3C) at the 48 hours exposure showed 

significant differences, and the highest production occurred in CL1 (3.6x10-3 a.i. mg/ml) 

at 20°C (0.778 µmol H2O2g-1MF). The elevation of malondialdehyde (MDA) (Figure 3D) 

by the insecticide remained strongly evident even in LC1 at 25°C Eq (3.2x10-3 a.i. mg/ml) 

when exposed to 48h (1.815 µmol MDAg-1MF). 

 

4. Discussion 

Aphids can develop adaptive mechanisms to survive and reproduce in stressful 

environments (Kennedy and Stroyan, 1959; Van Emden and Harrington, 2017), but can 
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undergo behavioral and/or physiological changes by the interaction of various stressors 

(chemical, physical, or biological) (Hooper et al., 2013; Rix and Cutler, 2022; Sokolova, 

2013). The toxicity and sublethal effects of M. persicae exposed to imidacloprid is already 

well established in the literature, however, most of these studies evaluated the effects on 

the survival, growth and fecundity of this species without taking into account the 

influence of temperature variation. In this study, we show the effect of toxicity and 

sublethal concentrations of imidacloprid under temperature variation on the biological 

traits of M. persicae individuals. In addition, we gain a better understanding of how 

oxidative stress acts in response to heat stress along with the agrochemical in individuals 

of this species. 

It is known that the toxicity of insecticides can vary due to several temperature-dependent 

factors affecting their physical and chemical properties, such as stability, vaporization, 

penetration, activity, degradation, absorption, and translocation (Johnson, 1990). The 

results of the present work showed that the different responses of aphids under 

imidacloprid toxicity were due to the influence of the four different temperature levels. 

According to the LC50 of the insecticide, high temperatures (25 and 28°C) induced a high 

toxicity at lower concentrations of the product (Figure 1). The analysis shows that 

increased temperature (25 and 28°C) may be sufficient to cause a significant increase in 

the toxicity of imidacloprid (see values in Table 2) than milder temperatures (15 and 

20°C). This, in turn, will increase the mortality of individuals at lower concentrations of 

the product at higher temperatures. The reason for this is that, the neonicotinoid 

imidacloprid is a systemic, agonist insecticide that activates the nicotinic acetylcholine 

receptor (nAChR), neurotoxins that can cause a variety of behavioral/physiological 

effects (Buckingham et al., 1997; Liu and Casida, 1993; Matsuda et al., 2001), and 

generally exhibit positive temperature coefficient, i.e. the temperature coefficient is 
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positive when the toxicity of the insecticide increases with increasing temperature 

(Srigiriraju et al., 2010). 

The effect of temperature on the toxicity of various insecticides has already been 

documented for different insect species (Ma et al., 2012; Rao et al., 2021). Swelam et al. 

(2022) reported that the toxicity of fipronil to Spodoptera littoralis (Boisd.) (Lepidoptera: 

Noctuidae) was influenced by temperature, i.e., the toxicity of the insecticide was higher 

at higher temperatures. However, there is little information available on the influence of 

temperature on the toxicity of imidacloprid to pest aphids, for example in the study by 

Srigiriraju et al. (2010), the authors evaluated the effects of post-treatment temperature 

on the efficacy of four types of insecticides against M. persicae, and reported that the 

toxicity of imidacloprid increased with increasing post-exposure temperature, LC50 values 

at 15°C were significantly higher than at temperatures of 20 and 25°C. 

Although the relationship between the insecticides and temperature tested in this study 

was clearly shown, the exact mechanism has not been fully investigated. In this sense, it 

is of utmost importance that further studies be conducted to have a better understanding 

of how these effects affect the processes of imidacloprid uptake and elimination with the 

change of temperature under M. persicae individuals. 

In agroecosystems, agricultural pests are often exposed to low doses of chemicals due to 

their variable distribution and continuous degradation (Cutler et al., 2022; Desneux et al., 

2004; Duke, 2014). Consequently, this exposure causes various sublethal effects to 

organisms affecting their biological traits (physical or chemical). This phenomenon can 

be defined as hormesis, which is characterized by inhibition at high doses and stimulation 

at low doses following pesticide exposure (Cutler, 2013; Duke, 2014; Rix and Cutler, 

2022). 
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When stimulation occurs at low doses, especially of agrochemicals under insects, the 

impacts can result in protective effects that can lead to improved performance in the 

biological fitness of the organism (Berry III and López-Martínez, 2020; Calabrese and 

Baldwin, 2003; Cutler, 2013; Mattson, 2008; Rix and Cutler, 2022). The most common 

stimulatory effects observed in insects are in relation to fecundity, fertility, longevity, 

intrinsic rate of increase, finite rate of increase, and net reproductive rate of individuals 

(Calabrese and Baldwin, 2003; Shang et al., 2021; Sial et al., 2018; Ullah et al., 2019). 

Due to this reason, the study of pesticide-induced hormetic responses in insects has 

become of utmost importance due to its potential in implication in pest management. 

Insecticide-induced hormesis on pest aphids, including M. persicae (Rix et al., 2016; Sial 

et al., 2018; Tang et al., 2019; P. Wang et al., 2017), Aphis gossypii Glover (Chen et al., 

2016; S. Wang et al., 2017), Aphis craccivora Koch (Fouad et al., 2022), Aphis glycines 

Matsumura (Qu et al., 2017, 2015) is already well established in the literature. However, 

little is known about how the sublethal effects of imidacloprid in conjunction with 

temperature variation interferes with the biological aspects of M. persicae. The results 

obtained in the present study showed that significant changes occurred in fecundity and 

survival in females of M. persicae due to the two combined stressors (thermal and 

chemical), and the hormetic responses of individuals under the product varied within the 

thermal regimes (Figure 2). 

The ability of M. persicae to cope with diverse stressors may be achieved by physiological 

and biochemical mechanisms. The reason for this is that sublethal exposure to the 

neonicotinoid at all four temperature levels may have caused adaptive responses that 

increased the cellular defenses of the individuals, and consequently increased 

performance (reproduction and survival) beyond that observed in untreated individuals. 

In addition to this fact, we observed that as the temperature changed, the range of 
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sublethal concentrations that caused the hormetic responses in the organisms shifted. It is 

worth noting that at 20°C the sublethal effects occurred due to chemical stress, as the 

aphids were reared at this temperature. In this scenario, it is important that further studies 

be conducted to understand why hormetic effects at certain temperatures are directly 

linked at specific sublethal concentration ranges of the product and how the defense 

mechanisms of individuals are affected by this relationship between stressors. 

The toxicity of chemicals and the biological fitness of insects can be strongly affected by 

changes in temperature (Johnson, 1990; Neven, 2000). When physiological injuries occur 

under different stressors, individuals exhibit impacts on their biological characteristics 

(physical or chemical) during their lifetime (González-Chang et al., 2016; Neven, 2000). 

In this study, the combination of chemical stress (imidacloprid) and high temperatures 

(25 and 28°C) imposed a higher physical and physiological fitness cost on this species, 

decreasing its tolerance and performance. Therefore, high temperatures trigger 

physiological lesions in aphid populations, negatively impacting their development (Asin 

and Pons, 2001; Barlow, 1962; Davis et al., 2006; Satar et al., 2008). 

As mentioned earlier, aphids are exposed to a wide range of stressors (biotic and abiotic), 

and among them we can include oxidative stress which is characterized by increased 

production of reactive oxygen species (ROS), leading to protein entanglement and 

aggregation within cells and cell death (Kodrík et al., 2015; Mao et al., 2020; Mittler, 

2017; Sies, 2017). To prevent damage to DNA, proteins, and lipids caused by ROS, 

antioxidant enzymes are involved in the response to oxidative damage, such as, 

superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) (Berry III and 

López-Martínez, 2020; Cutler et al., 2022; Garcia-Caparros et al., 2021; Rix and Cutler, 

2022). In addition to these enzymes, heat shock proteins (HSP) also play a key role in 

cellular protection against various stressors (Chen et al., 2018; King and MacRae, 2015). 



152 
 

 

 

To test whether imidacloprid exposure together with temperature induces oxidative stress 

in M. persicae, we evaluated hydrogen peroxide (H2O2) and malondialdehyde (MDA) 

levels. Although our study did not include enzymatic tests, we report that the performance 

of oxidative stress in M. persicae individuals is confirmed by the accumulation of 

hydrogen peroxide (H2O2) and malondialdehyde (MDA). Hydrogen peroxide (H2O2) is 

one of the most abundant ROS in cells (Sies, 2017), its presence causes severe oxidative 

stress, affecting the structure of lipids, proteins, and DNA (Zhang et al., 2019). Hydrogen 

peroxide (H2O2) concentrations increased significantly when 12-hour individuals were 

exposed to low-dose imidacloprid combined with temperatures considered out of their 

optimal range (15 and 28°C), indicating a clear effect of the insecticide with temperature 

through biochemical processes. On the other hand, hydrogen peroxide (H2O2) 

accumulation was significantly higher at 20°C temperature at the 48-hour exposure. 

Malondialdehyde (MDA) is a byproduct of lipid hydroperoxides, which is widely used as 

an indicator of oxidative damage to cells (del Rio et al., 2005), we can observe in our 

work that as the temperature and exposure time increase, a significant increase in lipid 

peroxidation is observed. Thus, we can state that the stressors (insecticide and 

temperature) caused oxidative stress in the individuals. 

Dong et al. (2022) evaluated the effect of lambda-cyhalothrin on oxidative stress in M. 

persicae, and reported that hydrogen peroxide (H2O2) and malondialdehyde (MDA) 

concentrations increased significantly at all time points after lambda-cyhalothrin 

treatment, indicating that excess ROS and oxidative stress are caused by the insecticide. 

Furthermore, they indicated that the induction of a cDNA sequence (MpHsp70) encoding 

a member of the HSP70 family, showed an important role in aphid defense mechanisms 

against stressors. 
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Thus, it is possible that the treatments that resulted in the low levels of hydrogen peroxide 

(H2O2) and malondialdehyde (MDA) found in this study may be due to increased 

expression or activity of antioxidants and HSP. Increased these activities may protect 

insects from cellular damage under stressful conditions, including low-dose 

agrochemicals that are associated with increased longevity, reproduction, and stress 

tolerance (Calabrese and Baldwin, 2003; Cutler et al., 2022; King and MacRae, 2015; Rix 

and Cutler, 2022). However, it is of paramount importance to investigate whether there 

is actually actuation of these protective proteins that maintain homeostasis and cellular 

function against imidacloprid-induced oxidative stress at the different temperatures. With 

these results, we will be able to understand the tolerance and adaptability of this species 

in stressful environments. 

In conclusion, the continuous degradation of pesticides in agricultural areas, especially 

neonicotinoids, results in frequent exposure of sublethal concentrations under pest 

insects. The study of this insecticide-induced hormesis in insects becomes extremely 

important due to its potential implication in pest management, since the adaptive 

mechanism and stress coping abilities of these insects may contribute to the resurgence 

of pest insects, especially when temperature may interact positively or negatively with 

the expression of tolerance of insecticide-exposed individuals. Furthermore, we 

evidenced the occurrence of oxidative stress by the combined effect of imidacloprid and 

the temperature variation, which consequently caused the unbalance of the biological 

activities of the individuals. Therefore, all these results contributed to a better 

understanding of how pesticide-induced hormesis can be influenced by temperature 

variation. This knowledge can contribute to rationalize the application of insecticides and 

optimize the control of M. persicae populations in agricultural areas. 
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5. Conclusions 

Temperature changes influenced the toxicity of imidacloprid on M. persicae individuals, 

showing that this agrochemical has a positive temperature coefficient. It is very important 

to know the temperature coefficient of a chemical, as this will allow the selection of more 

effective products under certain environmental conditions. 

 

Due to the variable distribution and degradation of pesticides in the field, aphids are 

exposed to low concentrations of the product. The increased survival and fecundity of M. 

persicae subjected to insecticide/temperature stress exemplifies the adaptive nature of 

hormesis induced by these stressors. 

 

Furthermore, in the present study, we present the first comprehensive evaluation of 

oxidative stress in this species under two stressors. Imidacloprid together with 

temperature variation caused accumulation of H2O2 and MDA disturbing equilibrium in 

the individuals, which provides us with strong evidence for the occurrence of oxidative 

stress. 
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Figures captions 

 

Figure 1. Toxicity of Imidacloprid on Myzus persicae adults at four temperatures (15, 20, 

25, and 28°C). Lines denote the estimated lethal concentration (LC) values based on 

concentration-mortality bioassays using probit analyses. Symbols show the mean 

mortality for each insecticide concentration applied to each M. persicae population. 

Vertical bars represent the standard error of the mean (SE). 

 

Figure 2. Effects of sublethal exposure to the neonicotinoid imidacloprid on fecundity (a, 

c, e, g) and longevity (b, d, f, h) of Myzus persicae females to at 15°C (a; b), 20°C (c; d), 

25°C (e; f) and 28 ± 2°C (g; h). 

 

Figure 3. The effects of low concentration of imidacloprid on malondialdehyde (MDA) 

and hydrogen peroxide (H2O2) content in M. persicae females. 12 h (A) and 48 h (C) 

exposure on H2O2 quantification. Exposure of 12 h (B) and 48 h (D) in MDA 

quantification. 
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Table 1. Lethal concentration of imidacloprid in active ingredient (a.i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Imidacloprid 15°C 

LCs Concentrations mg (a.i)/ml 

LC1 0.0029 

LC5 0.0104 

LC10 0.0203 

LC15 0.0318 

LC20 0.0455 

LC30 0.0814 

Imidacloprid 20°C 

LCs Concentrations mg(a.i)//ml 

LC1 0.0036 

LC5 0.0093 

LC10 0.0154 

LC15 0.0215 

LC20 0.0281 

LC30 0.0434 

Imidacloprid 25°C 

LCs Concentrations mg(a.i)//ml 

LC1 0.0001 

LC5 0.0004 

LC10 0.0007 

LC15 0.0012 

LC20 0.0018 

LC30 0.0032 

Imidacloprid 28°C 

LCs Concentrations mg(a.i)//ml 

LC1 0.00015 

LC5 0.00053 

LC10 0.00102 

LC15 0.00159 

LC20 0.00226 

LC30 0.00400 
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Table 2. Relative toxicity of neonicotinoid (i.e., imidacloprid) to individuals of Myzus 

persicae. 

 

Insecticide Temperatures N LC50 (95% CI) mg (a.i.)/ml χ2 P  TR 

Imidacloprid 15°C 100 0.212 (0.170– 0.268) a 8.41 0.13  26.5 

20°C 100 0.088 (0.074 – 0.106) a 3.17 0.67  11 

25°C 100 0.008 (0.007 – 0.010) b 10.75 0.15  - 

28°C 100 0.010 (0.007 – 0.013) b 3.85 0.42  1.25 

N: number of individuals tested. 

LC50 (95%): lethal concentration to cause mortality in 50% of individuals 

CI: confidence intervals. 

a.i.: active ingredient 

χ2: Chi-square for lack-of-fit to the probit model. 

P: Probability associated with the chi-square statistic. 

TR= calculated by dividing the LC50s of the different temperatures by the smallest LC50 
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Table 3. Temperature coefficients of imidacloprid on Myzus persicae adults. 

 

 

 

 

 

 

 

 

 

 

 

 
The effects of temperature coefficients were "no effect" = < 2, "slight" = (2-5), and "strong" = > 5 

 

Imidacloprid 

Temperatures Temperature coefficients 

15 – 20°C 2.39 Slight 

15 – 25°C 25.16 Strong 

15 – 28°C 21.30 Strong 

20 – 25°C 10.27 Strong 

20 – 28°C 8.69 Strong 

25 – 28°C 1.18 No effect 
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Appendix – supplementary material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Mean fecundity and survival (LT50) of Myzus persicae females under varying 

temperatures after intoxication with imidacloprid. 
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Concluding considerations 

 

Myzus persicae Sulzer (1776) (Hemiptera: Aphididae) is considered one of the major 

agricultural pests with the potential to generate significant yield losses in several crops 

worldwide. Studies on this pest species are important to provide potential tools and find 

bases for efficient pest management measures. To increase this knowledge, it is necessary 

to use appropriate methodologies for laboratory rearing, as performed in this study. The 

refinement of these techniques and the addition of new, cheaper technologies may enable 

the maintenance and availability of these individuals in the laboratory. 

In the present study, the use of Nicandra physalodes combined with hydrogel as rearing 

substrate, demonstrated the ability for M. persicae to produce offspring under controlled 

conditions, and great potential for mass rearing, thus providing an innovative proposal to 

adapt and validate the way of aphid rearing under laboratory conditions. 

The use of agrochemicals remains one of the main management strategies for M. persicae, 

in the present study, we highlight the fact that the increase/decrease of temperature may 

induce higher/lower efficacy of chemicals on individuals of this species. Climate change 

may have the potential to alter the benefits/costs balance of pesticide use in the 

agricultural context, and with these results, relevant and efficient strategies for controlling 

M. persicae populations in agricultural areas can be made. 

Furthermore, several recent studies are showing that exposure to low doses of a 

contaminant can induce a hormetic response in these individuals, which can lead to an 

increase in population growth at a higher rate than would be observed without the 

application of the products. In the present study, we also show how the result of the 

correlation of temperature with chemical toxicity can induce a hormetic response in the 
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biological characteristics of this species, and that it contributed to a beneficial stimulatory 

effect on the fecundity and longevity of individuals. 

Efficient and economical pest control is only possible by planning and implementing an 

integrated management system, and the results obtained in this study provided important 

information about the adaptive coping mechanisms of these organisms in challenging 

environments, which will be of paramount importance for designing management 

strategies for M.persicae in agroecosystems. 

 

 

 


