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In this paper we examine the thermal effects of the vacuum Cherenkov radiation in a Lorentz- and 
CPT-violating electrodynamics. We compute the thermal contribution to the Cherenkov radiation rate 
within the Thermofield Dynamics approach. Since the model under consideration possesses a consistent 
canonical quantization and also fulfills the physical constraints in order to this vacuum process to 
happen, it is a perfect candidate to implement the study at finite temperature. We evaluate in details the 
instantaneous rate of energy loss for a charge, and show that the radiation rate is significantly modified 
at very high temperatures. Intriguingly, we further observe that when the temperature goes to infinity 
the radiation rate goes to zero even if the process is kinematically allowed.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Models involving Lorentz violation have reached an important milestone in recent years due to its systematic development and to 
the increasing number of precision tests they have been subject [1,2]. A richer context offering valuable prospects about departures from 
Lorentz symmetry, and making contact with the so-called Physics Beyond the Standard Model, is the anomalous decay processes [3]. Since 
they are affected in unexpected ways by Lorentz violation, it might happen that forbidden processes can occur in certain regions of the 
parameter space [1,4].

In this scenario, models involving instabilities of photons in vacuum have caught interest in recent years because sufficiently energetic 
photon (usually from gamma-ray bursts) may decay as a manifestation of Lorentz violation [5–7]. These instabilities of highly energetic 
particles are, in general, related to manifestations of Lorentz violation. A phenomenologically important anomalous decay process, in the 
framework of Lorentz violating photons, is the emission of vacuum Cherenkov radiation, a significant energy loss process for high-energy 
particles [8–10].

Many aspects about the possibility of vacuum Cherenkov radiation by Lorentz violating effects have been extensively discussed in the 
framework of the Standard-Model Extension (SME), within the classical approach to electromagnetic particle radiation [14–18], as well 
as in the field theory [9,10,19,20] and also in the Lifshitz-like electrodynamics [21]. However, to the best of our knowledge no study 
of vacuum Cherenkov radiation has been performed in the presence of a thermal bath. Since it is well known that physical systems 
behavior can drastically change due to the presence of thermal effects, one can naturally ask in this context: can temperature effects 
change significantly the emission of Cherenkov radiation in vacuum, by enhancing the radiation rate or even by prohibiting it to happen? 
In order to address these and other questions we will approach the vacuum Cherenkov radiation in terms of the Thermofield Dynamics 
formalism.

Along Matsubara’s imaginary time formalism and Schwinger-Keldysh closed time path method [22–24], the thermofield dynamics 
formalism [25–28] is one of the most important approaches to describe finite temperature field theory. The key feature of the thermofield 
dynamics method is that the Fock space is doubled, then you have a new set of operators, designed tilde operators, acting on the second 
Fock space, tilde space. Physically speaking, the second Fock space is interpreted as a heat bath that ensures the dynamical system to 
stay in equilibrium. In addition to the duplicated space, another fundamental element of this formalism is the Bogoliubov transformation. 
This transformation consists of a rotation between two spaces, original and tilde, which introduces the thermal effects. On the algebraic 
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aspect, the most appealing advantage of the thermofield dynamics method is that you can carry out analysis and calculations of scattering 
amplitudes and decay processes exactly as in the case of T = 0 field theory.

Hence, since finite temperature effects have profound implications in the study of high energy physics, we will examine the behavior 
of the vacuum Cherenkov radiation within a well known CPT- and Lorentz violating electrodynamics in the presence of a heat bath. We 
start Sec. 2 by reviewing the main aspects and definition of the CPT-violating electrodynamics, where the fermionic sector is the standard 
Dirac Lagrangian, while the photon sector is modified by terms belonging to the minimal sector of the SME. Moreover, we establish 
the modified dispersion relations and polarization states for the photon field. We discuss in Sec. 3 the features of the vacuum process 
e− → γ + e− at finite temperature. First, we present in details the calculation of the transition amplitude at finite temperature related 
with the vacuum Cherenkov decay within the thermofield dynamics framework. Furthermore, we compute the rate of radiated energy at 
the high-temperature regime and analyze how the thermal effect changes the T = 0 results. In particular, we discuss how the energy of 
the thermal bath can prohibit the Cherenkov decay to happen even if it is kinematically allowed. In Sec. 4 we summarize the results, and 
present our final remarks.

2. CPT-violating electrodynamics

It is well known that ordinary Cherenkov radiation can only occur for particles propagating in a medium, since a Lorentz-invariant 
vacuum prevents it by energy-momentum conservation [11,12]. However, some Lorentz violating scenarios provide sufficient instabilities 
so that particles can radiate through the Cherenkov process even in vacuum [8,13].

In this context, we choose to conduct our analysis at finite temperature in a well-behaved model where this vacuum decay process 
is known to happen at zero temperature. Moreover, we focus in modifying only the radiation sector with a minimal deformation and 
preserving the matter dynamics. Hence, we shall review in this section the main aspects involving the following Lorentz- and CPT-violating 
Lagrangian density [19]

L = Lψ +LA, (1)

with the standard fermionic field Lagrangian

Lψ = ψ̄
(
i/∂ − ie /A + m

)
ψ (2)

and

LA = −1

4
Fμν F μν + 1

2
kκ

A F εκλμν Aλ F μν + 1

2
m2

γ Aμ Aμ − 1

2ξ
(∂μ Aμ)2 (3)

is the photon Lagrangian that belongs to the minimal sector of the SME. Here kκ
A F is an arbitrary fixed background vector, mγ is the 

photon mass and ξ is a gauge parameter.
There are a number of well known studies of the vacuum Cherenkov radiation for the model (3) for the case of spacelike kκ

A F [8,10]
and also for purely timelike kκ

A F [19]. We shall focus our analysis at finite temperature for the timelike case, and present some remarks 
about the spacelike model.

It is important to emphasize that the presence of the photon’s mass mγ in (3) is related with the fact that for timelike kκ
A F the 

photon’s dispersion relation is tachyonic (leading to an unstable theory), and this (small) mass term circumvents this problem [29,19]. It 
is important to stress that this mechanism does not violate any experimental observation [19]. Hence, from the field equations the full 
dispersion relation for the photon is cast as(

p2 − ξm2
γ

)(
p2 − m2

γ

)[(
p2 − m2

γ

)2 + 4
(

k2
A F p2 − (kA F · p)2

)]
= 0. (4)

From this expression we can immediately determine the polarization states ελ
(α)(�p), which we assume to depend on the spacelike three-

momentum. The first ones we consider are

ε(0)μ
(�p)= N0 pμ, ε(3)μ

(�p)= N3

(
kμ

A F − (p.kA F )

m2
γ

pμ

)
, (5)

where N0,3 are normalization constants, and we have assumed mγ > 0. Now, under the consideration that kμ
A F is timelike (�kA F = 0 and 

k0
A F > 0), the modified modes are given by

ω
(±)2
p = ∣∣�p∣∣2 + μ2±, (6)

where we have defined

μ2± = m2
γ ± 2k0

A F

∣∣�p∣∣ . (7)

We can observe from eq. (6) that in order to always have ω(±)2
p > 0 it is necessary that mγ ≥ k0

A F (see that problems can arise when 
mγ ∼ k0

A F ). One solution to eq. (6) reads

ε(±)
(�p)= N±

⎛⎜⎜⎝
0

p1 p2 ∓ ip3
∣∣�p∣∣

−p2
1 − p2

3
p2 p3 ∓ ip1

∣∣�p∣∣
⎞⎟⎟⎠ , (8)
2



R. Bufalo and A.F. Santos Physics Letters B 832 (2022) 137231
where N± are normalization constants, and that kA F · kA F > 0 and �kA F = 0. These physical modes ε(±) shown in eq. (8) are in general 
spacelike and exhibit birefringent behavior (crucial for the vacuum radiation to occur, see discussion below).

As a matter of fact, the dynamical constraint for the Cherenkov radiation to happens requires that the fermion group velocity v g should 
be greater than the photon phase velocity vph for some values of the three-momentum in medium materials [11], but also for Lorentz-
violating vacua [14–16]. This can only be achieved in this model by the state ε(−) , because that for sufficiently large three-momentum the 
photon four-momentum is spacelike (see eq. (6)) and therefore vph is subluminal, satisfying the above criteria.

Before proceeding to the evaluation of the thermal contribution to the Cherenkov radiation rate we shall review in the next section 
some important aspects of the thermofield dynamics formalism useful for our development.

3. Cherenkov process at finite temperature

The quantum decay process related with the vacuum Cherenkov radiation is described by

e−(q, si) → e−(q′, λ) + γ (p, s f ), (9)

which corresponds to an initial particle with momentum and spin (q, si), decays into a particle (q′, s f ) and emits a Cherenkov radiation 
(p, λ), where (si, s f ) are the spin of the initial and final particles, respectively, while λ is the polarization of the radiation.

Since our main objective is to evaluate the energy loss associated with the vacuum Cherenkov scattering at finite temperature, let us 
review some general results necessary for the development of this analysis [9,10,21]. The energy-momentum loss of a Lorentz invariant 
charged particle per unit of time is equal to the photon four-momentum p weighted by the scattering amplitude squared and integrated 
over the phase space,

dqμ

dt
=
∫

Dp |M|2 pμ (10)

where Dp is the phase-space invariant measure. The rate of total radiated energy is obtained from the time component of the above 
expression.

Thus, in the leading order at the CPT- and Lorentz-violating parameter k0
A F , the rate of radiated energy can be expressed as

W ≈ −q̇0 =
∫

p0d�, (11)

where d� is the differential decay rate for the given process and can readily be obtained [30]

d�(β) = (2π)4 1

2q0
4m2 d3 �p

(2π)3(p0)

d3 �q′
(2π)3(q′0)

δ4(q′ + p − q)
1

2

∑
spins

|M(β)|2. (12)

Here the normalization factors are chosen accordingly for bosonic and fermionic fields, and we have averaged initial spins and summer 
over final spins. Observe in eq. (12) that the temperature effects are solely contained in the transition amplitude M(β).

Since we wish to evaluate the radiation rate through the differential decay rate (see eq. (11)), the main object to compute in this 
analysis is the transition amplitude related with the vacuum decay process e− → e− + γ . We shall review, in the next section, the main 
aspects of the thermofield dynamics approach for the evaluation of the transition amplitude [26–28].

3.1. Thermofield dynamics

We formally define the transition amplitude at finite temperature M(β) as

M(β) = 〈 f , β| Ŝ |i, β〉, (13)

where the Ŝ-matrix is given

Ŝ =
∞∑

n=0

(−i)n

n!
∫

dx1dx2 · · ·dxnτ
[
L̂I (x1)L̂I (x2) · · · L̂I (xn)

]
, (14)

with τ being the time ordering operator and

L̂I (x) = LI (x) − L̃I (x) (15)

describes the Lagrangian interaction part in the doubled notation of the TFD formalism. In this approach, the thermal states of the process 
e−(q) → e−(q′) + γ (p) are defined as

|i, β〉 = c†
q,si

(β)|0(β)〉,
| f , β〉 =a†

p(β)c†
q′,s f

(β)|0(β)〉, (16)

with c†
q(β) and a†

p(β) being the creation operators for fermions and bosons, respectively.

At the tree level, the Ŝ-matrix (14) becomes

Ŝ = −i

∫
d4x

(
LI (x) − L̃I (x)

)
, (17)
3
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thus the transition amplitude is given as

M(β) = −i

∫
d4x

〈
0(β)

∣∣∣ap(β)cq′,s f (β)
(
LI (x) − L̃I (x)

)
c†

q,si
(β)

∣∣∣0(β)
〉
. (18)

One can read from the Lagrangian density eq. (2) the photon-matter coupling

L(x) = −ieψ̄γ μψ Aμ, (19)

L̃(x) = −ie ˜̄ψγ μψ̃ Ãμ. (20)

Hence, the amplitude (18) can be written in a simple fashion as

M(β) = −e

∫
d4xM1(β)M2(β) + e

∫
d4xM̃1(β)M̃2(β), (21)

with the definitions

M1(β) =
〈
0(β)

∣∣∣ψ(x)c†
q,si

(β)

∣∣∣0(β)
〉
, (22)

M2(β) =
〈
0(β)

∣∣∣ap(β)cq′,s f (β)ψ̄(x)γ μ Aμ(x)
∣∣∣0(β)

〉
, (23)

M̃1(β) =
〈
0(β)

∣∣∣˜̄ψ(x)c†
q,si

(β)

∣∣∣0(β)
〉
, (24)

M̃2(β) =
〈
0(β)

∣∣∣ap(β)cq′,s f (β)ψ̃(x)γ μ Ãμ(x)
∣∣∣0(β)

〉
. (25)

It is interesting to remark that eq. (21) displays explicitly the doubleness of the Fock space related with the TFD approach.
In order to calculate these matrix elements separately, we shall consider the (doubled) fermion field written as

ψ(x) =
∑

s

∫
d3 p

(2π)3/2
Np

[
cp,sus(p)e−ipx + d†

p,s vs(p)eipx
]
, (26)

ψ̃(x) =
∑

s

∫
d3 p

(2π)3/2
Np

[
c̃p,sũs(p)eipx + d̃†

p,s ṽ s(p)e−ipx
]
, (27)

where Np is the normalization constant and uα(p) and vα(p) are Dirac spinors, and we have the (tilde) conjugation operation ũ(p, s) =
u†(p, s) [26–28]. In addition, the photon field in terms of Fourier modes is given by

Aμ(x) =
∫

d3k

(2π)3

∑
λ

1

2pλ
0

(
aλ(k)ε

(λ)
μ (k)e−ik·x + aλ†(k)ε

∗(λ)
μ (k)eik·x) , (28)

with ε(λ)
μ (k) being the polarization vector of the physical polarization states.

Using the fermionic field, the first matrix element eq. (22) becomes

M1(β) =
∑

r

∫
d3 p

(2π)3/2
Np

〈
0(β)

∣∣∣cp,rc†
q,si

(β)ur(p)e−ipx
∣∣∣0(β)

〉
. (29)

We observe that for fermions, with the operators c†
p,s and cp,s being the creation and annihilation operators, respectively, the Bogoliubov 

transformations lead to the relations (analogous relations hold for d and d†) [26–28]

cp,s = cos θp cp,s(β) + i sin θp c̃†
p,s(β), (30)

c†
p,s = cos θp c†

p,s(β) − i sin θp c̃p,s(β), (31)

c̃p,s = cos θp c̃p,s(β) − i sin θp c†
p,s(β), (32)

c̃†
p,s = cos θp c̃†

p,s(β) + i sin θp cp,s(β), (33)

with

sin2 θp = 1/(1 + eβp0) ≡ nF (p),

cos θp = eβp0/2 sin θp, (34)

where nF (p) corresponds to the Fermi-Dirac distribution, and we have also assumed, by simplicity, the chemical potential to be zero. The 
(equal time) anti-commutation relations for the creation and annihilation fermionic operators at finite temperature are given by{

cp,s(β), c†
q,r(β)

}
= δrsδ(�p − �q),

{
c̃p,s(β), c̃†

q,r(β)
}

= δrsδ(�p − �q), (35)

and other commutation relations are null. On the other hand, for bosons, the Bogoliubov transformations are [26–28]
4



R. Bufalo and A.F. Santos Physics Letters B 832 (2022) 137231
ap = cosh θp ap(β) + sinh θp ã†
p(β), (36)

a†
p = cosh θp a†

p(β) + sinh θp ãp(β), (37)

ãp = cosh θp ãp(β) + sinh θp a†
p(β), (38)

ã†
p = cosh θp ã†

p(β) + sinh θp ap(β), (39)

with

sinh2 θp = 1/(eβp0 − 1) ≡ nB(p)

cosh θp = eβp0/2 sinh θp, (40)

where nB(p) corresponds to the Bose-Einstein distribution. The creation and annihilation operators satisfy commutation relations[
ap(β),a†

q(β)
]

= δ(�p − �q),
[
ãp(β), ã†

q(β)
]

= δ(�k − �p), (41)

and other commutation relations are null.
Applying the Bogoliubov transformation (30) for cp,s in the matrix element M1(β) (29), we get

M1(β) =
∑

r

∫
d3 p

(2π)3/2
Np

〈
0(β)

∣∣∣cos θpcp,r(β)c†
q,si

(β)ur(p)e−ipx
∣∣∣0(β)

〉
. (42)

We can solve eq. (42) using the anti-commutation relation (35) and performing the momentum integration, so that we obtain

M1(β) = Nq cos θqusi (q)e−iqx. (43)

Moreover, we can evaluate the matrix element (23) by substituting the fermion and photon fields

M2(β) =
〈
0(β)

∣∣∣aλ
p(β)cq′,s f (β)

∑
r

∫
d3k

(2π)3/2 Nk

[
c†

k,r ūr(k)eikx + dk,s v̄ s(k)e−ikx
]
γ μ

×
∫

d3k′

(2π)3

∑
λ′

1

2kλ
0

(
aλ′

(k′)ε(λ′)
μ (k′)e−ik′ ·x + aλ′†(k′)ε∗(λ′)

μ (k′)eik′·x) ∣∣∣0(β)
〉
. (44)

This expression can be solved by applying the Bogoliubov transformations for fermion and bosons and using their respective commutation 
relations, resulting in the following expression

M2(β) =
∫

d3k

(2π)3/2
Nk

∫
d3k′

(2π)3

1

2k′λ
0

〈
0(β)

∣∣∣δ(�k − �q′) cos θkūs f (k)eikxγ με
∗(λ)
μ (k′)δ(�k′ − �p) cosh θk′e−ik′x

∣∣∣0(β)
〉
. (45)

At last, performing the integrals over the momentum variables k and k′ we find

M2(β) = Nq′

2pλ
0

cos θq′ cosh θpūs f (q
′)γ με

∗(λ)
μ (p)ei(q′+p)x. (46)

The remaining parts of the amplitude (21) can be readily evaluated by performing similar steps as those presented above. Hence, the 
tilde parts are found as

M̃1(β) = iNq sin θqũsi (q)e−iqx (47)

and

M̃2(β) = −i
Nq′

2pλ
0

sin θq′ sinh θpũs f (q
′)γ με

∗(λ)
μ (p)ei(q′+p)x. (48)

Finally, in terms of the results eqs. (43), (46), (47) and (48), the transition amplitude (21) becomes

M(β) = − e

∫
d4x ei(q′+p−q)x Nq Nq′

2pλ
0

cos θq cos θq′ cosh θp usi (q)ūs f (q
′)γ με

∗(λ)
μ (p)

+ e

∫
d4x ei(q′+p−q)x Nq Nq′

2pλ
0

sin θq sin θq′ sinh θp ˜̄usi (q)ũs f (q
′)γ με

∗(λ)
μ (p). (49)

The integration over x expresses overall four-momentum conservation∫
d4xe−i(q−q′−p)x = δ4(q − q′ − p), (50)

which will be omitted in the calculations that follow. Hence, the expression (49) is simply written as follows

M(β) = −eNq Nq′

2pλ
γ με

∗(λ)
μ (p)

[
cos θq cos θq′ cosh θp − sin θq sin θq′ sinh θp

]
us(q)ūs(q

′), (51)

0

5
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where we have made use of the tilde conjugation operation mentioned before. One can observe that the expression (51) has the same 
structure of the usual one at T = 0, and that the temperature effects are contained in the trigonometric factors. These temperature factors 
will be easily expressed in terms of the Fermi-Dirac or Bose-Einstein distributions in the following analysis.

In order to calculate the differential decay rate eq. (12), the main quantity that must be calculated is the modulus squared of the 
transition amplitude,

1

2

∑
spins

|M(β)|2 = 1

2

∑
spins

M(β)M∗(β). (52)

Moreover, in terms of the result (51) and also the completeness relation 
∑

r ur(p)ūr(p) = γ .p+m
2m , the last equation takes the form

1

2

∑
spins

|M(β)|2 = e2

8

m2

ω
(−)2
p Eq Eq−p

tr

[
γ .q + m

2m
γ με

∗(−)
μ (p)

γ .(q − p) + m

2m
γ νε

(−)
ν (p)

]
× [

cos θq cos θq′ cosh θp − sin θq sin θq′ sinh θp
]2

, (53)

where we have used Np = √
m/E p with the fermionic dispersion relation E p = ±√p2 + m2, also we are explicitly using that only the 

polarization state ε(−) eq. (8) provides the necessary condition to this Cherenkov decay process to happen.
Furthermore, we can express explicitly the thermal effects in (53) by considering the relations (34) and (40), which allows to obtain[

cos θq cos θq′ cosh θp − sin θq sin θq′ sinh θp
]2 = (1 − nF (q))

(
1 − nF (q′)

)(
1 − e−βω

(−)
p

)
. (54)

Hence, using this result into (53) and also evaluating the trace over the γ matrices, we arrive at

1

2

∑
spins

|M(β)|2 = e2

8

1

ω
(−)2
p Eq Eq−p

(
2qμqν + qν pμ − qμpν + 1

2
ημνm2−

)
ε

∗(−)
μ (p)ε

(−)
ν (p)

×
(

1

1 + e−βEq

)(
1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
. (55)

This expression can be worked out into its final form. Thus, after some algebraic manipulations, using the explicit form for the state 
ε(−)(p) (8) (as well as its normalization condition and orthogonality pμε

(λ)
μ (p) = 0), we are able to rewrite it as

1

2

∑
spins

|M(β)|2 = e2

8

1

ω
(−)2
p Eq Eq−p

(
|�q|2 sin2 θ − 1

2
m2

γ + k0
A F |�p|

)

×
(

1

1 + e−βEq

)(
1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
, (56)

here θ is the angle between �q and �p.
With this development of the transition amplitude (56) we conclude our analysis in regard of describing the temperature effects within 

the thermofield dynamics. The remaining part of the analysis consists in evaluating explicitly the power radiated by the charged particle 
in terms of (11) and thus determine the thermal effects of the vacuum Cherenkov radiation rate.

3.2. Radiation rate

Now that we have computed the transition amplitude (and its modulus squared) related with the Cherenkov decay in a thermal bath 
within the thermofield dynamics, we can finally evaluate the radiation emitted by the charged particle. It is worth mention that we shall 
focus our attention in the instantaneous rate of emission, in which the charge emits a single energetic photon, drops below the Cherenkov 
threshold, and stops emitting [15].

Furthermore, by calculation purposes and to make the reaction kinematics visible, it is convenient to express the integration over the 
variables q′ in (12) as∫

d3q′

2q′
0

=
∫

d4q′δ
(
(q′

0)
2 − E2

q′
)

�
(
q′

0

)
. (57)

Hence, the total radiation rate at finite temperature W (β) eq. (11), using the above identity, is cast conveniently as

W (β) = m2

4π2

∫
d3 p

Eq
δ
(
(q − p)2 − m2

)
�(q0 − p0)

1

2

∑
spins

|M(β)|2. (58)

In this case, the energy-momentum conservation for the e− → e− +γ decay (shown in the delta function of eq. (58)), implies the following 
relation

m2
γ − 2k0

A F

∣∣�p∣∣− 2
√∣∣�p∣∣2 + m2

γ − 2k0
A F

∣∣�p∣∣√∣∣�q∣∣2 + m2 + 2
∣∣�q∣∣ ∣∣�p∣∣ cos θ = 0. (59)

One can immediately recognize that the removal of the CPT- and Lorentz-violating effects, through the limit k0
A F → 0, implies cos θ = 1, 

which results in a vanishing radiation rate for the Lorentz invariant QED.
6
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The energy conservation (59) can be used to arrive at the radiation condition for the vacuum decay process. Hence, from the relation 
(59) we observe that for finite values of the parameters 

(
k0

A F ,m2
γ ,m2

)
�= 0 there is a region in the phase space where cos θ < 1, even in 

vacuum. This radiation condition corresponds to the availability of a physical phase space for the anomalous decay to happen, and it also 
corroborates the kinetic condition discussed above.

Furthermore, the energy balance condition requires that the allowed values for the momentum p are only those such that the relation 
(59) is satisfied for a given value of θ . This observation corresponds to the fact that the integration over θ restricts the region of integration 
over p in (58). Hence, we conclude that the condition cos θ ∈ [−1, 1] restricts the magnitude of the photon momentum p to the values

p± =
k0

A F E2
q + 1

2 m2
γ

∣∣�q∣∣− 1
2 k0

A F m2
γ ± Eq

√
(k0

A F Eq)2 − k0
A F

∣∣�q∣∣m2
γ − m2

γ m2 + 1
4 m4

γ

m2 + 2
∣∣�q∣∣k0

A F − (
k0

A F

)2
. (60)

It is interesting to observe that the positivity of the square root present in (60) implies the condition1

∣∣�q∣∣≥ m2
γ + 2m

√
m2

γ − (
k0

A F

)2

2k0
A F

≡ qmin. (61)

This bound is extremely important because it corresponds to the momentum threshold (i.e. q > qmin) for which the incoming fermion 
starts to radiate. Actually, for smaller values, the radiation rate is strictly zero.

With this development, we can finally evaluate the expression (58). Hence, making use of spherical coordinates, the total radiation rate 
(58) becomes

W (β) = e2m2

32π

1∣∣�q∣∣ E2
q

p+∫
p−

p dp

ω
(−)2
p Eq−p

1∫
−1

d cos θ δ

(
cos θ − 2k0

A F

∣∣�p∣∣+ 2ω
(−)
p Eq − m2

γ

2
∣∣�q∣∣ ∣∣�p∣∣

)

×
(

|�q|2 sin2 θ − 1

2
m2

γ + k0
A F |�p|

)(
1

1 + e−βEq

)(
1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
(62)

and by performing the angular integration in θ , we obtain

W (β) = e2m2

32π

1∣∣�q∣∣ E2
q

(
1

1 + e−βEq

) p+∫
p−

dp

p ω
(−)2
p Eq−p

×
(

q2 p2 −
(

k0
A F p + ω

(−)
p Eq − 1

2
m2

γ

)2

− 1

2
m2

γ p2 + k0
A F p3

)

×
(

1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
, (63)

where we have defined Eq−p =
√

q2 + p2 − 2k0
A F

∣∣�p∣∣− 2ω
(−)
p Eq + m2

γ + m2. One straightforward result seen from (63) is that at the zero 
temperature limit T → 0 (β → ∞) the thermal factors go to(

1

1 + e−βEq

)(
1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
→ 1, (64)

which corresponds to the standard result at zero temperature. On the other hand, we observe that the vacuum Cherenkov radiation is 
modified at very high temperatures. Interestingly, when the temperature goes to infinity, i.e. T → ∞ (β → 0) in (63) the thermal factors 
now behave as(

1

1 + e−βEq

)(
1

1 + e−βEq−p

)(
1 − e−βω

(−)
p

)
→ 0. (65)

Therefore, there is a (threshold) finite temperature βth where the vacuum Cherenkov decay disappears, where the charge simply stops 
radiating. This condition can be interpreted as the energy of the thermal bath prohibits the decay to happen even if it is kinematically 
allowed.2

The integration of (63) is not longer an easy task, as it happens in the zero temperature regime, due to the presence of the thermal 
distributions. However, we can evaluate the radiation rate at the high-temperature limit, i.e. βE � 1, and also at some asymptotic regimes 
in |�q| which lead to

1 The other constraint 
∣∣�q∣∣ ≤ m2

γ −2m
√

m2
γ −(k0

A F

)2

k0
A F

has been ignored, since it becomes negative under the consideration that m � mγ > k0
A F , this follows because mγ <

10−27 GeV and k0
A F � 10−43 GeV [19].

2 There are some cases even at zero temperature that the radiation rate is vanishing even then it is allowed by Lorentz-violating kinematics [13].
7
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W (β) ≈

⎧⎪⎪⎨⎪⎪⎩
e2m2

64π

β2k0
A F

(
1+ln

(
m2

2m2
γ

))
q , q > m2

k0
A F

e2

128π

β
(
2k0

A F +3m
)
mγ

q , qmin < q < m2

k0
A F

.

(66)

We can immediately observe that both regimes give a temperature dependent radiation rate: the higher energy rate (at q > m2

k0
A F

) decreases 

faster as the temperature increases due to the β2 factor, until it goes to zero at the threshold temperature βth. It is curious to notice 
that the thermal effects have changed the momentum q dependence of the radiation rate: we have found that at finite temperature both 
behave as 1/q, while at zero temperature the rate at the low-energy and high-energy regime have quadratic and linear dependence on q, 
respectively [19].

One last remark that we would like to present is about the case of spacelike kμ
A F . Actually, the main differences of the present 

analysis with the spacelike kμ
A F case are the dispersion relations and related polarization states. Obviously, the radiation rate at the high-

temperature limit will be significantly modified, but our main conclusion still holds: there is a finite temperature where the particle 
simply stops emitting radiation.

Hence, we believe that the present analysis we found interesting results and conclusions, elucidating some aspects of the anomalous 
decays at finite temperature, and that the spacelike kμ

A F case would not provide any other physically relevant conclusion in addition to 
those discussed here.

4. Final remarks

In this work we have studied the emission of the vacuum Cherenkov radiation at finite temperature. Since anomalous decay processes 
possess unique signature of Lorentz violation, they are a suitable scenario to study phenomena beyond the standard model. In particular, 
it is expected that the behavior of these novel phenomena can drastically change in the presence of a heat bath: one can naively expect 
that it can enhance the effects or even prohibits them to happen. Hence, we have examined the rate of radiated energy from a charged 
particle through vacuum Cherenkov within the thermofield dynamics approach.

In our analysis of the radiation emission at finite temperature we have considered a model of the minimal sector of the SME, where 
this decay process is known to happen at T = 0, which corresponds to the CPT- and Lorentz-violating photon Lagrangian. We have revised 
the main aspects of this model, focusing in obtain its dispersion relation and the respective polarization vectors. In particular, only one 
mode ω(−)

p and ε(−)
μ of the photon field is responsible to engender instabilities in its propagation such that its phase velocity is subluminal, 

and thus satisfying the kinematic constraint related with the radiation emission.
Since the thermofield dynamics formalism allows to compute transition amplitudes exactly as in the T = 0 field theory, by doubling 

the set of operators and its respective Fock space (where the second set acts like a heat bath), we have explicitly evaluated the scattering 
matrix element related with the process e− → e− + γ , showing in details how the temperature effects are incorporated. After some 
algebraic steps, we arrived at the expression of the radiation rate (63). Due to the presence of the thermal distributions the remaining 
integration does not possess a closed form, hence we evaluate it at some limits of interest:

• In the high-temperature regime βE � 1 we have found that the thermal effects have changed the momentum q dependence of the 
radiation rate (in comparison with the zero temperature case);

• The higher energy expression (at q > m2

k0
A F

) is more sensitive to the temperature effects, due to the presence of the β2 factor, decreasing 
faster as the temperature increases, until it goes to zero at the threshold temperature βth;

• Interestingly, one can straightforwardly observe from (63) that at the limit T → ∞ (β → 0), the radiation rate expression goes to zero: 
this can physically be interpreted as if the energy of the thermal bath (at some temperature threshold βth) prohibits the decay to 
happen even if it is kinematically allowed.

In summary, we have explicitly shown how thermal effects can change the outcome of physical effects in an anomalous decay related 
with physics beyond the standard model. Certainly, there are a number of anomalous phenomena that can have their known behavior 
modified by the presence of a heat bath. Since tiny changes in electromagnetic wave propagation can be scrutinized from TeV photons 
data (from extremely energetic astronomical sources), presenting itself as a phenomenologically rich environment, we shall focus in this 
sector to examine further examples where the temperature can modify significantly the dynamics of the model.
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