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Abstract

Some aspects of the nonbirefringent CPT-even gauge sector of the Standard Model Extension (SME), in 
the vicinity of a semi-transparent mirror, are investigated in this paper. We first consider a model where the 
Lorentz symmetry breaking is caused by a single background vector vμ, and we obtain perturbative results 
up to second order in vμ. Specifically, we compute the modified propagator for the gauge field due to the 
presence of the mirror and we analyze the corresponding interaction between the mirror and a stationary 
point-like charge. We show that when the charge is placed in the vicinity of the mirror, a spontaneous torque 
emerges, which is a new effect with no counterpart in Maxwell electrodynamics. We also compare these 
results with the corresponding ones obtained for the Lorentz violating scalar field theory. As expected, in 
the limiting case of perfect mirrors, we recover the interaction found via the image method. Finally, we 
discuss how we can extend these results for a more general Lorentz violating background.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years theories with Lorentz symmetry breaking have been a subject of intense in-
vestigation in the literature, mostly in the framework of the Standard Model Extension (SME) 
[1,2]. Some aspects of Lorentz symmetry breaking have been studied, for instance, in classical 
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[3–14] and quantum [15–22] electrodynamics, radiative corrections [23–31], topological defects 
[32–35], electromagnetic wave propagation [36,37], gravity theories [38–44], noncommutative 
field theories [45–47], among others. On the other hand, the study of models in the presence of 
nontrivial boundary conditions is of great interest, with a large number of applications in several 
branches of physics. We can cite, for example, the use of δ-like potentials coupled to quantum 
fields describing semi-transparent mirrors in order to study the Casimir effect [48–56], the cal-
culation of the interaction energy between point-like field sources and δ-like mirrors [57–59], 
as well as studies related to both Lee-Wick and Maxwell-Chern-Simons electrodynamics in the 
presence of boundary conditions [60–65]. A topic we believe still deserves more attention are
Lorentz violating theories in the presence of boundary conditions, since it could be of great in-
terest to investigate the physical phenomena that can arise in this scenario. In this context, we can 
cite some works concerning the Casimir effect [66–80], the study of Lorentz violating Maxwell 
electrodynamics in the vicinity of a perfect conductor [81,82], and effects related to the pres-
ence of a semi-transparent mirror in a Lorentz violating scalar field theory [83]. However, the 
Maxwell electrodynamics with Lorentz symmetry breaking in the presence of a semi-transparent 
mirror have not been considered up to now in the literature. This is an interesting topic since, 
in practice, electromagnetic configurations in actual experiments do usually involve conductors, 
which have to be properly considered in the theoretical models. Another interesting question that 
can be raised in this scenario concerns the modifications the gauge propagator undergoes due to 
the presence of a single semi-transparent mirror, and the influence of the mirror on stationary 
point-like field sources.

This paper is devoted to this subject in the context of the nonbirefringent CPT-even pure-
photon sector of the SME, where we search for Lorentz violation effects due to the presence 
of a single semi-transparent mirror. We consider first the model studied in [3,81,84], where the 
Lorentz violation is caused by a single background vector vμ. Since the Lorentz breaking pa-
rameter should be very small we treat it perturbatively up second order, which is the lowest order 
in which it appears in our calculations. In section 2 we compute the modification undergone 
by the Lorentz violating gauge propagator due to the presence of the mirror. This propagator is 
used in section 3 to obtain the interaction energy as well as the interaction force between a static 
point-like charge and the mirror. We show that when the charge is placed in the vicinity of the 
mirror, a spontaneous torque emerges in the system, which is a new effect with no counterpart 
in Maxwell electrodynamics in the presence of a semi-transparent mirror. We also compare the 
obtained results with the similar ones computed in [83] for the Lorentz violating scalar field the-
ory. As expected, in the limiting case of a perfect mirror, we recover the results of [81] obtained 
via image method. Then, in Section 4, our results are extended to a more general LV setting by 
using the image method, together with a careful consideration of the limiting case described in 
Sec. 3. We can then estimate the physical effects in the kind of system considered by us for a 
quite general LV background. Section 5 is devoted to conclusions and final remarks.

Throughout the paper we work in a 3 + 1-dimensional Minkowski space-time with metric 
ηρν = (1, −1, −1, −1). The Levi-Civita tensor is denoted by ερναβ with ε0123 = 1.

2. The propagator in the presence of a semi-transparent boundary

In this section, we start by considering the Lagrangian of the CPT-even photon sector of 
the minimal SME with the inclusion of a δ-like term, representing the presence of a semi-

transparent boundary or a two-dimensional semi-transparent mirror. Without loss of generality 
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and for simplicity, we will consider the mirror to be perpendicular to the x3 axis, at x3 = a. The 
corresponding model is given by

L = −1

4
FμνF

μν − 1

2γ

(
∂μAμ

)2 − 1

4
(KF )μναβ FμνFαβ

− 1

m

(
1

2
SμεμναβFαβ

)2

δ
(
x3 − a

)
− JμAμ , (1)

where Aμ is the gauge field, Fμν = ∂μAν − ∂νAμ is the field strength, γ is a gauge fixing 
parameter, jμ is an external source, Sγ = η

γ

3 is the vector normal to the mirror and m−1 > 0
is a coupling constant with inverse of mass dimension, establishing the degree of transparency 
of the mirror, the limit m → 0 corresponding to a perfect mirror [57]. The background tensor 
(KF )μναβ is a dimensionless constant having the same symmetries as the Riemann’s tensor and 
a null double trace (KF )

μν
μν = 0, which leads to 19 independent components, ten of those being 

birefringent and nine nonbirefringent ones. Both for the sake of simplicity, and due to the fact that 
the later might be more difficult to constrain in experiments, due to the lack of the very character-
istic effect of vacuum birefringence, in this paper we are interested in these nine nonbirefringent 
components, which are described by the symmetrical and traceless tensor kμν , related to (KF )

by means of [85],

(KF )μναβ = 1

2

(
ημαkνβ − ημβkνα + ηνβkμα − ηναkμβ

)
. (2)

We will consider a particular choice for kμν , in the same way as in [3,81,84], namely

kμν = vμvν , (3)

with v2 = vμvμ = 0 in order to ensure the tracelessness condition. This parametrization does not 
describe all the nonbirefringent components of (KF )μναβ , but only three of the nine indepen-
dent components described in (2). This choice is made so that we are able to perform analytic 
calculations of the various quantities we are interested in. We will discuss the possibilities of 
extending our results to more general cases in Sec. 4. Finally, since vμ is assumedly very small, 
along this paper we treat it perturbatively up to second order, which is the lowest order in which 
it contributes to the propagator.

As a result, the model we will consider in this work is described by

L = −1

4
FμνF

μν − 1

2γ

(
∂μAμ

)2 − 1

2
vμvνFμλF

νλ − 1

m

(
1

2
SμεμναβFαβ

)2

δ
(
x3 − a

)
− JμAμ , (4)

which can be rewritten in the form

L = 1

2
AμOμνAν − JμAμ , (5)

where the differential operator Oμν is conveniently separated in two parts, one corresponding to 
the free theory (without the mirror) and the other corresponding to the δ-like term, as follows,

Oμν = O(0)μν + �Oμν , (6)
with the definitions,
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O(0)μν =
[� + (v · ∂)2

]
ημν −

(
1 − 1

γ

)
∂μ∂ν + vμvν� − (v · ∂)

(
vμ∂ν + vν∂μ

)
, (7)

�Oμν = 2

m
δ
(
x3 − a

)(
η

μν
‖ �‖ − ∂

μ
‖ ∂ν‖

)
, (8)

where � = ∂μ∂μ, v · ∂ = vμ∂μ,

η
μν
‖ = ημν + ημ3ην3 , (9)

and �‖ = ∂α‖ ∂‖α . We also defined

∂α‖ =
(
∂0, ∂1, ∂2

)
, (10)

due to the fact that the derivatives in the δ-like term in (4) are taken only in the spacial directions 
parallel to the mirror, because of the fixed index in the Levi-Civita tensor,(

1

2
η

μ
3εμναβFαβ

)2

= ε3αβν ε ν
3ρτ

(
∂α‖ Aβ

)(
∂

ρ
‖ Aτ

)
. (11)

The free propagator satisfies, O(0)μν(x)G
(0)
νβ (x, y) = η

μ
βδ4 (x − y), where in the Feynman 

gauge (γ = 1) and up to second order in vμ, we have [3,81]

G(0)
μν (x, y) = −

∫
d4p

(2π)4

e−ip·(x−y)

p2

[(
1 − (p · v)2

p2

)
ημν −vμvν + (p · v)

p2 (pμvν +vμpν)

]
.

(12)

As it was shown in [56–58,83], the propagator Gμν (x, y) which inverts the operator (6) can be 
founded recursively in integral form, as follows,

Gμν (x, y) = G(0)
μν (x, y) −

∫
d4z Gμγ (x, z)�Oγ σ (z)G(0)

σν (z, y) , (13)

where Oμν(x)Gνβ (x, y) = η
μ
βδ4 (x − y). In order to solve Eq. (13), it is convenient to write 

Gμν (x, y) and G
(0)
μν (x, y) as Fourier transforms in the coordinates parallel to the semi-

transparent mirror,

Gμν (x, y) =
∫

d3p‖
(2π)3 Gμν

(
x3, y3;p‖

)
e−ip‖·

(
x‖−y‖

)
, (14)

G(0)
μν (x, y) =

∫
d3p‖
(2π)3 G(0)

μν

(
x3, y3;p‖

)
e−ip‖·

(
x‖−y‖

)
, (15)

where xμ
‖ = (

x0, x1, x2
)

and pμ
‖ = (

p0,p1,p2
)

stand for the coordinates and momentum parallel 

to the mirror, respectively. We also define Gμν

(
x3, y3;p‖

)
and G(0)

μν

(
x3, y3;p‖

)
as being the 

reduced Green’s functions. Splitting Eq. (12) into parallel and perpendicular coordinates with 
respect to the mirror, using the fact that [60,81]∫

dp3

2π

eip3(x3−y3)

p2 = − i

2�
ei�|x3−y3| (16a)

∫
dp3 eip3(x3−y3)

4 = − 1
2

(
i + | x3 − y3 |

)
ei�|x3−y3| , (16b)
2π p 4p‖ �

4



L.H.C. Borges and A.F. Ferrari Nuclear Physics B 980 (2022) 115829
where p3 stands for the momentum perpendicular to the mirror, � =
√

p2‖ , and after performing 
some manipulations, the free reduced propagator can be cast as

G(0)
μν

(
x3, y3;p‖

)
= i ei�|x3−y3|

2�

[
f1

(
x3, y3;p‖

)
ημν − vμvν

+ (
p‖μvν + vμp‖ν

)
f2

(
x3, y3;p‖

)

+ (
ημ3vν + vμην3

)
f3

(
x3, y3;p‖

)]
, (17)

where we define the functions

f1

(
x3, y3;p‖

)
= 1 − i

2�

[
−

(
i

�
+ | x3 − y3 |

)(
p‖ · v‖

)2 − 2�
(
x3 − y3

)
v3 (

p‖ · v‖
)

+ i�
(
v3

)2 [
i� | x3 − y3 | +1

]]
, (18)

f2

(
x3, y3;p‖

)
= − i

2�

(
i

�
+ | x3 −y3 |

)[(
i

�
+ | x3 −y3 |

)(
p‖ · v‖

) +�
(
x3 −y3

)
v3

]
,

(19)

f3

(
x3, y3;p‖

)
= − i

2

(
x3 − y3

)[(
i

�
+ | x3 − y3 |

)(
p‖ · v‖

) + �
(
x3 − y3

)
v3

]
, (20)

with vμ
‖ = (

v0, v1, v2
)
, and v3 standing for the background vector parallel and perpendicular to 

the mirror, respectively.
Substituting (8) into (13), using (14), (15), (17), (18), (19) and (20), after some integrations 

we arrive at

Gμν

(
x3, y3;p‖

)
= G(0)

μν

(
x3, y3;p‖

)
+ 2p2‖

m
Gμγ

(
x3, a;p‖

)
Mγ

ν

(
a, y3;p‖

)
, (21)

with

Mμν

(
x3, y3;p‖

)
= i ei�|x3−y3|

2�

[
f1

(
x3, y3;p‖

)
η‖μν

−
[
f1

(
x3, y3;p‖

)
+ f2

(
x3, y3;p‖

)(
p‖ · v‖

)] p‖μp‖ν
p2‖

− v‖μv‖ν +
(
p‖ · v‖

)
p2‖

p‖μv‖ν + f2

(
x3, y3;p‖

)
v‖μp‖ν

+
[
f3

(
x3, y3;p‖

)
− v3

](
v‖μην3 −

(
p‖ · v‖

)
p2‖

p‖μην3

)]
. (22)

The propagator in (21) is still defined recursively, but it is possible to solve for it by setting 
y3 = a, thus obtaining

G
(
x3, a;p

)[
ηγ − 2p2‖

Mγ
(
a, a;p )] = G(0)

(
x3, a;p

)
, (23)
μγ ‖ ν m ν ‖ μν ‖
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where G(0)
μν

(
x3, a;p‖

)
and Mγ

ν

(
a, a;p‖

)
can be obtained from Eqs. (17) and (22), respectively. 

Now, multiplying both sides of (23) by the operator that inverts the term between brackets, we 
obtain

Gμν

(
x3, a;p‖

)
= i

2

(
1 − m

i�

)−1 ei�|x3−a|

�

{
− m

i�

[
f1

(
x3, a;p‖

)
− g1

(
p‖

)]
η‖μν

+
[
f1

(
x3, a;p‖

)
+ f2

(
x3, a;p‖

)(
p‖ · v‖

) + g2
(
p‖

)]p‖μp‖ν
p2‖

+ m

i�

[
1 −

(
1 − m

i�

)−1
]

v‖μv‖ν

−
[

m

i�
f2

(
x3, a;p‖

)
+

[
1 −

(
1 − m

i�

)−1
] (

p‖ · v‖
)

p2‖

]
p‖μv‖ν

+
[(

1 − m

i�

)
f2

(
x3, a;p‖

)
+ g3

(
p‖

)]
v‖μp‖ν

− m

i�

[
f3

(
x3, a;p‖

)
− v3

]
ημ3v‖ν +

[(
1 − m

i�

)
v3f2

(
x3, a;p‖

)

+
[
f3

(
x3, a;p‖

)
− v3

] (
p‖ · v‖

)
p2‖

]
ημ3p‖ν

−
[(

1 − m

i�

)[
f3

(
x3, a;p‖

)
− v3

]
+ v3

]
v‖μην3

+
[

i�

m

(
p‖ · v‖

)
p2‖

v3 −
(

1 − m

i�

)
v3f2

(
x3, a;p‖

)]
p‖μην3

+
(

1 − m

i�

)[
f1

(
x3, a;p‖

)
− 2v3f3

(
x3, a;p‖

)
+

(
v3

)2]
ημ3ην3

}
,

(24)

where we identified the functions

g1
(
p‖

) =
(

1 − m

i�

)−1 1

2

[(
v3

)2 −
(
p‖ · v‖

)2

p2‖

]
, (25)

g2
(
p‖

) =
[

1 −
(

1 − m

i�

)−1
]

1

2

{(
v3

)2 −
[

1 − i

�

(
1 + 2p2‖

m

)
− 1

m

] (
p‖ · v‖

)2

p2‖

}
,

(26)

g3
(
p‖

) =
[

1 −
(

1 − m

i�

)−1
(

1 − i

2�
+ m

2p2‖

)] (
p‖ · v‖

)
p2‖

. (27)

Considering all these results, the modified propagator due to the presence of the semi-
transparent mirror, up to second order in vμ, reads

Gμν (x, y) = G(0)
μν (x, y) + Ḡμν (x, y) , (28)
where
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Ḡμν (x, y) = − i

2

∫
d3p‖
(2π)3 e−ip‖·

(
x‖−y‖

) (
1 − m

i�

)−1
{(

η‖μν − p‖μp‖ν
p2‖

)[
f1

(
x3, a;p‖

)

+ f1

(
a, y3;p‖

)
− g1

(
p‖

) − 1
]
−

[
i�

m

[
1 −

(
1 − m

i�

)−1
] (

p‖ · v‖
)2

p2‖

+
[
f2

(
x3, a;p‖

)
+ f2

(
a, y3;p‖

)] (
p‖ · v‖

)]p‖μp‖ν
p2‖

−
[

2 −
(

1 − m

i�

)−1
]

v‖μv‖ν

+
[[

1 + i�

m

(
1 −

(
1 − m

i�

)−1
)] (

p‖ · v‖
)

p2‖
+ f2

(
x3, a;p‖

)]
p‖μv‖ν

+
[[

1 −
(

1 − m

i�

)−1
] (

p‖ · v‖
)

p2‖
+ f2

(
a, y3;p‖

)]
v‖μp‖ν

+
[
f3

(
a, y3;p‖

)
− v3

][
v‖μην3 −

(
p‖ · v‖

)
p2‖

p‖μην3

]

+
[
f3

(
x3, a;p‖

)
− v3

][
ημ3v‖ν −

(
p‖ · v‖

)
p2‖

ημ3p‖ν

]}
ei�

(|x3−a|+|y3−a|)
�

.

(29)

The propagator (28) is composed of the sum of the free propagator (12) with the correction 
(29), which accounts for the presence of the semi-transparent mirror. As an important check 
of the consistency of our results we point out that by taking the limit vμ → 0 in Eq. (29) we 
recover the standard correction to the propagator for the gauge field in the presence of a single 
semi-transparent mirror [57]. Taking the limit m → 0 in (29), we recover the correction to the 
propagator (12) due to the presence of a perfect mirror as obtained in [81].

3. Charge-mirror interaction

Having obtained the relevant propagator in the previous section, here we consider the inter-
action energy between a point-like charge and the semi-transparent mirror, which is given by 
[57,60,64,81]

E = 1

2T

∫
d4x d4y Jμ (x) Ḡμν (x, y) J ν (y) , (30)

where T is a time interval, and it is implicit the limit T → ∞ at the end of the calculations.
With no loss of generality, we choose a point-like charge located at the position b = (0,0, b), 

perpendicular to the mirror. The corresponding external source is given by

Jμ (x) = qημ0δ3 (x − b) , (31)

where the parameter q is a coupling constant between the field and the delta function, and in this 
case it can be interpreted as being the electric charge.

Substituting Eqs. (31) and (29) in (30), carrying out the integrals in the order d3x, d3y, dx0, 

dp0, dy0 and performing some manipulations, we arrive at

7
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EMC = − q2

16π2

∫
d2p‖

e
−2R

√
p2‖

m +
√

p2‖

{
1 + 1

2

(
p‖ · v‖

)2

p2‖

[
2m +

√
p2‖

m +
√

p2‖
+ 2R

√
p2‖

]

+ 1

2

(
v3

)2
[

2m +
√

p2‖

m +
√

p2‖
− 2R

√
p2‖

]
−

(
v0

)2 2m +
√

p2‖

m +
√

p2‖

}
, (32)

where R =| a − b | is the distance between the mirror and the charge. The sub-index MC means 
that we have the interaction energy between the mirror and the charge. This result can be simpli-
fied by using polar coordinates and integrating out in the solid angle,

EMC = − q2

16π

∞∫
0

dp p
e−2Rp

p + m

[
2 + v2‖

2

(
p + 2m

p + m
+ 2Rp

)
+

(
v3

)2
(

p + 2m

p + m
− 2Rp

)

− 2
(
v0

)2 p + 2m

p + m

]
. (33)

Using the fact that [86]

∞∫
0

dp p
e−2Rp

p + m
= 1

2R

[
1 − 2mRe2mREi (1,2mR)

]
, (34)

∞∫
0

dp p
e−2Rp

p + m

(
p + 2m

p + m
+ 2Rp

)
= 2

R

[
1

2
− mR + 2 (mR)2 e2mREi (1,2mR)

]
, (35)

∞∫
0

dp p
e−2Rp

p + m

(
p + 2m

p + m
− 2Rp

)
= 0 , (36)

∞∫
0

dp p (p + 2m)
e−2Rp

(p + m)2 = 1

R

[
1

2
− mR + 2 (mR)2 e2mREi (1,2mR)

]
, (37)

where Ei (u, s) is the exponential integral function [87] defined by

Ei(n, s) =
∞∫

1

e−ts

tn
dt �(s) > 0 , n = 0,1,2, · · · , (38)

the interaction energy becomes,

EMC = − q2

16πR

{
1 − 2mRe2mREi (1,2mR)

+
[

v2‖ − 2
(
v0

)2
][

1

2
− mR + 2 (mR)2 e2mREi (1,2mR)

]}
. (39)

Equation (39) is a perturbative result up to lowest nontrivial order in the background vector for 

the interaction energy of a point charge and a semi-transparent mirror mediated by the model (4). 
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The first and second terms on the right hand side reproduce the result of the standard (Lorentz 
invariant) electromagnetic field [57], the remaining terms are corrections due to the Lorentz 
symmetry breaking. We notice that Eq. (39) does not depend explicitly on the component of the 
background vector perpendicular to the mirror v3. In the limit m → 0, which corresponds to the 
field subjected to boundary conditions imposed by a perfect mirror, the energy (39) reads

lim
m→0

EMC = − q2

16πR

(
1 −

(
v0

)2 + 1

2
v2‖

)
. (40)

We notice that Eq. (40) is equivalent to the result obtained in Ref. [81] using the image method 
in the limiting case of a perfect mirror, which shows the consistency of our result. In the limit 
m → ∞ the mirror degree of transparency goes to zero and the energy (39) vanishes, as expected.

The force between the point-like charge and the mirror is given by

FMC = −∂EMC

∂R

= − q2

16πR2

{
1 − 2mR + (2mR)2 e2mREi (1,2mR)

+
[

v2‖ − 2
(
v0

)2
][

1

2
+ 2 (mR)2 −

[
2 (mR)2 + 4 (mR)3

]
e2mREi (1,2mR)

]}
,

(41)

which is always negative and therefore has an attractive behavior.
Let us define the following dimensionless function,

F1 (x) = 1

2
+ 2x2 −

(
2x2 + 4x3

)
e2xEi (1,2x) , (42)

and the force (41) becomes

FMC = − q2

16πR2

[
1 − 2mR + (2mR)2 e2mREi (1,2mR) +

[
v2‖ − 2

(
v0

)2
]
F1 (mR)

]
,

(43)

where we have a Coulombian behavior modulated by the expression inside brackets. The correc-
tion due to the Lorentz symmetry breaking is given by the function F1 (mR) which is positive 
in its domain as shown in Fig. 1. This function vanishes in the limit m → ∞, where we have no 
mirror present, and its asymptotic behavior for large values of mR is

F1 (x) ∼
x→∞

1

x
− 9

4x2 +O
(

1

x3

)
. (44)

When we fix the distance between the charge and the mirror, from Eq. (39), we see that the 
whole system feels a torque depending on its orientation with respect to the background vector. 
In order to calculate this torque, we define as 0 ≤ α ≤ π the angle between the normal to the 
mirror and the background vector v, in such a way that, v2‖ = v2 sin2 (α). Thus the torque can be 
computed as follows,

∂EMC q2v2 [
1 2 2mR

]

τMC = −

∂α
=

16πR
sin (2α)

2
− mR + 2 (mR) e Ei (1,2mR) . (45)

9
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Fig. 1. Plot for the auxiliary function F1 (mR) (solid line) defined in Eq. (42). The dashed line is the limiting function 
1/mR.

Fig. 2. Plot for the auxiliary function F2 (mR) defined in Eq. (46). The dashed line is the limiting function 1/ (2mR).

Equation (45) is a new effect with no counterpart in Maxwell electrodynamics in the presence 
of a semi-transparent mirror. For α = 0, π/2, π the torque vanishes, while for α = π/4 the torque 
exhibits a maximum absolute value. Defining the function

F2 (x) = 1

2
−Q (x) (46)

with

Q (x) = x − 2x2e2xEi (1,2x) ,

we can rewrite Eq. (45) in the form

τMC = q2v2

16πR
sin (2α)F2 (mR) . (47)

In Fig. 2, we show the behavior of F2 in terms of mR. This function is always positive, and goes 

to zero if mR is large, with asymptotic behavior,

10
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F2 (x) ∼
x→∞

1

2x
− 3

4x2 +O
(

1

x3

)
. (48)

It is well-known that the nonbirefringent components kμν can be divided in parity-even 
isotropic κ̃tr component, anisotropic parity-even (κ̃e−)ij components and the parity-odd κi com-
ponents, which can be defined as follows

k00 = 3

2
κ̃tr , kij = 1

2
κ̃tr δ

ij − (κ̃e−)ij , k0i = −κi . (49)

Now, the obtained results in (39), (43) and (47) can be written in terms of the above parameters 
by using the fact that,

v2‖ − 2
(
v0

)2 = −2κ̃tr −
[
(κ̃e−)11 + (κ̃e−)22

]
, v2 = 3

2
κ̃tr . (50)

It is clear from the graphic in Fig. (2) and Eq. (48) that, as mR increases from zero to infinity, 
F2 decreases monotomically from 1/2 to 0, therefore

0 ≤ Q (mR) ≤ 1

2
. (51)

This fact allows us to make some estimates on the value of F2 and, therefore, the torque, for 
reasonable values of the parameters in the theory. We consider a typical distance of atomic exper-
iments in the vicinity of conductors (mirrors) of order R ∼ 10−6 m, the fundamental electronic 
charge q ∼ 1.60217 × 10−19C, and the overestimated value κ̃tr ∼ 1.4 × 10−19 obtained from 
[88,89]. In this case, for a perfect mirror, corresponding to the limit m → 0, we have Q (mR) → 0
and F2 → 1/2. From Eq (47), we obtain a torque of order τMC ∼ 10−41 Nm. For an imperfect 
mirror, the magnitude of the torque is smaller. Taking m ∼ 10−5 GeV, for example, we obtain 
τMC ∼ 10−43 Nm. This effect is out of reach of being measured by using current technology.

The model (4) can be considered as the electromagnetic version of the one studied in reference 
[83], which is a Lorentz violating scalar field theory. As discussed in that reference, even in a 
Lorentz violation scenario it is always possible to relate some results obtained for a massless 
scalar field with the ones obtained in the corresponding electromagnetic model. For this task, in 
the electromagnetic results we must take v0 = 0 and multiply by an overal factor of −1. In a 
scalar field theory the degree of transparency of the mirror has mass dimension +1 and therefore 
an opposite behavior in relation to the one studied here. However, the connection between the 
massless scalar field in the presence of a Dirichlet plane (perfect mirror) and the gauge field in 
the presence of a perfect conductor remains when we have the corresponding Lorentz violating 
terms in both theories. This fact can be clarified from Eq. (40), as follows

− lim
m→0

EMC

(
v0 = 0

)
= q2

16πR

(
1 + 1

2
v2‖

)
, (52)

which is equal to Eq. (96) of [83]. The same connection can be observed in Lee-Wick electrody-
namics [63].

4. Some results for more general LV background

In this section, we make some considerations regarding the generalization of our results for 
more general cases described by Eqs. (1) and (2). We start by defining,( )2
f ′ (v) = v2‖ − 2 v0 , (53)

11
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and rewriting Eq. (43) as follows,

FMC = − q2

16πR2

[
1 − 2mR + (2mR)2 e2mREi (1,2mR) + f ′ (v)F1 (mR)

]
. (54)

In the m → 0 limit, we obtain the interaction force between the charge and the perfect mirror 
that was found in [81] via the image method,

lim
m→0

FMC = − q2

16πR2

(
1 + 1

2
f ′ (v)

)
. (55)

In the general case of the model given in Eq. (1), we expect to find for the force an expression 
similar in form, but with a different function in place of f ′, i.e.,

F ′
MC = − q2

16πR2

[
1 − 2mR + (2mR)2 e2mREi (1,2mR) + f (KF )F1 (mR)

]
, (56)

where f (KF ) is a function such that, given the particular choice defined in Eqs. (2) and (3), 
leads to f (KF ) → f ′ (v). Similarly, in the m → 0 we should have

lim
m→0

F ′
MC = − q2

16πR2

(
1 + 1

2
f (KF )

)
. (57)

As we have discussed in [81], the image method remains valid in that particular LV setting, 
and we assume the same happens here. This is a reasonable assumption, since one of the essential 
requirements for the application of the image method is the linearity of the equations of motion – 
which is preserved here – but not a completely trivial one, since another requirement is to have a 
sufficiently symmetric system. Lorentz violation evidently reduces the symmetry of the problem. 
However, the configuration discussed here is similar enough to the one treated in [81] to give us 
confidence in using the image method for our considerations.

Thus, we consider that the result in Eq. (57) is equivalent to the interaction force, up to the 
first order in KF , between two point charges q1 = q and q2 = −q separated by a distance 2R. 
This result can be easily obtained from [5] as

F ′
CC = − q2

16πR2

[
(KF )0101 + (KF )0202

]
, (58)

where the CC means this is the interaction force between two charges.
Comparing Eqs. (58) and (57), we obtain

f (KF ) = 2
[
(KF )0101 + (KF )0202

]
. (59)

This indeed satisfy f (KF ) → f ′ (v) in the particular case defined by Eqs. (2) and (3). It is 
therefore reasonable to expect that our results can be generalized by substituting f ′ (v) by f (KF )

in the presence of a more generic LV background.
In terms of the LV parameters defined in [90,91], we have

(KF )0101 = −1

2

[
(κ̃e+)11 + (κ̃e−)11 + κ̃tr

]
, (60)

(KF )0202 = −1

2

[
(κ̃e+)22 + (κ̃e−)22 + κ̃tr

]
, (61)
leading to

12
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f (KF ) = f ′ (v) −
[
(κ̃e+)11 + (κ̃e+)22

]
, (62)

where Eqs. (53) and (50) were taken into account.
Our conclusion is that, in a more general setting, our results will be modified by a contribution 

arising from the κ̃e+ coefficients, as given in Eq. (62). So, for example, the interaction energy 
and force between the charge and the mirror will be

E′
MC = EMC + q2

16πR

[
(κ̃e+)11 + (κ̃e+)22

]
F2 (mR) , (63)

F ′
MC = FMC + q2

16πR2

[
(κ̃e+)11 + (κ̃e+)22

]
F1 (mR) , (64)

where EMC and FMC are given by Eqs. (39) and (43), respectively.
It is important to mention, however, that even if the KF tensor has nineteen independent 

components, just a subset of those can appear in the interaction that we are considering in this 
work.

Next, to obtain the resulting torque in the more general setting, it is convenient to write the 
interaction energy explicitly in terms of KF ,

E′
MC = − q2

16πR

[
1 − 2mRe2mREi (1,2mR) (65)

+ 2
[
(KF )0101 + (KF )0202

]
F2 (mR)

]
. (66)

Defining a tree-dimensional vector

KF =
(
(KF )0101 , (KF )0202 , (KF )0303

)
, (67)

we can write

(KF )0101 =| KF | sin (θ) cos (φ) , (68)

(KF )0202 =| KF | sin (θ) sin (φ) , (69)

where 0 < θ < π and 0 < φ < 2π are the polar and azimuthal angles in spherical coordinates, 
respectively (z being the polar axis). Substitution of Eq. (68) and (69) in Eq. (65) leads to

E′
MC (θ,φ) = − q2

16πR

[
1 − 2mRe2mREi (1,2mR)

+ 2 | KF | sin (θ) [cos (φ) + sin (φ)]F2 (mR)

]
. (70)

The interaction energy in Eq. (70) generates two kinds of torques on the system, depending 
on its orientation with regards to the background LV, one related to the θ angle, and another to 
the φ angle, i.e.,

τ ′
MC (θ) = − ∂

∂θ
E′

MC (θ,φ)

= q2

| K | cos (θ) [cos (φ) + sin (φ)]F (mR) , (71)

8πR

F 2

13
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and

τ ′
MC (φ) = − ∂

∂φ
E′

MC (θ,φ)

= q2

8πR
| KF | sin (θ) [cos (φ) − sin (φ)]F2 (mR) . (72)

In order to make an estimation on these torques, we have to write | KF | in terms of the usual 
LV coefficients, using Eqs. (60) and (61), together with

| KF |=
{[

(KF )0101
]2 +

[
(KF )0202

]2 +
[
(KF )0303

]2}1/2
(73)

thus obtaining

(KF )0303 = −1

2

[
(κ̃e+)33 + (κ̃e−)33 + κ̃tr

]
. (74)

Using the same data we considered in the last section, together with the upper bounds (κ̃e−)ij ∼
4 × 10−18 and (κ̃e+)ij ∼ 2 × 10−37 from [89], we obtain an order of magnitude estimate of 
τ ′
MC ∼ 10−40 Nm for a perfect mirror, and τ ′

MC ∼ 10−45 Nm for m ∼ 10−5 GeV.
As a final note, we mention that obtaining the results of this section through an explicit calcu-

lation, as done in Sec. 3, would not be a possible task, since the propagators would be much more 
involved, and the resulting integrals would result too complicated to be calculated analytically. 
The results we present here, however, are founded on the explicit results obtained in the previous 
section for the particular case, as well as the application of the image method, which has been 
extensively discussed in a similar setting in [81].

5. Conclusions and final remarks

In this paper we have studied some aspects of the nonbirefringent CPT-even gauge sector of 
the SME near a semi-transparent mirror. We considered a model where the Lorentz symmetry 
breaking is caused by a single background vector vμ and obtained perturbative results up to 
second order in this parameter.

We computed the modified Lorentz violating propagator for the gauge field due to presence 
of the mirror and calculated the interaction energy, as well as the interaction force, between the 
mirror and a static point-like charge. In the limiting case of perfect mirrors, we recovered the 
interaction found via the image method.

We showed that when the charge is placed in the vicinity of the mirror, a spontaneous torque 
emerges on this system due to the orientation of the mirror with respect to the LV background 
vector. This torque is a new effect with no counterpart in Maxwell electrodynamics in the pres-
ence of a semi-transparent mirror. We also showed that the connection between the massless 
scalar field in the presence of a Dirichlet plane and the gauge field in the presence of a perfect 
conductor remains when we have the corresponding Lorentz violating terms in both theories.

Then, we used the image method to generalize our results for a more general Lorentz violating 
KF coefficient. We were able to obtain some estimates for the physical effects that it can induce 
in the interaction of a point-like charge and a mirror.

As a possible future study, one interesting point would be the inclusion of the CPT-odd photon 

sector of the SME, in the presence of semi-transparent boundaries [92].
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