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ABSTRACT 

 

Soil characterization provides a solid support for decision-making related to geochemical 

mapping, environmental monitoring, and food production. For that, quick, environmentally 

friendly, non-invasive, cost-effective, and reliable methods for soil chemical properties 

assessment are desirable. As such, this dissertation used proximal sensors like portable X-ray 

fluorescence (pXRF) spectrometry and Nix ProTM color sensor data to accurately predict soil 

properties in Brazil. The objectives were to: i) predict soil fertility properties in Brazilian 

Coastal Plains biome; ii) predict soil organic matter content via proximal sensors (pXRF and 

Nix ProTM); iii) predict elementary soil contents via USEPA 3051a through elementary data 

delivered by pXRF, evaluating samples preparation methods (field, post-field, air-dried fine 

earth, macerated, and macerated and sieved) and linear and non-linear regression methods. 

Four regression models - simple linear regression (SLR), stepwise multiple linear regressions 

(SMLR), support vector machine (SVM) with Linear Kernel and random forest (RF) - were 

tested for prediction of different soil agronomic attributes and assessment geochemical. The 

soil samples were collected in both surface and subsurface horizons in profiles of different 

soil classes, under several land uses, management practices, sampling sites, and with varying 

parent materials. Prediction models were built for surface, and subsurface horizons separately 

and combined for the following soil agronomic properties: pH (H2O), sum of bases (SB); 

cation exchange capacity at pH 7.0 (CEC), and base saturation (BS) (first chapter). For soil 

organic matter (SOM) (second chapter) and 28 elements (third and fourth chapters) samples 

from surface and subsurface horizons were combined for building the prediction models. 

Samples were scanned with the Nix ProTM in the laboratory under both dry and moist 

conditions, while with pXRF only in dry condition also in laboratory. Samples were randomly 

separated into 70% for training and 30% for testing the prediction models. The performance 

of the prediction models was evaluated by the metrics: R2, root mean square error (RMSE), 

normalized RMSE (NRMSE), mean absolute error (MAE), and residual prediction deviation 

(RPD). For soil agronomic properties, the results showed that SB was predicted with high 

accuracy (R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE = 1.17 and RPD = 2.3) using SVM 

models via pXRF data. Conversely, SOM was predicted with high accuracy using combined 

data from pXRF and Nix Pro™ (in moist soil samples) (R2 = 0.73, RMSE = 1.09% and RPD 

= 2.00) via RF models. Prediction of elemental contents commonly determined by the 

USEPA 3051a method via pXRF data after scanning samples treated as air-dried fine earth 

(<2 mm) is indicated. Since, it can provide better predictions compared to other sample 

preparation procedures indicated above. Machine learning algorithms (SVM and RF) 

performed better than SLR and SMLR for the prediction of Al, Ca, Cr, Cu, Fe, Mn, Pb, Sr, Ti, 

V, Zn, Zr, Ba, Bi, Cd, Ce, Co, Mg and Tl in tropical soils, whose R² and RPD values ranged 

from 0.52 to 0.94 and 1.43 to 3.62, respectively, as well as the lowest values of RMSE and 

NRMSE values (0.28 to 0.70 mg kg-1). The results reported in this dissertation represent 

alternative methods for reducing costs and time needed for assessing such soil properties data, 

supporting agronomic and environmental decision making. 

 

Keywords: chemical attributes modeling. proximal sensors. machine learning algorithms. soil 

analysis. soil fertility. tropical soils. pedology. geochemistry. 

 

 

 

 



 

 

RESUMO 

 

A caracterização do solo fornece um suporte sólido para a tomada de decisões relacionadas ao 

mapeamento geoquímico, monitoramento ambiental e produção de alimentos. Para isso, 

métodos rápidos, ecologicamente corretos, não invasivos, econômicos e confiáveis para 

avaliação das propriedades químicas do solo são desejáveis. Como tal, esta tese utilizou 

sensores proximais como espectrometria de fluorescência de raios X portátil (pXRF) e dados 

do sensor de cor Nix ProTM para prever de forma pontual as propriedades do solo no Brasil. 

Especificamente, os objetivos foram: i) predizer as propriedades de fertilidade do solo no 

bioma Planície Costeira Brasileira; ii) predizer o teor de matéria orgânica do solo por meio de 

sensores proximal (pXRF e Nix ProTM); iii) predizer conteúdos elementares do solo via 

método USEPA 3051a através de dados elementares entregues por pXRF, avaliando métodos 

de preparação de amostras (e.g., campo, pós-campo, terra fina seca ao ar, macerado e 

macerado e peneirado) e métodos de regressão linear e não linear. Quatro modelos de 

regressão - simple linear regression (SLR), stepwise multiple linear regressions (SMLR), 

support vector machine (SVM) com Linear Kernel and random forest (RF) - foram testados 

para predição de diferentes atributos agronômicos do solo e avaliação geoquímica. As 

amostras de solo foram coletadas em horizontes superficiais e subsuperficiais em perfis de 

diferentes classes de solo, sob diversos usos da terra, práticas de manejo, locais de 

amostragem e com diferentes materiais de origem. Modelos de predição foram construídos 

para horizontes superficiais e subsuperficiais separadamente e combinados para as seguintes 

propriedades agronômicas do solo: pH (H2O), soma de bases (SB); capacidade de troca 

catiônica em pH 7,0 (CEC) e saturação por bases (BS) (primeiro capítulo). Para a matéria 

orgânica do solo (MOS) (segundo capítulo) e 28 elementos (terceiro e quarto capítulos) 

amostras de horizontes superficiais e subsuperficiais foram combinadas para construir os 

modelos de predição. As amostras foram escaneadas com o sensor Nix ProTM em laboratório 

sob a condições secas e úmidas, enquanto com pXRF apenas em condições secas também em 

laboratório. As amostras foram separadas aleatoriamente em 70% para treinamento e 30% 

para teste dos modelos de predição. O desempenho dos modelos de predição foi avaliado 

pelas métricas: R2, root mean square error (RMSE), normalized RMSE (NRMSE), mean 

absolute error (MAE) e residual prediction deviation (RPD). Para as propriedades 

agronômicas do solo, os resultados mostraram que a SB foi prevista com alta precisão (R2 = 

0,82, RMSE = 1,02 cmolc dm–3, MAE = 1,17 e RPD = 2,3) usando modelos SVM via dados 

de pXRF. Por outro lado, a MOS foi prevista com alta precisão usando dados combinados de 

pXRF e Nix Pro™ (em amostras de solo úmido) (R2 = 0,73, RMSE = 1,09% e RPD = 2,00) 

por meio de modelos de RF. A predição dos teores elementares comumente determinados 

pelo método USEPA 3051a via dados do pXRF após escaneamento de amostras tratadas 

como terra fina seca ao ar (<2 mm) é indicada. Uma vez que, pode fornecer as melhores 

predições em comparação com outros procedimentos de preparação de amostras indicas 

acima. Algoritmos de aprendizado de máquina (SVM e RF) tiveram um desempenho melhor 

que SLR e SMLR para a previsão de Al, Ca, Cr, Cu, Fe, Mn, Pb, Sr, Ti, V, Zn, Zr, Ba, Bi, Cd, 

Ce, Co, Mg e Tl em solos tropicais, cujos valores de R² e RPD variaram de 0,52 a 0,94 e 1,43 

a 3,62, respectivamente, assim como os menores valores de RMSE e NRMSE (0,28 a 0,70 mg 

kg-1). Os resultados relatados nesta tese representam métodos alternativos para redução de 

custos e tempo necessário para a avaliação desses dados de propriedades do solo, auxiliando 

na tomada de decisões agronômicas e ambientais. 

 

Palavras-Chave: modelagem de atributos químicos. sensores proximais. algoritmos de 

aprendizado de máquina. análise do solo. fertilidade do solo. solos tropicais. pedologia. 

geoquímica. 
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FIRST PART – GENERAL INTRODUCTION 
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1. GENERAL INTRODUCTION 

 

For decades, several laboratory methodologies with different levels of complexity 

have been applied in tropical soil analyses for characterization of soil attributes, adding 

decision-making (CHEN; MA, 1998; SILVA; NASCIMENTO; BIONDI, 2014; TEIXEIRA 

et al., 2017; WEINDORF; CHAKRABORTY, 2020). Such laboratory methodologies are 

essential and have great relevance in the scientific environment. Conversely, depending on the 

number of soil samples, these analyses may be time consuming and expensive, require 

chemical reagents and generate hazardous chemical residues that must be treated to prevent 

environmental and human hazards (BENEDET et al., 2021; NASCIMENTO; TENUTA 

FILHO, 2010; SILVA et al., 2021). 

 Currently, portable proximal sensors such as X-ray fluorescence (pXRF) spectrometry 

and the Nix ProTM color sensor are being increasingly adopted for multiple applications in soil 

science and other fields of study as reliable and innovative alternatives to the traditional 

approaches (KUANG et al., 2012; STIGLITZ et al., 2016; WEINDORF; BAKR; ZHU, 2014). 

These sensors are easy to use, portable, and deliver results very rapidly, while analyses are 

inexpensive, require minimal sample preparation and deliver accurate and reliable data, 

besides being environmentally friendly for uses both in the field (in situ) and in the laboratory 

(ex situ) (SILVA et al., 2021; STIGLITZ et al., 2016). Literature shows that these sensors 

(pXRF and Nix ProTM) coupled with other sensors (e.g., diffuse reflectance spectroscopy from 

visible to infrared wavelengths – Vis-NIR DRS) have the main purpose of complementing the 

traditional laboratory analyses of soils, towards the approach called "hybrid laboratory", and 

not replacing them permanently (DEMATTÊ et al., 2019; VISCARRA ROSSEL et al., 2011; 

SILVA et al., 2021). 

 Among the proximal sensors recently adopted by Soil Science community, pXRF is 

considered one of the most important and popular innovations of the last decade to 

characterize soils and other materials (e.g., parental material, sediments, plant tissues, organic 

compounds, and water) by quantifying their total elemental content (BORGES et al., 2020; 

FARIA et al., 2021; FERREIRA et al., 2021; MANCINI et al., 2019; PEARSON et al., 2016; 

RAVANSARI; WILSON; TIGHE, 2020). For this to happen, this equipment emits high 

energy X-rays that hit the atoms of the targeted material, displacing electrons from inner to 

outer orbits, forming a vacancy therein (empty space). In order to fill this vacancy, electrons 

move to the outer orbits releasing energy in the form of fluorescence (secondary X-rays). 

Since each element has a characteristic fluorescence along with its intensity, pXRF identifies 
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and quantifies various elements simultaneously (between Mg and U in the Periodic Table) 

with a wide range (ppm to %) (WEINDORF et al., 2014; SILVA et al., 2021). Thus, data 

provided by this sensor can be used to successfully estimate many soil properties under 

agronomic (LIU et al., 2021; TEIXEIRA et al., 2020), pedological (ACREE et al., 2020; 

STOCKMANN et al., 2016), environmental (BORGES et al., 2020; ROUILLON; TAYLOR, 

2016) and geochemical (O’ROURKE et al., 2016) approaches. 

 Unlike pXRF, studies with the Nix ProTM color sensor in soils are even more recent 

worldwide (past 5 years), but it is already being considered a promising and cost-effective 

approach for obtaining a reliable soil color assessment compared to conventional methods 

(e.g., high-cost colorimeters and Munsell Soil Color Charts), once the determination of color 

becomes less subjective (MANCINI et al., 2020; MORITSUKA et al., 2019; STIGLITZ et al., 

2016). This sensor is inexpensive, light-weighted, portable, equipped with a light-emitting 

diode (LED), extremely fast reading (1-2 seconds), can be connected to smartphones via 

Bluetooth®. It provides quantitative measurements of the light reflected from the samples in 

the 380 to 700 nm spectral range that is used to automatically calculate the soil color in 

various color systems (e.g., RGB, XYZ, CIELAB, CIELCH, and CMYK), which can be 

directly used for statistical analyses (STIGLITZ et al., 2016; STIGLITZ et al., 2017). Thus, in 

addition to the characterization of soil color, the data obtained by Nix Pro™ have been used 

to predict soil organic matter and/or soil organic carbon, as well as soil total nitrogen 

(MIKHAILOVA et al., 2017; STIGLITZ et al., 2017; MUKHOPADHYAY et al., 2020). 

With the advances of research, this sensor is already being used in the rapid and inexpensive 

assessment of total soil iron (JHA et al., 2021), as well as in the prediction of different soils 

orders and suborders in Brazilian tropical soils (ANDRADE et al., 2020). 

 Conversely, some factors can negatively influence the performance of these sensors 

and, therefore, deserve full attention before and during the analyses. Studies have reported 

that pXRF field data for many elements differ from those obtained under laboratory 

conditions, i.e, in air-dried fine earth (commonly used for scans with pXRF) (DIJAIR et al., 

2020; SILVA et al., 2018; STOCKMANN et al., 2016). This mainly happens due to 

differences in moisture, organic matter, heterogeneity, particle size distribution, and soil 

structure (RAVANSARI; WILSON; TIGHE, 2020; SILVA et al., 2018; SILVA et al., 2021). 

This may constrain the use of field data and little has been done aimed at evaluating the effect 

of different sample preparation conditions on the correspondence between pXRF and 

traditional laboratory methods for a large number of chemical elements, especially in tropical 

soils.  
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For Nix ProTM, soil color analyses are mainly influenced by the moisture content of 

the samples, which consequently affects the prediction models (ANDRADE et al., 2020; 

RAEESI et al., 2019; STIGLITZ et al., 2017). Conversely, Stiglitz et al. (2016) observed that 

moisture did not cause strong changes in color of temperate soils analyzed via Nix Pro™. 

Thus, there is a need to further investigate the influence of moisture on Nix Pro™ analyses of 

tropical soils to standardize the best moisture condition that favors reliable prediction of soil 

attributes related to color. Despite the potential applications of this new sensor, there are few 

studies exploring it in tropical countries, where some very weathered-leached soils, compared 

with soils from temperate regions, tend to present colors that do not reflect the SOM content. 

This is a consequence of the presence of Fe-oxide minerals in these soils, mainly containing 

hematite in great amounts, a mineral that presents high pigmenting power (RESENDE et al., 

2014). As such, further studies are required to assess the efficiency of this sensor under 

tropical conditions. 

 Studies involving the individual use of proximal sensors in the prediction of chemical, 

physical, and morphological attributes are being well reported worldwide, from temperate to 

tropical regions (BENEDET et al., 2020; TAVARES et al., 2021; CHATTERJEE et al., 

2021). However, sometimes one sensor alone might be limited to provide accurate predictions 

for all targeted soil properties (LIMA et al., 2019; SILVA et al., 2017; SILVA et al., 2019). In 

this way, the combination of data from multiple sensors becomes a viable and promising 

alternative to provide robust soil information to accurately predict soil properties in a fast way 

and with high accuracy (ANDRADE et al., 2020; BENEDET et al. 2020; O’ROURKE et al., 

2016; WAN et al., 2019, 2020). However, investigations on the combined use of the data 

delivered via pXRF and Nix ProTM for the prediction of agronomic attributes and/or a more 

geochemical approach in tropical soils are still few and recent compared to soils from 

temperate regions. 

Given the above, pXRF and Nix ProTM offer a valuable alternative to traditional 

laboratory analyses; however, the data from these proximal sensors can be affected by 

different scanning conditions that attract the use of new approaches for the reliable prediction 

of agronomic and geochemical attributes in tropical soils. Thus, the objectives of this thesis 

were: 

i) chapter one – to develop accurate prediction models for pH (H2O), sum of bases 

(SB), cation exchange capacity (CEC) at pH 7.0 and base saturation (BS) from pXRF data 

acquired from highly variable soils representative of the Brazilian Coastal Plains biome; 
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ii) chapter two - (i) to predict SOM content through data obtained via Nix Pro™ and 

pXRF in tropical soils, also evaluating the efficiency of these sensors to provide data to be 

used separately or combined via three machine learning algorithms: stepwise multiple linear 

regression (SMLR), support vector machine (SVM) with linear kernel and random forest (RF) 

in two soil moisture conditions. In addition, the information on soil horizons from which the 

samples have been collected will be used as auxiliary input data for model generation; 

iii) chapter three - (i) to evaluate the impact of different scanning conditions of soil 

samples on pXRF results, as follows: in the field (F), post-field (PF), air-dried, disaggregated 

and sieved at 2 mm (ADFE), ADFE followed by grinding (M), and M sieved at 150 μm (MS); 

the five scanning conditions were used to determine the total elemental contents of Al, Ca, 

Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V and Zr; and (ii) to determine the relationship between the 12 

elements obtained with pXRF in these five scanning conditions and the traditional acid-

digestion-based method (USEPA 3051a/ICP-OES) via linear regression models and their 

validation. 

iv) chapter four – (i) to characterize the elemental content of highly heterogeneous 

tropical soils with pXRF; and (ii) to develop and validate prediction models for 28 elements 

traditionally obtained by the USEPA 3051a method based on data generated by pXRF 

through machine learning algorithms (random forest - RF and support vector machine - SVM) 

and simple linear regressions (RLS) and multiple (stepwise multiple linear regression - 

SMLR). 

Our hypothesis is that general and robust models can be generated using machine 

learning algorithms from data obtained via pXRF and Nix Pro™, combined or individually, 

capable of predicting attributes that indicate both soil agronomic and geochemical properties 

quickly and accurately, even considering highly heterogeneous tropical soils.   
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Abstract 

Portable X-ray fluorescence (pXRF) spectrometry has been successfully used for soil attribute 

prediction. However, recent studies have shown that accurate predictions may vary according 

to soil type and environmental conditions, motivating investigations in different biomes. 

Hence, this work attempted to accurately predict soil pH, sum of bases (SB), cation exchange 

capacity (CEC) at pH 7.0 and base saturation (BS) using pXRF-obtained data with high 

variability and robust prediction models in the Brazilian Coastal Plains biome. A total of 285 

soil samples were collected to generate prediction models for A (n = 123), B (n = 162) and 

A+B (n = 285) horizons through stepwise multiple linear regression, support vector machine 

with linear kernel (SVM) and random forest. Data were divided into calibration (75%) and 

validation (25%) sets. Accuracy of the predictions was assessed by coefficient of 

determination (R2), root mean square error (RMSE), mean absolute error (MAE) and residual 

prediction deviation (RPD). The A+B horizons dataset had optimal performance, especially 

for SB predictions using SVM, achieving R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE = 1.17 

cmolc dm–3 and RPD = 2.33. The most important predictor variable was Ca. Predictions using 

pXRF data were accurate especially for SB. Limitations of the predictions caused by soil 

classes and environmental conditions should be further investigated in other regions. 
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1. Introduction 

 

The determination of soil chemical attributes is fundamental for agricultural 

management, pedological and geochemical mapping and for management of the environment 

(Zhang and Hartemink 2020). During past decades, soil chemical analyses have undergone 

much evolution, from the utilization of low precision colorimetric methods (Clark and Axley 

1955; Fliermans and Brock 1973) to sophisticated methods like inductively coupled plasma 

mass spectroscopy and atomic absorption spectroscopy (AAS), which are accurate and now 

greatly utilised (Soltanpour et al. 1996; Weindorf and Chakraborty 2016). The standard 

methods for soil chemical analyses are essential for soil characterisation. However, depending 

on the required resolution of the maps to be created, the number of samples and the size of the 

study area, traditional analyses might be sluggish, expensive and demand large amounts of 

chemical reagents that need meticulous care concerning their disposal (Ribeiro et al. 2017). 

The increasing use of proximal sensors worldwide offers a practical solution to 

overcome these issues (Viscarra Rossel et al. 2011; Kuang et al. 2012) by complementing or 

even substituting traditional methods (Viscarra Rossel et al. 2011). Similar to other prevailing 

proximal sensor techniques, portable X-ray fluorescence (pXRF) spectrometry has 

increasingly attracted soil scientists’ attention in recent years (Mancini et al. 2019; Nawar et 

al. 2019; Zhang and Hartemink 2020; Andrade et al. 2020a, 2020b; Teixeira et al. 2020; Wan 

et al. 2020). The pXRF analysis has innumerable advantages over traditional laboratory 

methods, including (i) minimal sample preparation is required, (ii) chemical reagents are not 

necessary, (iii) allows in situ and ex situ analyses, (iv) fast, reliable and economic 

acquirement of data and (v) in a single scan, multiple attributes can be measured or predicted 

with high accuracy (Sarkhot et al. 2011; Viscarra Rossel et al. 2011; Weindorf et al. 2012; 

Wang et al. 2015). 

Across the world, pXRF is becoming a reliable tool for diverse branches of science, 

including soil science, by delivering promising results, as reported by a myriad of studies 

regarding soil characterisation applied to agricultural and environmental assessment (Jang 

2010; Zhu et al. 2011; Weindorf et al. 2012; Towett et al. 2016; Chakraborty et al. 2017; Hu 

et al. 2017; Pearson et al. 2017; Dijair et al. 2020). Data acquired by pXRF can be likewise 

utilised in soil attribute predictions with significant accuracy using statistical modelling 

techniques (Weindorf et al. 2013; Chakraborty et al. 2017; Hu et al. 2017; Rawal et al. 2019; 
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Xu et al. 2019; Silva et al. 2020; Zhang and Hartemink 2020). However, such efforts are yet 

incipient in Brazil compared with other countries, especially those of temperate regions, and 

recent studies have shown variations in results when assessing soils from different regions of 

Brazil (Silva et al. 2016, 2017; Ribeiro et al. 2018; Teixeira et al. 2018; Costa et al. 2019; 

Mancini et al. 2019; Andrade et al. 2020a, 2020b; Tavares et al. 2020; Teixeira et al. 2020). 

This means that the modelling must be performed at the regional or local level, motivating 

further investigations under these different environmental conditions, for example the 

Brazilian Coastal Plains region (~20 Mha in Brazil). 

Thus, the objective of this work was to develop accurate prediction models for pH, 

sum of bases (SB), cation exchange capacity (CEC) at pH 7.0 and base saturation (BS) from 

pXRF data acquired from highly variable soils representative of the Brazilian Coastal Plains 

region. This study hypothesizes that pXRF-obtained data can be successfully used to rapidly 

and accurately predict fertility properties of soils from the Brazilian Coastal Plains. 

 

2. Material and Methods 

 

2.1 Study area 

 

The soil samples were collected from the Brazilian Coastal Plains biome, in the states 

of Espírito Santo, Bahia and Minas Gerais (Fig. 1), representing 1 199 918 km2 of the 

country. This biome covers ~20 Mha on the Brazilian coast. The parent materials are Tertiary 

sediments of the Barreiras Formation (Corrêa et al. 2008a; Gomes et al. 2017) and the 

predominant soil mineralogy is represented by quartz in the sand and silt fractions and 

kaolinite in the clay fraction (Carvalho Filho et al. 2013; Ker et al. 2017). This soil 

mineralogy is very uniform as a result of a very long period of sediment deposition on a flat 

landscape (Resende et al. 2011, 2019). 

According to the Köppen classification system, the sampling region is classified as 

Aw (hot weather with summer rain) and Af (hot climate, without dry season), with altitude 

range of 20–320 m and annual rainfall of 970–1560 mm (Siqueira et al. 2004; Gomes et al. 

2017). All the sampled areas were under eucalyptus cultivation. The agronomic management 

of this crop in all areas, in order to obtain high productivity, includes application of soil 

fertilisers and conditioners, according to the needs of the crop. 
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Fig. 1. Study area and soil sampling locations across the Brazilian Coastal Plains comprising the states 

of Minas Gerais (MG), Bahia (BA) and Espírito Santo (ES), representing 1 199 918 km2 of the 

country. 

 

2.2 Soil sampling and laboratory analyses 

 

Approximately 500 g of soil was collected from A (0–20 cm depth) and B (80–100 cm 

depth) horizons from 121 soil profiles comprising the most representative soil classes found 

in the Brazilian Coastal Plains region – Ultisols, Oxisols, Spodosols and Entisols, classified 

according to the US Soil Taxonomy (Soil Survey Staff 2014). In total, 285 samples were 

collected: 123 from A horizons and 162 from B horizons. Subsequently, samples underwent 

physical and chemical laboratory analyses and were classified accordingly, with the support 

of field soil morphology data. 

Analytical determinations were performed in air-dried, ground samples, sieved 

through a 2-mm screen (air-dried fine earth). Next, the following chemical attributes were 

determined: pH in water (1 : 2.5, soil : water), exchangeable contents of Ca2+ and Mg2+ 

extracted by 1 mol L-1 KCl, available K extracted by Mehlich-1 solution and potential acidity 

(H+ + Al3+) after extraction with 0.5 mol L-1 calcium acetate at pH 7.0. These analyses 
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followed the recommendations for Brazilian soils (Teixeira et al. 2017). The pH analyses 

were performed using a Digimed® Double Channel pH meter model DM-23-DC. The 

contents of Ca2+ and Mg2+ were assessed by AAS (Perkin Elmer® model AAnalyst 800). 

Contents of K were determined by flame photometer and H+ + Al3+ by titration with NaOH. 

Results of the aforementioned analyses were utilized to calculate the SB (cmolc dm–3), CEC 

at pH 7.0 (cmolc dm–3) and BS. 

 

2.3 pXRF analyses 

  

Analyses were performed with a Bruker® model S1 Titan LE pXRF. This equipment 

is composed of a Rh X-ray tube of 4 W, 15–50 keV, 5–100 mA, and a silicon drift detector 

(SDD) with a resolution of <145 eV, allowing for the detection of all elements ranging from 

Mg to U in the periodic table (Weindorf et al. 2014). The GeoChem software was utilized in 

Trace dual soil mode (60 s scan) and all 285 samples were scanned in triplicate and the mean 

obtained was used. The chemical elements and oxides utilized in this work follow: Al, Ca, Cl, 

Cu, Fe, K, Mn, Nb, P, S, Si, Sr, Ti, Zn and Zr. 

 To assess the equipment’s accuracy, the reference materials 2710a (Montana soil I) 

and 2711a (Montana soil II), certified by the National Institute of Standards and Technology, 

and the standard sample provided by the pXRF manufacturer (check sample – CS) were 

analyzed. The results were used to calculate the recovery value for each element (Table 1), as 

follows: recovery % = 100 x (obtained content/content from reference samples). Zero 

indicates the absence of reference values for an element or no elemental content detected by 

pXRF. 

  

Table 1. Recovery values for elemental contents obtained via pXRF calculated using 

reference samples certified by the National Institute of Standards and Technology (NIST) and 

provided by the pXRF manufacturer (check sample – CS). 

Sample 
Al Ca Cl Cu Fe K Mn Nb P S Si Sr Ti Zn Zr 

-------------------------------------------- % ------------------------------------------------- 

2710a 34 80 0 84 68 68 69 0 128 0 43 102 93 101 102 

2711a 65 46 0 71 70 50 60 0 465 0 48 93 68 85 0 

CS 92 0 0 99 95 89 88 0 0 0 45 0 0 0 0 
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2.4 Statistical analyses 

 

Prediction models were created for pH, SB, CEC and BS using datasets composed of 

A (n = 123), B (n = 162) and A+B (n = 285) horizons data using three different algorithms. 

Each dataset was randomly divided into calibration (75%) and validation (25%) sets. Hence, 

88, 115 and 201 samples were used for modelling and 35, 47 and 84 samples were utilized for 

validation (for A, B and A+B horizons datasets respectively). In addition, the A+B dataset 

was created keeping samples from the A and B horizons of the same profile in the same 

dataset (modelling or validation). This process maintained true independence of the data 

during the validation procedure. 

 To create prediction models from pXRF data, all obtained elemental contents were 

centralized (centralized elemental content = (x - mean(x))/s.d.(x)), and scaled (scaled 

elemental content = x – mean(x)), where x is the original elemental content. Then, three 

methods were utilized: stepwise multiple linear regression (SMLR), support vector machine 

with linear kernel (SVM) and random forest (RF). Analyses were performed using R software 

(version 3.6.1) (R Core Team 2018) and the R package ‘caret’ (Kuhn 2008). 

 The SMLR is a semi-automatic model construction process that successively adds or 

removes variables based on the F-test or the t-test of its estimated coefficients (Khaledian et 

al. 2017; Mohamed et al. 2018). The SVM uses kernel functions (Vapnik 1995) to project 

data in a hyperspace where complex non-linear patterns can be represented (Karatzoglou et al. 

2008). In the new hyperspace, SVM attempts to construct an ideal hyperplane that separates 

classes to predict data with minimum empirical risk (Chakraborty et al. 2019). The RF 

algorithm creates several trees with different predictor variables into each tree, generating a 

final model composed of several trees (a forest) (Breiman 2001; Liaw and Wiener 2002), and 

has been successfully utilized by many soil scientists in different parts of the world (Silva et 

al. 2017; Chakraborty et al. 2019; Rawal et al. 2019; Andrade et al. 2020a, 2020b; Teixeira et 

al. 2020). In the current study, the following parameters were used: number of trees (ntrees) = 

500 and number of predictors (mtry) = 1/3 of the number of predictor variables. 

 Validation of the predictions was performed by calculating the coefficient of 

determination (R2) (Eqn 1), the root mean square error (RMSE) (Eqn 2), the mean absolute 

error (MAE) (Eqn 3) and the residual prediction deviation (RPD) (Eqn 4) (Chang et al. 2001). 

According to Viscarra Rossel et al. (2010), the R2 values for soil attribute predictions are 

considered very good (>0.81), good (0.61–0.8), regular (0.41–0.6) and bad (<0.4). Chang et 

al. (2001) defined three categories for RPD concerning the quality and reliability of models: 
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excellent models (RPD > 2), models with moderate prediction ability (1.4 < RPD < 1.4) and 

models with no prediction ability (RPD < 1.4). Thus, models achieving greater R2 and RPD 

and lower RMSE and MAE when comparing observed and predicted data are more capable of 

predicting pH, SB, CEC and BS accurately from pXRF data. 

 

𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑋𝑚𝑒𝑎𝑛𝑠,𝑖 − 𝑋𝑝𝑟𝑒𝑑𝑖,𝑖)
2

∑  𝑛
𝑖=1 (𝑋𝑚𝑒𝑎𝑛 − 𝑋𝑝𝑟𝑒𝑑𝑖,𝑖)

2  (1) 

  

𝑅𝑀𝑆𝐸 = √∑ (𝑋𝑚𝑒𝑎𝑛𝑠,𝑖 − 𝑋𝑝𝑟𝑒𝑑𝑖,𝑖)
2𝑛

𝑖=1

𝑛
 (2) 

  

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑋𝑚𝑒𝑎𝑛𝑠,𝑖 − 𝑋𝑝𝑟𝑒𝑑𝑖,𝑖|

𝑛

𝑖=1
 (3) 

  

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
 (4) 

 

Where Xmeans is measured values, Xpredi is values predicted by the models, Xmean is the mean 

of the values obtained via conventional laboratory analyses and n is the number of samples. 

 

Additionally, the variables’ importance was calculated for the best prediction model 

per soil attribute to be predicted using the ‘rminer’ package (Cortez 2016). The importance of 

variables is an informative and robust indicative of the relative importance of predictor 

variables for the models (Liaw and Wiener 2002). The higher the importance, the higher the 

relevance of a variable for the model (González et al. 2015). Moreover, to help understand the 

variables’ importance, Pearson’s correlation was calculated and presented as a correlogram 

between the pXRF data and the evaluated soil attributes, using the ‘corrplot’ package (Wei et 

al. 2017) of R software. 

 

3. Results and discussion 

 

3.1 Descriptive statistics for soil chemical attributes 

 

The descriptive analyses of soil pH, SB, CEC and BS obtained through conventional 

laboratory methods for A, B and A+B horizons datasets are presented in Fig. 2. In general, a 

high dispersion and variability of the attributes obtained in each dataset, especially the A+B, 
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confirmed the high variability of the studied soils (Entisols, Spodosols, Ultisols and Oxisols). 

Although all the samples were collected under eucalyptus plantations, which had been 

receiving applications of fertilisers and conditioners, such contrasting soils present different 

soil texture, organic matter content, porosity and intensity of leaching, among other properties 

(Duarte et al. 2000; Moreau et al. 2006; Lima Neto et al. 2010; Resende et al. 2011, 2019; 

Andrade et al. 2020a, 2020b). This fact explains the variability of the soil properties evaluated 

in this study.  

 

Fig. 2. Descriptive analyses of soil attributes (a) pH, (b) sum of bases (SB), (c) cation 

exchange capacity (CEC) at pH 7.0 and (d) base saturation (BS) for A, B and A+B horizons 

from soils of the Brazilian Coastal Plains, including the states of Espírito Santo, Bahia and 

Minas Gerais. 

 

The A+B dataset comprises a relatively high quantity of data (n = 285) and, 

considering the observed variability (Fig. 2), might generate robust models that could be 

useful in conditions similar to those represented in these datasets. The A horizon samples had 

greater median values of soil pH, SB, CEC and BS than B horizon samples and greater 

dispersion and variability mainly for SB, CEC and BS, probably because of the greater 
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influence of fertilisers and conditioners in the surface horizon than in the subsurface horizon 

(Resende et al. 2014). 

 Symmetric distribution occurred for pH, SB and CEC, with mean values of 6.1, 5.4 

and 5.7 for pH; 3.9, 1.2 and 2.4 cmolc dm–3 for SB; 9.5, 7.0 and 8.0 cmolc dm–3 for CEC for 

A, B and A+B horizons respectively. The BS data showed a negative asymmetric distribution 

for A and B horizons, and an asymmetric positive distribution for the A+B horizons. The 

mean values calculated for each horizon were 39.4, 17.6 and 27.0 respectively. Similar results 

were reported by Moreau et al. (2006), who obtained mean values of 5.0, 1.7, 6.8 and 28.1 for 

pH, SB, CEC and BS respectively, when studying six soil profiles of three distinct soil classes 

(Oxisol, Ultisol and Spodosol) under different land management practices in the Brazilian 

Coastal Plains. The soils of this region under natural conditions tend to be acidic and with low 

fertility, mainly in the subsurface horizon, with BS values commonly below 25% (Duarte et 

al. 2000; Moreau et al. 2006; Lima Neto et al. 2010; Resende et al. 2011, 2019), as also 

shown in Fig. 2. However, the soil fertility management contributed to the greater values 

determined for these soil properties in the areas of this study in comparison with the natural 

conditions. 

 Elemental contents obtained by pXRF also presented considerable variations (Table 2) 

due to the variability of soils and the changes caused by soil fertility management, which 

influenced the total elemental content obtained by pXRF (Table 2). For instance, the low 

mean contents of Fe (1.9% for A+B dataset) is related to the mineralogy of these soils 

dominated by kaolinite (Al2Si2O5(OH)4) in the clay fraction and quartz (SiO2) in sand and silt 

fractions, as a consequence of the chemical composition of the Tertiary sediments that formed 

such soils (Resende et al. 2019). For comparison purposes, Pelegrino et al. (2019) reported 

mean Fe contents of 11.4% and 7.4% for soils derived from gabbro and gneiss respectively. 

Moreover, the low contents of nutrients such as Ca, K and P compared with soils from other 

Brazilian regions (Mancini et al. 2020), even under these cultivated areas that received 

applications of fertilisers and conditioners (Table 2), is related to the lack of nutrients also 

present in the crystalline structure of the minerals of these soils (Resende et al. 2011). These 

results agree with those of other authors who investigated soils of the Brazilian Costal Plains 

(Duarte et al. 2000; Lima et al. 2004; Moreau et al. 2006; Andrade et al. 2020a, 2020b).



30 

 

Table 2. Descriptive statistics of elemental (mg kg–1) contents obtained by pXRF from soil samples collected from the Brazilian Coastal Plains, 

including the states of Espírito Santo, Bahia and Minas Gerais. 

CV, coefficient of variation; HA, A horizon; HB, B horizon; H A + B, A and B horizons combined 

Parameters 
Al  Ca  Cl  Cu 

HA HB HA+B  HA HB HA+B  HA HB HA+B  HA HB HA+B 

Minimum 1015.85 0.00 0.00  179.70 0.00 0.00  397.33 79.00 79.00  8.00 2.33 2.33 

Maximum 98680.89 135900.10 135900.10  35546.25 3953.42 35546.25  1976.00 1478.33 1976.00  28.00 22.67 28.00 

Mean 56573.24 77292.16 68350.31  4168.37 915.85 2319.56  803.78 734.37 764.32  13.76 11.16 12.28 

Std. Dev. 17220.10 18279.61 20554.55  4687.42 725.02 3512.97  219.32 209.92 216.40  3.44 3.80 3.86 

CV (%)3 30.44 23.65 30.07  112.45 79.16 151.45  27.29 28.58 28.31  24.98 34.01 31.44 

Parameters 
Fe  K  Mn  Nb 

HA HB HA+B  HA HB HA+B  HA HB HA+B  HA HB HA+B 

Minimum 466.33 311.67 311.67  424.69 343.90 343.90  0.00 0.00 0.00  0.00 0.00 0.00 

Maximum 41742.33 54241.00 54241.00  1935.29 1441.15 1935.29  2127.33 1177.33 2127.33  38.67 253.33 253.33 

Mean 13644.14 23209.89 19081.51  841.96 900.43 875.20  175.64 60.35 110.11  8.77 19.70 14.98 

Std. Dev. 9025.86 12128.06 11870.47  254.04 196.69 224.71  296.27 127.74 224.12  6.72 19.69 16.39 

CV (%) 66.15 52.25 62.21  30.17 21.84 25.68  168.68 211.66 203.54  76.69 99.97 109.42 

Parameters 
P  S  Si  Sr 

HA HB HA+B  HA HB HA+B  HA HB HA+B  HA HB HA+B 

Minimum 0.00 0.00 0.00  0.00 0.00 0.00  112170.44 114627.49 112170.44  0.00 0.00 0.00 

Maximum 983.47 857.47 983.47  1312.67 565.67 1312.67  312834.89 357479.16 357479.16  79.67 49.67 79.67 

Mean 255.37 33.14 129.05  181.90 7.82 82.95  215381.51 172390.26 190944.38  12.53 7.18 9.49 

Std. Dev. 204.52 126.41 197.96  304.08 50.69 220.54  39481.22 41053.49 45607.74  11.60 6.55 9.44 
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CV (%) 80.09 381.52 153.40  167.17 648.17 265.87  18.33 23.81 23.89  92.58 91.13 99.48 

Parameters 
Ti  Zn  Zr     

HA HB HA+ B  HA HB HA+B  HA HB HA+B     

Minimum 1300.67 2013.67 1300.67  0.00 0.00 0.00  177.67 226.67 177.67     

Maximum 16864.67 140707.33 140707.33  82.33333 37.67 82.33  1711.33 2245.33 2245.33  
   

Mean 7627.99 11259.79 9692.38  13.40718 15.06 14.35  526.77 768.62 664.24  
   

Std. Dev. 2717.50 10635.41 8398.98  9.713614 6.02 7.86  271.66 345.93 337.55  
   

CV (%) 35.63 94.45 86.66  72.45083 39.99 54.78  51.57 45.01 50.82  
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3.2 Correlations between total elemental contents obtained by pXRF and soil attributes 

  

The calculated correlations were low between the pXRF results and the soil properties 

evaluated (Fig. 3). The highest correlations were between pH and Mn (r = 0.42), Sr (r = 0.41), 

Ca (r = 0.40) and Cu (r = 0.32). Notably the correlation between pH and Ca, although low, is 

probably related to the application of limestone, a common agricultural practice in Brazilian 

soils to increase soil pH (Lopes and Guilherme 2016). Valadares et al. (1974) explains that, 

depending on the origin of the limestone, it may contain elements such as Mn as impurities in 

addition to Ca and Mg. Therefore, the application of this soil conditioner can increase the 

levels of not only Ca and Mg, but also Mn and other elements mainly in soil surficial layers. 

For instance, Sr, which was also highly correlated with pH, has been strongly correlated with 

Ca in other Brazilian agricultural soils (Teixeira et al. 2018). Regarding Ca, Silva et al. (2019) 

and Teixeira et al. (2020) found strong positive correlations between Ca determined by pXRF 

and pH for soils from different Brazilian regions. The same trend found for the soils of the 

Brazilian Costal Plains in our study is due to the lack of Ca-bearing minerals in these soils 

(Curi and Ker 2004), meaning that most of the Ca detected by pXRF is related to 

exchangeable Ca (Andrade et al. 2020a). 

 

Fig. 3. Correlation between portable X-ray fluorescence spectrometry data and soil attributes 

(n = 285). 

 

The elements used to determine SB, CEC and BS had weak correlations with SB, CEC 

and BS, even in the cases of K and Al, which are needed for calculating these attributes. 

These elements were present in the crystalline structure of the studied soils, i.e., their total 

content was not directly related to their exchangeable contents used for the calculations of SB, 
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CEC and BS. Similar weak correlations were found by Teixeira et al. (2020) between K and 

Al contents determined by pXRF and their exchangeable contents for Brazilian soils from 

various regions. 

 

3.3 Predictions of soil chemical attributes 

 

The R2 values for all SMLR prediction models varied from 0.31 (pH) to 0.46 (SB) for 

A horizon data, from 0.20 (BS) to 0.43 (CEC) for B horizon data and from 0.29 (pH) to 0.47 

(CEC) for the A+B data combined (Table 3). In general, the A+B dataset provided better R2 

values, mainly compared with the B horizon dataset. 

Regarding CEC and SB using A+B data (Table 3), the equations generated by SMLR 

selected 10 (Al, Cu, Mn, Nb, P, S, Sr, Ti, Zn and Zr) and eight elements (Fe, Mn, P, S, Si, Sr, 

Zn and Zr) respectively, out of the 15 available for prediction of these attributes. Six out of 

these elements are nutrients for plants and were the most common in both equations: P, S, Fe, 

Mn, Zn and Cu. However, among them, only Al in its exchangeable form (Al3+) is used for 

the determination of CEC through traditional laboratory methods. This reaffirms that 

prediction models based on pXRF-obtained data can create indirect relations between the 

elements and then predict soil chemical attributes, which makes pXRF a powerful tool for soil 

characterization, even if the direct correlations between pXRF variables and the soil attributes 

to be predicted are not strong (Fig. 3). Similar findings were reported by Sharma et al. (2014, 

2015), Silva et al. (2017) and Teixeira et al. (2020) in predicting pH, SB, CEC and BS via 

pXRF. However, these indirect inferences may require that local specific prediction models 

be created instead of extrapolating the calibrated models to other regions with different 

conditions. This has been demonstrated by different studies achieving varying accuracies for 

the prediction of the same soil properties depending on the soils used for developing the 

prediction models (Zhu et al. 2011; Sharma et al. 2014, 2015; Silva et al. 2017; Rawal et al. 

2019; Andrade et al. 2020a, 2020b; Benedet et al. 2020; Tavares et al. 2020). 

From another perspective, the rapid quantification of multiple elements by pXRF and 

the robustness of prediction models for creating relations between such elements and the soil 

properties to be predicted raise new possibilities of investigating soil properties. For instance, 

Sr and Rb, elements less commonly used in soil-related studies than other elements (e.g., Fe, 

Si, Al, K, Ti and Ca) have been strongly correlated with exchangeable Ca2+ (Silva et al. 2018; 

Teixeira et al. 2018; Mancini et al. 2019) and clay content (Zhu et al. 2011; Silva et al. 2020) 

respectively, in various soils, helping their prediction. 
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Table 3. Equations obtained by SMLR to predict soil chemical attributes using A, B and A+B 

horizons’ data obtained via pXRF from soils of the Brazilian Coastal Plains. SB, sum of bases 

(cmolc dm–3); CEC, cation exchange capacity at pH 7.0 (cmolc dm–3); BS, base saturation 

Soil 

attributes 
Equations R² 

--------------------------------------------------- Horizon A --------------------------------------------- 

pH 6.04432 + 0.61486Ca + 0.15015K – 0.19529S 0.31 

SB 3.8005 + 1.7816Ca + 0.5076Fe + 0.4702Nb + 0.3049S – 0.5318Zr 0.46 

CEC 9.2595 + 0.5722Ca + 1.5720Sr + 1.0589Ti – 1.8911Zr 0.38 

BS 
39.435 + 3.543Al + 4.308Cu – 5.591Fe + 5.546Nb + 7.443Sr – 

4.081Ti 

0.29 

-------------------------------------------------- Horizon B ---------------------------------------------- 

pH 
5.37826 + 0.15267Al + 0.21528Ca + 0.12677Cu + 0.18911Mn – 

0.10099S + 0.16784Sr – 0.17460Ti 0.27 

SB 
1.22132 + 0.18046Ca + 0.28026Cu – 0.17974P + 0.50249Sr – 

0.34782Ti – 0.20680Zr 
0.28 

CEC 
6.9315 + 0.2476Ca – 0.6167Fe + 0.4056Mn – 1.3499Nb – 0.7192Si 

+ 0.6686Sr + 0.2493Ti + 0.5082Zn 0.43 

BS 
17.5298 + 2.9937Ca + 5.0480Fe + 3.5637Nb – 2.7952P + 4.8709Si – 

3.2811Ti 
0.20 

------------------------------------------------- Horizon A + B ------------------------------------------ 

pH 
5.70455 + 0.10940Cu + 0.18690Mn – 0.20665Nb – 0.14043P + 

0.31032Sr 
0.29 

SB 
2.4462 – 0.4781Fe + 0.3172Mn – 0.2489P + 0.4211S + 0.3058Si + 

1.0874Sr + 0.4347Zn – 0.5185Zr 
0.46 

CEC 
8.0109 – 0.3791Al – 0.4315Cu + 0.5152Mn – 1.2204Nb – 0.5692P + 

0.4139S + 1.0471Sr + 0.3625Ti + 0.7056Zn – 0.6182Zr 
0.47 

BS 
28.494 + 4.277Cu – 4.165Fe + 4.442Nb + 1.972S + 8.339Sr – 

3.753Ti – 2.546Zr 
0.31 

 

Validation results for all models built by the three studied algorithms (SMLR, SVM 

and RF) are presented in Table 4. In general, the models using the combined A+B dataset 

provided greater R2 and RPD and lower RMSE and MAE for most evaluated soil attributes, 

especially SB (Table 4). Models created to predict pH using A and B horizon data separately 

had the lowest R2 values, independently of the utilized algorithm. However, when the horizon 

data were combined, greater R2 values were attained, although still lower than for the other 

attributes. For this soil property, considering all models, R2 values ranged from 0.07 (SMLR, 

A horizon) to 0.40 (SVM, A+B horizons), and RPD values ranged between 0.98 (SMLR, A 

horizon) and 1.30 (SVM, A+B horizons) – models not considered reliable according to Chang 

et al. (2001) and Viscarra Rossel et al. (2010). In our study, R2 values for soil pH predictions 
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were below those reported in the literature. Using pXRF-obtained data, Silva et al. (2017) 

concluded that models created by SMLR and RF could successfully predict soil pH by 

achieving R2 values of 0.82 and 0.89 respectively, in soils from the Brazilian Cerrado biome. 

Sharma et al. (2014) also obtained satisfactory results for soil pH prediction, attaining 

maximum R2 value of 0.83 when using SLMR to predict pH in soil samples from the USA. It 

is noteworthy that the latter two studies were conducted under different soil conditions. 

The best values of R2 and RPD were produced by models predicting SB, especially 

when using A+B data (Table 4). In this case, the best predictions were delivered by SVM with 

values of R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE = 1.17 cmolc dm–3 and RPD = 2.33 – 

classified as very good with excellent predictive capacity according to Chang et al. (2001) and 

Viscarra Rossel et al. (2010). Although existing studies have investigated the use of proximal 

sensors, including pXRF, for prediction of soil fertility attributes (Sharma et al. 2015; Silva et 

al. 2017; Rawal et al. 2019; Teixeira et al. 2020; Wan et al. 2020), very few evaluated SB 

prediction. Among them, the highest R2 was 0.87 for the Cubist algorithm (Teixeira et al. 

2020). 

Similar behavior was observed for CEC and BS models (Table 4), with the best results 

for the A+B dataset. For both attributes, the prediction models created by the RF algorithm 

had the best R2 results for CEC and BS (0.56 and 0.49 respectively) and intermediate values 

for RMSE (2.33 cmolc dm–3 and 12.68%), MAE (1.71 and 9.47) and RPD (1.38 and 1.33). 

These validation results showed that the models for CEC and BS prediction can be classified 

as regular with moderate prediction capability (Chang et al. 2001; Viscarra Rossel et al. 

2010). Comparing these results with those obtained in other studies using pXRF for such 

predictions, for CEC, the values R² reported were between 0.20 (Teixeira et al. 2020) and 0.91 

(Sharma et al. 2015) using RF and SMLR respectively. For BS, R2 ranged from 0.28 (Teixeira 

et al. 2020) to 0.95 (Silva et al. 2017) for SMLR and RF respectively. However, the R2 results 

of our study for SB, CEC and BS (Table 4) are intermediate compared to those in the 

literature, with the highest R2 for SB through SVM (R2 = 0.82). These results emphasise the 

importance of investigating the pXRF capability of predicting soil fertility properties for 

different soil conditions. 

 

Table 4. Coefficient of determination (R2), root mean square error (RMSE), mean absolute 

error (MAE) and residual prediction deviation (RPD) for the predictions of soil chemical 

attributes built via pXRF data obtained from soils of the Brazilian Coastal Plains. SB, sum of 

bases; CEC, cation exchange capacity at pH 7.0; BS, base saturation; SMLR, stepwise 
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multiple linear regression; SVM, support vector machine with linear kernel; RF, random 

forest 

Soil Attributes Horizon Algorithm 
Validation statistical parameters 

R² RMSE MAE RPD 

pH (H2O) A SMLR 0.07 0.99 0.66 0.98 
 SVM 0.09 0.95 0.69 1.02 
 RF 0.22 0.85 0.63 1.14 

B SMLR 0.30 0.85 0.70 1.18 
 SVM 0.33 0.84 0.68 1.20 
 RF 0.28 0.87 0.68 1.15 

A + B SMLR 0.28 0.85 0.68 1.18 
 SVM 0.40 0.77 0.60 1.30 
 RF 0.26 0.87 0.67 1.16 

SB (cmolc dm-3) A SMLR 0.43 2.07 1.51 1.32 
 SVM 0.45 2.08 1.49 1.31 
 RF 0.50 1.90 1.47 1.43 

B SMLR 0.28 0.81 0.61 1.06 
 SVM 0.29 0.79 0.64 1.08 
 RF 0.27 0.73 0.59 1.18 

A + B SMLR 0.73 1.29 1.04 1.85 
 SVM 0.82 1.02 1.17 2.33 
 RF 0.79 1.28 0.91 1.86 

CEC (cmolc dm-3) A SMLR 0.34 3.18 2.42 1.22 
 SVM 0.30 3.23 2.60 1.20 
 RF 0.52 2.82 2.19 1.37 

B SMLR 0.20 1.82 1.45 1.10 
 SVM 0.24 1.75 1.32 1.14 
 RF 0.38 1.57 1.07 1.28 

A + B SMLR 0.42 2.45 1.90 1.31 
 SVM 0.50 2.28 1.75 1.41 
 RF 0.56 2.33 1.71 1.38 

BS (%) A SMLR 0.08 16.27 12.92 1.00 
 SVM 0.29 13.75 10.31 1.19 
 RF 0.16 15.18 11.43 1.08 

B SMLR 0.18 12.10 8.09 1.11 
 SVM 0.18 12.22 7.70 1.10 
 RF 0.16 12.24 7.73 1.10 

A + B SMLR 0.35 14.50 10.60 1.16 
 SVM 0.40 14.67 8.76 1.15 
 RF 0.49 12.68 9.47 1.33 

 

The variability in the accuracy of the predictions may be related to the peculiarities of 

the soils used in these different studies. Compared with the other studies, the soils of the 

Brazilian Coastal Plains present a mineralogy basically composed of large-sized kaolinite 

crystals and reduced amounts of iron oxides (Corrêa et al. 2008b), which may cause the 

diversity of results. 
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In general, the dataset comprising A+B data combined (i.e., the most diversified 

dataset) in tandem with SVM produced the best validation results, with high R2 values and 

intermediate RMSE, MAE and RPD, especially for SB predictions (Table 4). Thus, this 

dataset will be further discussed. Figure 4 shows the scatter plots for pH, SB, CEC and BS 

predictions via the three studied algorithms using A+B data. The good performance of SVM 

has been previously documented (Were et al. 2015; Mancini et al. 2019; Silva et al. 2020; 

Wan et al. 2020). In our study, the worst performing model was SMLR (Table 4), as also 

reported in different studies developed in Brazil (Souza et al. 2016; Silva et al. 2017; Teixeira 

et al. 2020), including other types of regression (linear, polynomial and logarithmic) (Teixeira 

et al. 2018). 
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Fig. 4. Dispersion plots for pH, sum of bases (SB), cation exchange capacity (CEC) at pH 7.0 

and base saturation (BS) predictions by the algorithms stepwise multiple linear regression 
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(SMLR), support vector machine (SVM) and random forest (RF) using data from A+B 

horizons combined obtained via pXRF from soils of the Brazilian Coastal Plains biome. 

 

3.4 Importance of variables 

 

The importance of variables for the best models for prediction of pH, SB, CEC and BS 

is shown in Fig. 5. In general, the most important variables for the different soil attributes 

prediction were those with the greatest correlations (Fig. 2) as discussed in Correlations 

between total elemental contents obtained by pXRF and soil attributes. According to the 

frequency that a variable was listed among the most important ones by the models, Ca was the 

most relevant for predictions. It was the most important variable for pH, SB and BS models 

and the second most important for CEC prediction (Mn was the most important in this case). 

As mentioned previously, there is a lack of Ca-bearing minerals in most soils of the Brazilian 

Coastal Plains (Curi and Ker 2004), meaning that most of the Ca detected by pXRF is related 

to the exchangeable Ca2+ used for the determination of SB, CEC and BS. Moreover, Ca is 

related to the limestone application on soils for increasing soil pH, thus, explaining its 

correlation with this soil property also observed in Fig. 2. 

The obtained results agree with those of Andrade et al. (2020a, 2020b), who 

concluded that Ca followed by Si, Sr, S, K, Mn and P obtained by pXRF were the most 

important variables to predict total nitrogen, soil organic matter, CEC and exchangeable 

contents of Al3+, Ca2+, Mg2+, K+ and P in soils from the Brazilian Coastal Plains. In works 

developed in other Brazilian biomes, Ca obtained by pXRF was also noted as important in 

predictions of Al3+, Ca2+, K+, Mg2+, remaining P, pH, SB, CEC, BS and Al saturation (Silva et 

al. 2017; Teixeira et al. 2020). This highlights the importance of this variable to predict soil 

fertility attributes regardless of the studied biomes, because a lack of Ca-bearing minerals is 

not rare in most Brazilian soils, as previously discussed. The element Sr was as important in 

almost all models in the current work, confirming its importance for predictions. According to 

Gomes et al. (2017) and Mancini et al. (2019), Sr is stable in soils and might be related to the 

parent materials; Sr was also correlated with Ca content in Brazilian soils (Silva et al. 2018; 

Teixeira et al. 2018). 
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Fig. 5. Variables importance in decreasing order based on prediction results for soil chemical 

attributes via RF using A +B horizons data combined obtained by pXRF from soils of the 

Brazilian Coastal Plains. SB, sum of bases; CEC, cation exchange capacity; BS, base 

saturation. 

 

The pXRF data have proved to be a promising tool in predicting soil fertility attributes 

for soils of the Brazilian Coastal Plains using A+B data combined, especially concerning SB. 

Among the studied models, SVM had superior performance and provided acceptable 

validation results for SB predictions. Under the current conditions, the data variability was not 

sufficient to deliver highly accurate predictions for pH, CEC and BS, particularly when using 

A and B horizon data separately. 
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Future studies employing combined data from different proximal sensors could help to 

improve predictive models for Brazilian Coastal Plains’ soils, accounting for soil variability, 

sampling depth, land uses, parent material and environmental conditions. The number of 

studies exploring the combined use of proximal sensors in soil science applied to predict soil 

attributes is increasing (Wang et al. 2015; O’Rourke et al. 2016a, 2016b; Wan et al. 2019; Xu 

et al. 2019; Benedet et al. 2020), and existing results are very promising. 

 

4. Conclusions 

 

The SB was predicted with high accuracy (R2 = 0.82, RMSE = 1.02 cmolc dm–3, MAE 

= 1.17 cmolc dm–3 and RPD = 2.3) using SVM models via highly variable data obtained by 

pXRF, surpassing validation results of predictions delivered by SMLR and RF models. 

However, the models could not reliably predict pH, CEC and BS in soils of the Brazilian 

Coastal Plains. The most important predictor variable for pH, SB and SB was Ca, while for 

CEC, Mn was the most important variable followed by Ca. Further studies are encouraged in 

this line of research to improve the prediction capability for soils of the Brazilian Coastal 

Plains region by combining pXRF with different sensors. The use of proximal sensors is yet 

to be fully explored, but they are proving to offer novel, reliable soil assessment methods that 

are fast, accurate, low-cost and environmentally-friendly due to not generating residues. 
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Abstract 

Soil organic matter (SOM) measurement is of great agricultural and environmental 

importance. Thus, the development of rapid, environmentally-friendly, economical and 

reliable assessment methods is challenging. Soil proximal sensors have become an important 

approach for SOM prediction worldwide, but require regional calibration. This work aimed to 

assess the efficiency of SOM content prediction using the Nix Pro™ color sensor and portable 

X-ray fluorescence (pXRF) spectrometry, either separately or combined. The type of soil 

horizon collected (A or B) was used as auxiliary input data. A total of 705 Brazilian variable 

soil samples were analyzed in the laboratory for SOM content and scanned by Nix Pro™ and 

pXRF. Via Nix Pro™, samples were analyzed both dry and moist since moisture changes 

their color. Prediction models were built using 70% of the data via the stepwise multiple 

linear regression (SMLR), support vector machine with linear kernel (SVM) and random 

forest (RF). Validation was performed with the remaining 30% of the data through the 

coefficient of determination (R2), the root mean square error (RMSE) and the residual 

prediction deviation (RPD). SOM content was predicted with good accuracy (R2 = 0.73, 

RMSE = 1.09% and RPD = 2.00) using the RF algorithm trained with combined data from the 

Nix Pro™ and pXRF sensors. Soil horizons and Ca content were the two most important 

predictor variables. The combination of data obtained by Nix Pro™ and pXRF yielded 
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accurate SOM predictions for a wide variety of Brazilian soils, in addition to being 

environmentally-friendly, without generating chemical waste. 

 

Keywords: Proximal sensors, Random forest, pXRF, Soil color, Soil modeling, tropical soils. 

 

1. Introduction 

 

Soil organic matter (SOM) plays a central role in soil organic carbon (SOC) 

sequestration and mitigation of greenhouse gas emissions (Jia et al., 2017; Stanley et al., 

2018). SOM is also of great importance for the soil structure, fertility, water availability, 

resistance to erosion, biological activity and diversity, which promote soil health and 

productivity (Dotto et al., 2018; Johnston et al., 2009; Munoz and Kravchenko, 2011; Wang 

et al., 2015). In tropical soils, SOM becomes even more important as it can contribute up to 

90% of cation exchange capacity (CEC) in surface horizons (Raij, 1969; Silva et al., 1994; 

Verdade, 1956). Moreover, SOM is a primary indicator of soil quality and has a high demand 

for determination in routine soil testing (Kheir et al., 2010; Le Quere et al., 2018; Lorenz and 

Lal, 2016). 

Classic wet or dry laboratory-based methods are widely adopted to determine SOM 

content (Wang et al., 2015), such as those conducted through the oxidation of the dichromate 

(Walkley and Black, 1934; Yeomans and Bremner, 1988) and dry combustion (Chatterjee et 

al., 2009; Wang et al., 2012). However, these methods are laborious, time-consuming and 

require chemical reagents generating wastes that can cause environmental impacts if not 

properly discarded (Benedet et al., 2021; Lal et al., 2001; McDowell et al., 2012; Nawar and 

Mouazen, 2019; Wang et al., 2015). These disadvantages are further exacerbated for the 

assessment of SOM variability in an area of interest due to the large number of samples 

needed (McCarty and Reeves, 2006; McDowell et al., 2012). Therefore, due to the importance 

of SOM determination for both agriculture and environmental aspects, there is an urgent need 

to investigate new methodologies that allow accurate, rapid, low cost, and chemical waste-

free SOM analyses (Dotto et al., 2018; Mukhopadhyay et al., 2020; Silva et al., 2020; Wang 

et al., 2015). 

In this context, proximal soil sensors have increasingly attracted the attention of 

scientists by offering a practical solution to estimate SOM content (Horta et al., 2015; Silva et 

al., 2017; Teixeira et al., 2020; Viscarra Rossel et al., 2011). Successful SOM and/or SOC 

predictions have been achieved across the globe via visible and near-infrared (Vis-NIR) 
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diffuse reflectance spectroscopy (DRS) (Brodský et al., 2013; Wang et al., 2015). However, 

this proximal sensor is expensive, results often require pre-processing (e.g., 1st order 

derivative transformation with Savitsky-Golay) and data analyses can be complex due to the 

large number of variables obtained (Stiglitz et al., 2017a, 2017b; Benedet et al., 2020a, 

2020b). Other proximal sensors used for SOM and/or SOC predictions are the portable X-ray 

fluorescence (pXRF) spectrometer and the Nix Pro™ color sensor. They are less expensive 

and provide results easier to both interpret and use in prediction models (Dijair et al., 2020; 

Faria et al., 2020; Mikhailova et al., 2017; Mukhopadhyay et al., 2020; Raeesi et al., 2019; 

Silva et al., 2020; Stiglitz et al., 2017a; Teixeira et al., 2020). Besides, the adoption of both 

proximal sensors by the soil science community is more recent than Vis-NIR DRS, especially 

Nix Pro™ (Stiglitz et al., 2016), encouraging further studies on their efficacy for soil property 

predictions under variable soil conditions. 

The Nix Pro™ sensor is already being considered a promising alternative for obtaining 

a reliable soil color assessment compared to conventional methods (other colorimeters and 

Munsell Soil Color Charts) (Mancini et al., 2020; Moritsuka et al., 2019; Stiglitz et al., 2017b; 

Stiglitz et al., 2016). This sensor is inexpensive, light-weighted, portable, equipped with a 

light-emitting diode (LED), can be connected to smartphones via Bluetooth and provides 

quantitative measurements of soil color in various color systems proving to be convenient for 

statistical analysis (Stiglitz et al., 2017b; Stiglitz et al., 2016). Thus, data obtained by Nix 

Pro™ have been used to predict SOM and/or SOC with significant accuracy, since dark soil 

colors are mainly caused by the presence of SOM (Mikhailova et al., 2017; Mukhopadhyay et 

al., 2020; Raeesi et al., 2019; Stiglitz et al., 2017a). Due to the correlations between SOM and 

total nitrogen, Nix Pro™ also proved successful in predicting nitrogen content (Mikhailova et 

al., 2017). However, some studies conducted in regions with contrasting climate types showed 

that the soil moisture directly interfered on soil color and, consequently, affected the SOM 

and/or SOC prediction models (Mukhopadhyay et al., 2020; Raeesi et al., 2019; Stiglitz et al., 

2017a). Thus, there is a need to further investigate the influence of moisture on Nix Pro™ 

analyses to standardize the best moisture condition that favors SOM prediction. Despite the 

potential applications of this new sensor, there are rare studies exploring it in tropical 

countries where some very weathered-leached soils, compared with soils of temperate 

regions, tend to present colors that do not reflect the SOM content. This is a consequence of 

Fe-oxides in these soils, mainly containing hematite in great amounts, a mineral that presents 

high pigmenting power. Secondarily, the generally higher clay content and relatively lower 

SOM content in tropical soils than in temperate soils dilutes the SOM power to pigmentation 
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of these soils, considering they have more surface area to pigment. As such, further studies 

are required to assess the efficiency of this sensor under tropical conditions. 

Conversely, pXRF has already been widely used in several areas because of its ability 

to identify and quantify the total elemental content in several matrices, including soil (Ribeiro 

et al., 2017; Silva et al., 2021; Teixeira et al., 2020; Weindorf et al., 2014). Briefly, pXRF 

detects the characteristic fluorescence energy released by the atoms of each element present in 

the analyzed material after they are hit by high energy X-rays (Weindorf et al., 2014). 

Subsequently, the quantification of the elements is directly related to the intensity of the 

fluorescence energy that is detected by the equipment (Ribeiro et al., 2017; Weindorf et al., 

2014). Data obtained by pXRF have been used both for soil characterization and for 

predicting soil properties with significant accuracy in different regions of the world, including 

SOM (Andrade et al., 2020a, 2020b; Chakraborty et al., 2019; Duda et al., 2017; Faria et al., 

2020; Rawal et al., 2019; Sharma et al., 2015; Silva et al., 2017, 2020; Tavares et al., 2020a; 

Tavares et al., 2020b; Wang et al., 2015). 

Both Nix Pro™ and pXRF require minimal sample preparation and are considered 

non-destructive analyses, being fast and useful in laboratory or field studies, which facilitates 

their utilization compared with standard wet-chemistry laboratory methods (Dijair et al., 

2020; Moritsuka et al., 2019; Ribeiro et al., 2017; Stiglitz et al., 2016; Weindorf et al., 2014; 

Silva et al., 2021). It is noteworthy that studies involving the individual use of these sensors to 

predict SOM are still quite incipient in the literature and more studies are needed in different 

regions of the world (Andrade et al., 2020a; Mikhailova et al., 2017; Mukhopadhyay et al., 

2020; Raeesi et al., 2019; Silva et al., 2017; Stiglitz et al., 2017a; Tavares et al., 2020a; Wang 

et al., 2015). Besides that, due to the complex nature of soils, such predictions are not always 

successful (Wan et al., 2019, 2020). Thus, the combination of data from multiple sensors 

becomes a viable and promising alternative in providing robust models to improve the 

prediction of soil attributes (Wan et al., 2019, 2020). Finally, studies in the literature that 

explore data combination from multiple sensors in the generation of models for SOM 

prediction in temperate or tropical regions are still rare. Even so, Kagiliery et al. (2019) used 

such an approach (pXRF + Nix Pro™) in boosting the predictive accuracy of S content in 

lignite. Their combined predictive models were more accurate than either sensor in isolation. 

Thus, this study aims to: (i) predict SOM content through data obtained by Nix Pro™ 

and pXRF spectrometer in tropical soils, (ii) evaluate the efficiency of these sensors to 

provide data to be used separately or combined via three machine learning algorithms: 

stepwise multiple linear regression (SMLR), support vector machine with linear kernel 
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(SVM) and random forest (RF) in two soil moisture conditions. In addition, the horizons from 

which the soil samples have been collected will be used as auxiliary input data for model 

generation. We hypothesized that the combination of data obtained by Nix Pro™ and pXRF 

will be able to predict SOM content quickly and accurately in varied tropical soils of Brazil, 

delivering results comparable with those reported in previous studies worldwide using Vis-

NIR DRS. 

 

2. Material and methods 

 

2.1. Study area and field sampling 

 

For this study, soil samples were collected in the Brazilian states of Minas Gerais 

(MG), Rio de Janeiro (RJ), São Paulo (SP) and Santa Catarina (SC) (Fig. 1), representing a 

total area covering ~11.4% (973,780 km2) of the Brazilian territory. According to the Koppen 

classification system, the study area covers the following climate types: Aw (tropical climate 

with dry winter), Cf (subtropical humid climate without dry season) and Cw (subtropical 

humid climate with dry winter) (Alvares et al., 2013). The mean annual rainfall in the studied 

regions ranges between 1500 and 1900 mm, the mean annual temperature varies from 13 to 

23 ºC and the altitude in those places varies between 600 and 1100 m amsl (above mean sea 

level) (Alvares et al., 2013). 

A total of 705 soil samples representative of the main Brazilian soils (~500 g each) 

were collected from 313 soil profiles, encompassing 298 samples from the A or O horizon 

(most of them in the depth range from 0 to 20 cm) and 407 samples from the B horizon (or C 

horizon for soils without B horizon), mostly in the depth range between 80 and 100 cm (Fig. 

1) (Santos et al., 2015). These samples encompassed eight soil classes at the order categorical 

level per the Brazilian Soil Classification System (Santos et al., 2018): Cambisols 

(Inceptisols), Latosols (Oxisols), Argisols (Ultisols), Nitosols (Ultisols), Neosols (Entisols), 

Plintosols (Oxisols – Plinthaquoxes), Gleisols (Entisolsa – Endoaquents), and Organosols 

(Histosols) - classes in parentheses represent the approximate correspondence with the Keys 

to US Soil Taxonomy (Soil Survey Staff, 2014). Together, these classes cover 89.6% 

(7,630,336 km2) of the Brazilian territory (Anjos et al., 2012; Santos et al., 2011). 

Sampled soils are derived from several parent materials including granite, gneiss, 

gabbro, alluvial and colluvial sediments, slate, sandstone, quartzite, phyllite, basalt, itabirite, 

mica-schist, amphibolite, charnockite, limestone and tuffite, all of them identified during 
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fieldwork (Silva et al., 2020; Teixeira et al., 2020). Land use encompasses native vegetation 

and areas cultivated with coffee, eucalyptus and pasture, whose agronomic management 

includes the application of limestone and/or gypsum prior to mineral fertilizers, according to 

the needs of each crop. 

 

Fig. 1. Map of Brazilian states and locations where soil samples were collected. MG - Minas 

Gerais; RJ - Rio de Janeiro; SP – São Paulo; and SC - Santa Catarina. 

 

2.2. Laboratory analyses 

 

In the laboratory, all soil samples were air-dried, disaggregated and passed through a 

2-mm sieve (air-dried fine earth - ADFE). SOC contents (in percentage) of the samples were 

determined by dichromate acid oxidation followed by titration with ammonium ferrous sulfate 

(Walkley and Black, 1934; Yeomans and Bremner, 1988). Then, SOM contents (in 

percentage) were calculated by multiplying the SOC content by the van Bemmelen factor of 

1.724 (% SOM = SOC x 1.724) (Howard, 1965; Broadbent, 1953). Next, SOM contents were 

used to calibrate the prediction models based on proximal sensors data. 

For the analyses via the Nix Pro™ sensor (Hamilton, Ontario, Canada) a subsample of 

ADFE was selected to determine soil color following the methods previously described by 
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Stiglitz et al. (2016, 2017a). First, a layer of approximately 3 cm of soil from each sample was 

spread over a clean white paper and leveled to prevent external light from entering the sensor 

aperture during the sample scanning via Nix Pro™. An unleveled surface of the sample would 

not entirely block the external light on the sensor’s aperture during scanning, thus, influencing 

the Nix Pro™ results (Stiglitz et al., 2017a, 2017b; Mukhopadhyay et al., 2020). 

Subsequently, soils were scanned for color determination under both dry and moist 

conditions. For the moist condition, a dropper with distilled water was used to moisten the 

soil surface until no more color change occurred. After each analysis via Nix Pro™, proper 

care was taken to clean the dust off the sensor’s aperture area. The results of color scanning 

were obtained and expressed in dimensionless magnitudes in terms of RGB (Red, Green and 

Blue), XYZ (Luminance - Y, Cartesian representation of colors - X and Z), CIELAB 

(Lightness - L*, Redness - A*, and Yellowness - B*), CIELCH (Lightness - L*, Chroma - C*, 

and hue angle in degrees - H*) and CMYK (Cyan, Magenta, Yellow, and Black). The L 

variable is the same for the CIELAB and CIELCH systems, only one of them was used for 

subsequent analyses. Thus, five color systems were included in the models since they were 

indispensable in predicting SOM through analyses carried out previously. Additional 

information on these five color systems can be obtained from Viscarra Rossel et al. (2006) 

and Mancini et al. (2020). 

Another soil subsample of the ADFE was selected for scanning via a portable X-ray 

fluorescence (pXRF) spectrometer (model Bruker® S1 Titan LE) to determine the total 

elemental content of the samples. This equipment consists of an Rh X-ray tube of 4 W, 15–50 

KeV, 5–100 μA, and a silicon drift detector (SDD) with a resolution of <145 eV, which 

allows the detection of numerous elements between Mg and U on the Periodic Table of 

Elements (Weindorf et al., 2014). The 705 soil samples were scanned for 60 s, in triplicate 

and the mean obtained was used, using the Trace (dual soil) mode integrated with the 

Geochem software, according to Weindorf and Chakraborty (2016). Thus, the following 

elements were used to develop the prediction models: Al, Ag, Al, As, Ba, Bi, Ca, Ce, Cl, Cr, 

Cu, Fe, K, Mn, Nb, Ni, P, Pb, Rb, Rh, S, Si, Sr, Ta, Ti, Tl, V, Y, Zn, and Zr. 

To assess the accuracy of pXRF, the elemental contents of two National Institute of 

Standards and Technology (NIST) certified reference materials (2710a and 2711a) and a 

check sample (CS) provided by the pXRF manufacturer were analyzed. The results were used 

to calculate the percentage of recovery for each element: [% recovery = 100 × (content 

obtained by pXRF/certified content)]. Thus, the recovery values per element (%) are 

presented as follows (2710a / 2711a / CS): Ag (0/0/0); Al (58,8/103,2/97,4); As (0/0/0); Ba 
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(0/0/0); Bi (0/0/0); Ca (19,3/66,1/0); Ce (0/0/0); Cl (0/0/0); Cr (0/0/0); Cu (82,6/67,1/ 95,8); 

Fe (73,6/69,2/94,8); K (83,9/56,2/92,2); Mn (69/60/92,3); Nb (0/0/0); Ni (0/23/106); P 

(314,3/1145,5/0); Pb (0/0/0); Rb (0/86,4/ 0); Rh (0/0/0); S (0/0/0); Si (93,8/91,5/96,4); Sr 

(100/89,8/0); Ta (0/ 0/0); Ti (100,4/75,5/0); Tl (0/0/0); V (0/0/0); Y (0/0/0); Zn (97/85,3/ 0); 

and Zr (0/99/0). Zero values indicate that pXRF did not detect the element or that the element 

had no certified value. Raw elemental contents were used to calibrate the models; no 

correction on these values was made considering the recovery values. 

 

2.3. Statistical analyses 

 

Initially, the SOM content obtained via standard laboratory analysis and the data 

generated by the Nix Pro™ and pXRF sensors were submitted to descriptive statistics to 

obtain the minimum, maximum, mean, standard deviation (SD) and coefficient of variation 

(CV) of the dataset. Next, to help the understanding of the importance of the variables, 

Pearson’s correlation coefficient (r) was calculated between the data obtained by the two 

sensors separately and the SOM content, using the entire data set (n = 705). All statistical 

analyses were performed in R software (R Core Team, 2018). 

Before generating the SOM prediction models, all data obtained by both sensors were 

normalized and scaled using the standard scale function in the R software. This function is 

given by: standardized elemental content = [x - average (x)/standard deviation (x)], where x is 

the total elemental content obtained by pXRF or the dimensionless value of the variables 

obtained by Nix Pro™. At first, the entire dataset (n = 705) was used to generate the models, 

where they were randomly separated into modeling (n = 495, ~ 70%) and validation (n = 210, 

~ 30%) subsets using the createDataPartition function provided by the caret package of R 

software (Kuhn et al., 2018). Special care was taken to keep samples from the A and B 

horizons of the same soil profile in the same dataset (either modeling or validation), to 

maintain true data independence during the validation procedure. It should be noted that the 

use of a dataset that contains different horizons (A and B) allows investigating the possibility 

of creating a general and robust model that is suitable for samples from both A and B 

horizons or when the objective is to determine the content of SOM with depth, which is 

important in the process of evaluating and improving soil profile fertility. 

Thus, SOM prediction models were generated for five different conditions: i) only 

with data from the Nix Pro™ in a dry soil condition (n = 15 predictor variables); ii) only with 

data from the Nix Pro™ in a moist soil condition (n = 15 predictor variables); iii) only with 
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data from the pXRF in a dry soil condition (n = 29 predictor variables); iv) combining data 

from Nix Pro™ + pXRF, both in a dry soil condition (n = 44 predictor variables); and v) 

combining data from the Nix Pro™ in a moist soil condition + pXRF in a dry soil condition (n 

= 44 predictor variables). In all described conditions, the models were also generated with or 

without using the information of the horizons collected as auxiliary input data. For this, three 

different machine learning algorithms were used in the five conditions above mentioned: 

stepwise multiple linear regression (SMLR), support vector machine with linear kernel 

(SVM) and random forest (RF) through the R “Caret” package (Kuhn, 2008). 

The SMLR is a semi-automatic model construction process that was executed after 

applying the variance inflation factor (VIF) to minimize the problem of multicollinearity that 

occurs when working with a dataset with many predictive variables. The least important 

variables were removed using the Akaike information criterion through the step function 

(Akaike, 1973). This procedure ensures that only variables that contribute to the model are 

incorporated into the final model. Variable selection was based on model root mean square 

error (RMSE). 

SVM uses kernel functions, i.e., the input data is plotted into a new hyperspace, where 

separations are performed (Forkuor et al., 2017). The ultimate goal is to obtain an ideal 

hyperspace for adjusting and predicting data using the insensitive loss function that tolerates 

errors less than the constant defined as a limit (Hastie et al., 2009). 

The RF algorithm is a machine learning method that operates by constructing a 

multitude of decision trees and by averaging the results of all the individual trees. Each 

regression tree is manufactured based on the bootstrap samples of the data. To fit each tree, a 

random subset of predictors is applied. The growth of the tree is continued until the specified 

minimum node size is reached (Breiman, 2001; Liaw and Wiener, 2002; Raeesi et al., 2019). 

For this algorithm, the following parameters were established: number of trees (ntrees) = 500, 

number of variables used in each tree (mtry) = 6, corresponding to one third of the number of 

predictors (Liaw and Wiener, 2002). The RF does not provide a final equation, but it does 

provide the importance of the predictor variables for the model. One of the metrics used for 

this purpose is the percentage increase in the mean square error (%IncMSE). The higher the 

value of %IncMSE, the greater the importance of the variable for the model (Forkuor et al., 

2017; Gonzalez et al., 2015). 

 

2.4. Validation of the models 
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The performance of the SOM prediction models in each situation was assessed by the 

validation dataset (remaining 30% of the samples) through the coefficient of determination 

(R2), the root mean square error (RMSE) and the residual prediction deviation (RPD). The R2 

value describes the proportion of the total variance of the observed data that can be explained 

by the model, whose value ranges from 0 to 1, with higher values indicating better agreement 

(Wan et al., 2020). According to Viscarra Rossel et al. (2010), the R2 values for soil attribute 

predictions are considered very good (>0.81), good (0.61–0.8), regular (0.41–0.6) and poor 

(<0.4). The RMSE is a reliable standard statistical metric for model evaluation, commonly 

used in several studies with this approach (Chai and Draxler, 2014). Models with RMSE 

values closer to zero present better performance. For the RPD, Chang et al. (2001) defined 

three categories for this parameter related to the quality and reliability of the models: accurate 

(RPD > 2), moderately accurate (1.4 ≤ RPD ≤ 2), and inaccurate models (RPD < 1.4). Thus, 

the models that provide the highest values of R2 and RPD and the lowest values of RMSE 

were considered optimal for SOM content prediction. 

 

3. Results and discussion 

 

3.1. Descriptive statistics for SOM, Nix Pro™ and pXRF data 

 

3.1.1. Descriptive statistics for SOM 

 

The descriptive statistics of SOM obtained from laboratory analyses for A + B (n = 

705), A (n = 298) and B (n = 407) horizons are presented in Fig. 2. SOM contents in the A 

horizon ranged from 0.80 to 18.21% with mean value of 3.94%, standard deviation of 2.45% 

and a CV value of 62.18%. For the B horizon data, SOM contents ranged from 0.04 to 9.09% 

with mean value of 1.62%, standard deviation of 0.95% and a CV value of 58.64%. Thus, the 

high CV (84.10%) value for the entire dataset used in this work (A + B horizons combined; n 

= 705) indicates high range and variability of SOM contents in the study areas in relation to 

the general mean (2.53%). 
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Fig. 2. Descriptive statistics for soil organic matter (SOM) content obtained from laboratory 

analyses for A + B (n = 705), A (n = 298) and B (n = 407) horizons of soils collected in 

different Brazilian states. SD – standard deviation; CV – coefficient of variation. 

 

This trend was consistent with the findings of Gomes et al. (2019), which also reported 

high range and variability in SOM content across Brazil. Countrywide, these authors also 

confirmed that the highest content of SOM is concentrated in the topsoil, reducing drastically 

with depth, as observed in the present study (Fig. 2). SOM content is influenced by several 

factors such as vegetation (Gomes et al., 2019), topography (Cardinael et al., 2017), climate 

(Munoz-Rojas et al., 2017), soil class (Zhao et al., 2006), soil depth/soil horizons (Li et al., 

2017), soil mineralogy (Dwivedi et al., 2017), soil biota (Komarov et al., 2017), soil 

management (Li et al., 2017) and land use (Silva et al., 2017). In the present work, 

considering the great geographical expression of the sampling places, the aforementioned 

factors explain the high SOM content variability in the present study. 

 

3.1.2. Descriptive statistics for Nix ProTM color sensor 

 

In general, the descriptive statistics of soil color showed high variability according to 

the high CV value obtained in each parameter evaluated (Fig. 3). Results of dry soil condition 

showed, in most cases, the highest CV values ranging from 8.7% (Y-CMYK, yellow) to 

51.4% (K-CMYK, black), as expected, reflecting the high variability of SOM content in this 

study. K represents black color, and the dataset includes both A and B soil horizons, hence 

resulting in a larger amplitude of SOM contents. This might indicate the usefulness of K as a 

predictor variable of SOM content. 
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Fig. 3. Descriptive statistics for each parameter that compose the color systems: 1CIELAB, 

2CIELCH, 3XYZ, 4RGB and 5CMYK obtained by the Nix Pro™ color sensor in Brazilian soil 

samples under dry and moist conditions (n = 705). Hatched bars – dry soil samples; 

Unhatched bars – moist soil samples. 

 

Baumgardner et al. (1969) reported that SOM contents >2.0% tend to mask the effects 

of iron oxides, mainly in surface horizons. Nonetheless, in tropical red soils with high 

hematite content the pigmenting power of this iron oxide mineral prevails (Resende et al., 

2011). Accordingly, this might indicate that color variables that express the “colorfulness” of 

samples, i.e., chroma, could be relevant as predictor variables. In this study, about 50% (n = 

353) of the samples have SOM content >2%, most of them in A horizon (Fig. 2). 

The analyses performed on dry soil samples also provided the highest standard 

deviation and amplitudes of color average values, except for the CMYK system (Fig. 3). In 

this condition, the R (red) and G (green) parameters of the RGB system showed the highest 

average values. In the CMYK system, the Y (yellow) and M (magenta) parameters showed 

the highest average value regardless of the moisture condition of the samples. Considering 

that in CMYK the red color is expressed by Y and M combined, this result reflects the 

mineralogy of the clay fraction of tropical soils, which contains significant amounts of 

hematite and goethite iron oxides (Curi et al., 2017; Kampf et al., 2012; Poggere et al., 2018). 

Hence, tropical soils with low SOM content (<2%) have predominantly yellow colors at the 

surface where SOM favors goethite over hematite formation (Kampf and Curi, 2000) and red, 

red-yellow or yellow colors in the subsurface horizons (Baumgardner et al., 1970; Correa et 

al., 2008; Resende et al., 2011; Ramos et al., 2020). 

The lower variation of results obtained in most parameters of the evaluated color 

systems in moist soil samples were expected since soil color changes when samples are dry 

and moist (Viscarra Rossel et al., 2006). Specifically, moisture darkens soil color, increasing 

its tonality and reducing its brightness (Demattê et al., 2006; Shields et al., 1968; Shonk et al., 

1991). Thus, color of soil samples becomes more homogeneous when moist (Viscarra Rossel 

et al., 2008), as occurred in this current study. In order to illustrate the differences in the 

relative variation of soil color when samples are dry and moist, Fig. 4 shows the plots of some 

color variables reported by Nix Pro™ and the corresponding color of the soil samples when 

dry and moist. Moisture strongly influenced soil color regardless of the color systems reported 

by Nix Pro™. Andrade et al. (2020d) reported darker soil colors when samples were moist, 

decreasing soil sample’s reflectance for tropical soils, similar to the present study. 
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Conversely, Stiglitz et al. (2016) observed that moisture did not cause strong changes in color 

of temperate soils analyzed via Nix Pro™. 
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Fig. 4. Plots of variables from the CIELAB (a), CIELCH (b), XYZ (c), RGB (d) and CMYK 

(e) color systems obtained from Brazilian soil samples under dry and moist conditions (n = 

705) using Nix Pro™ sensor. In X and Y axes, the variables of each color system that 

obtained the greatest ranges were chosen (see the descriptive analysis, Fig. 3). 

 

3.1.3. Descriptive statistics for pXRF sensor 

 

The total elemental contents acquired by pXRF also showed considerable variation 

with high CV value for each element, with values between 19.7% (Al) and 352.9% (Nb) (Fig. 

5). This variation is likely due to mineralogy diversity caused by different parent materials, 

soil classes and degree of weathering as well as other factors that affect elemental contents 

such as land uses, SOM content and soil fertility management (Benedet et al., 2020b; 

Chakraborty et al., 2019; Dijair et al., 2020; Faria et al., 2020; Mancini et al., 2019; Paulette 

et al., 2015; Rawal et al., 2019; Teixeira et al., 2020). 

The highest mean values were observed for Si followed by Al, Fe, Ti, K and Ca (Fig. 

5), which are due to quartz (SiO2) and muscovite (KAl2(Si3Al)O10(OH, F)2), the dominant 

minerals in the sand fraction and strongly resistant to weathering. Conversely, kaolinite 

(Al2Si2O5(OH)4), hematite (α-Fe2O3), goethite (α-FeOOH) and gibbsite (Al(OH)3) are the 

main minerals in the clay fraction, whilst the silt fraction contains minerals present in both the 

previous fractions (sand and clay) (Araujo et al., 2014; Brinatti et al., 2010; Kampf et al., 

2012; Pacheco et al., 2018; Silva et al., 2018). The abundance of these minerals in Brazilian 

soils explains the high values of Al and Fe observed in this study, as these elements tend to 

residually accumulate in weathered-leached soils where they make part of the crystalline 

structure of the aforementioned minerals. High contents of Si are mainly due to the presence 

of quartz and muscovite in the sand fraction and kaolinite in the clay fraction. These results 

corroborate other studies investigating soils in different regions of Brazil and also observed 

high contents of Si, Al and Fe via pXRF when compared with other detected and quantified 

elements (Benedet et al., 2020a; Borges et al., 2020; Dijair et al., 2020; Lima et al., 2019; 

Pelegrino et al., 2019; Silva et al., 2019a, 2019b; Teixeira et al., 2020). 

The high contents of Ti are mainly due to the presence of ilmenite (FeTiO2), rutile 

(TiO2), both found in the sand fraction, and anatase (TiO2 - polymorph of rutile) in the clay 

fraction of tropical soils (Costa et al., 2014; Kampf et al., 2012). Benedet et al. (2020a), Faria 

et al. (2020) and Teixeira et al. (2020) also observed that this element was regularly detected 

and quantified in tropical soils via pXRF. 
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Fig. 5. Descriptive statistics for the total elemental content obtained by portable X-ray 

fluorescence (pXRF) spectrometry in Brazilian soil samples under dry conditions (n = 705). 

Hatched bars - minimum values; Unhatched bars - maximum values. 
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 Calcium content is directly related to the agronomic management of soils under 

cultivated areas (e.g., application of liming and/or agricultural gypsum and mineral 

fertilizers), since in most Brazilian soils Ca is mainly found in exchangeable form; minerals 

commonly found in Brazilian soils are not a source of Ca (Araujo et al., 2014; Brinatti et al., 

2010; Kampf et al., 2012; Pacheco et al., 2018; Silva et al., 2018), except for traces of Ca-

feldspars in sand fractions (Kampf et al., 2003). The contents of K were also influenced by 

agronomic management, as well as by the presence of muscovite (KAl2(Si3Al)O10(OH,F)2) 

and traces of K-feldspars (KAlSi3O8) (Kampf et al., 2012). 

In general, the variability of data obtained for SOM content determined by traditional 

laboratory methods and by the Nix Pro™ and pXRF sensors may contribute to the generation 

of robust and reliable SOM content prediction models, with possible application for soils of 

different tropical biomes. 

 

3.2. Correlations between SOM content and soil color 

 

The correlation between the SOM content and soil color in five color systems 

(CIELAB, CIELCH, XYZ, RGB and CMYK) is shown in Table 1. Results indicate that the 

correlation coefficient between SOM and color parameters of each color system were 

different under dry or moist soil condition. The analyses on moist soil samples provided 

relatively greater correlation values when compared with the dry soil samples. Similar results 

were observed by Demattê et al. (2011), Stiglitz et al. (2017a, 2017b), and Raeesi et al. 

(2019). 

 

Table 1  

Correlation coefficient and significance value (p) between soil organic matter (SOM) content 

and Nix Pro™ sensor parameters in dry and moist soil samples collected in Brazil. 

Soil 
Nix ProTM sensor parameters 

L A B C H X Y Z R G B C M Y K 

Dry 
-0.19 -0.26 -0.32 -0.33 0.09 -0.25 -0.22 -0.12 -0.28 -0.15 -0.07 0.35 0.03 -0.08 0.19 

*** *** *** *** * *** *** *** *** *** ns *** ns * *** 

Moist 
-0.28 -0.37 -0.42 -0.44 0.03 -0.32 -0.28 -0.13 -0.36 -0.21 -0.06 0.43 -0.09 -0.37 0.29 

*** *** *** *** ns *** *** *** *** *** ns *** ** *** *** 

*, **, ***Significant at p < 0.05, p < 0.01, and p < 0.001, respectively. 

 

For moist soil samples, the highest negative correlation values were obtained for the 

parameters: C–CIELCH (represents chroma) (r = − 0.44 p < 0.001), B–CIELAB (represents 
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yellowness) (r = − 0.42 p < 0.001), A–CIELAB (represents redness) and Y–CMYK 

(represents the yellow color) (both r = − 0.37 p < 0.001), and R–RGB (represents the red 

color) (r = − 0.36 p < 0.001). Also, a positive correlation was obtained for parameters C–

CMYK (represents the cyan color) (r = 0.43 p < 0.001) and K–CMYK (represents black) (r = 

0.30 p < 0.001). These correlation values illustrate that as SOM content increases, there is an 

equivalent increase in dark and grayish color parameters relative to others (i.e. combination of 

K and C-CMYK, dark-green colors), whilst chroma values reduce. For comparison purposes, 

the highest correlations obtained under dry soil conditions were − 0.33 (p < 0.001), − 0.32 (p 

< 0.001) and − 0.26 (p < 0.001) for the parameters C (chroma), B (yellowness) and A 

(redness) of the CIELCH and CIELAB systems, besides a positive correlation of 0.35 (p < 

0.001) for the parameter C of the CMYK system (Table 1). Thus, moist soil promotes a 

greater correlation between SOM and the color parameters of each color system. 

Higher correlation values in moist soil samples indicate that the use of the Nix Pro™ 

color sensor can provide better results for the prediction of SOM content in this condition 

than under dry soil conditions. Chroma or saturation represents the intensity or purity of a 

color in relation to gray (Viscarra Rossel et al., 2006), and an increase in SOM content 

reduces C values and the shade of soil colors (Baumgardner et al., 1969; Demattˆe et al., 

2011). A more detailed analysis shows that a reduction in the tonality of soil color parameters 

occurred in red (parameters A-Redness and R-Red) and yellow (parameters B-Yellowness and 

Y-Yellow), which are very common colors in tropical soils as previously discussed. 

Stiglitz et al. (2017a, 2017b) correlated SOC and the CIELAB color system and 

observed that the highest correlations were − 0.63 and − 0.84 for parameters A (redness) and 

B (yellowness) in moist soil samples and − 0.71 and − 0.73 in dry soil samples. 

Mukhopadhyay et al. (2020), working with the same color system, also observed correlation 

values of − 0.83 and − 0.77 between SOC and L (lightness) and A (redness) parameters in dry 

soil samples. Correlation values of the above cited studies were higher than those obtained in 

this study for the CIELAB system, which were caused by the greater number of soil classes 

with more oxidic mineralogy, soil samples, and the use of both A and B horizons samples in 

the same dataset herein. In addition to the contrasting environmental conditions, these 

differences created larger data variability resulting in lower correlation values, corroborating 

the results obtained by Raeesi et al. (2019). 

 

3.3. Correlation between SOM and elemental contents obtained by pXRF 
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Correlation values between SOM and elemental contents obtained by pXRF are shown 

in Table 2. The greatest positive correlations were obtained between SOM and calcium (Ca) (r 

= 0.34, p < 0.001), manganese (Mn) (r = 0.32, p < 0.001), sulfur (S) (r = 0.26, p < 0.001) and 

phosphorus (P) (r = 0.20, p < 0.001). The other results showed positive or negative correlation 

values close to zero. Most tropical soils have only traces of Ca-, S- and P-bearing minerals 

(Araujo et al., 2014; Brinatti et al., 2010; Kampf et al., 2012; Pacheco et al., 2018; Silva et al., 

2018). Thus, most Ca, S and P detected by pXRF in soil samples is related to agronomic 

practices such as application of limestone and/or agricultural gypsum and mineral fertilizers 

(mainly phosphate), commonly used in Brazilian soils to correct superficial and/or 

subsuperficial acidity and improve fertility in agricultural areas (Lopes and Guilherme, 2016). 

In general, these agronomic practices combined with crop rotation/succession and soil 

conservation management/practices (e.g., no-tillage with cover crops or minimum 

cultivation), positively influence productivity, shoot and root biomass of cultivated plants (Li 

et al., 2018; Zandoná et al., 2015). Consequently, it raises the input of plant residues to the 

soil, which causes an increase in SOM content over time, mainly in the surface layer (0–30 

cm) (Bertol et al., 2004; Castro Filho et al., 1998). 

 

Table 2 Correlation coefficient and significance value (p) between soil organic matter (SOM) 

and elemental contents determined via portable X-ray fluorescence spectrometry (pXRF) in 

dry soil samples collected in Brazil. 

Soil 
pXRF-determined elemental contents 

Ag Al As Ba Bi Ca Ce Cl Cr Cu Fe K Mn Nb Ni 

Dry 

-0.09 -0.09 -0.06 -0.06 -0.06 0.34 -0.18 -0.02 0.12 0.08 0.14 0.01 0.32 -0.04 0.05 

* * ns ns ns *** *** ns *** * *** ns *** ns ns 

P Pb Rb Rh S Si Sr Ta Ti Tl V Y Zn Zr  

0.20 0.05 -0.01 -0.12 0.26 -0.06 -0.01 -0.15 0.02 -0.07 0.15 -0.01 0.13 -0.02  

*** ns ns ** *** ns ns *** ns ns *** ns *** ns  

*, **, ***Significant at p < 0.05, p < 0.01, and p < 0.001, respectively. 

 

Manganese has been strongly correlated with pH (Faria et al., 2020) and Ca (Teixeira 

et al., 2020) in Brazilian agricultural soils. This might be explained by the application of 

liming and/or agricultural gypsum, which may contain Mn as impurity. Thus, frequent 

applications of limestone and gypsum may increase the contents of this element in soil, as 

well as pH (Valadares et al., 1974). Also, Mn-oxide minerals influence the development of 

tropical soil darker colors (lower values and chromas) (Carvalho Filho et al., 2011). 
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3.4. Model performance in SOM content prediction 

 

Performance of models trained with the dataset acquired by the Nix Pro™ and pXRF 

separately and combined, in dry and moist soil samples, with and without horizons data is 

shown in Fig. 6. When horizons were not used as auxiliary input data, the best models for 

SOM content prediction were generated through the combination of data from Nix Pro™ and 

pXRF, with Nix Pro™ data obtained on moist soil samples. In this condition, RF 

outperformed the other algorithms, delivering values of R2 = 0.63, RMSE = 1.40% and RPD 

of 1.73. Using RF only with pXRF data provided models with intermediate performance 

presenting values of R2 = 0.56, RMSE = 1.34% and RPD = 1.60. In contrast, the worst SOM 

content prediction models were generated only with Nix Pro™ data, where the best model 

was obtained with moist soil samples through the RF algorithm with values of R2 = 0.33, 

RMSE = 1.34% and RPD = 1.33. 

The incorporation of soil horizons data into the models increased R2 and RPD and 

reduced RMSE values, mainly in prediction models generated with data from each sensor 

(Fig. 6). However, even with improvements, the worst results were likewise produced by 

models generated only with data from Nix Pro™, with R2 = 0.50, RMSE = 1.40% and RPD = 

1.53 through the RF algorithm, using moist soil samples, while models generated only with 

pXRF data separately delivered superior results to those using only the Nix Pro™ via RF, 

delivering R2 = 0.64, RMSE = 1.20% and RPD of 1.78. Lastly, combining Nix Pro™ and 

pXRF data produced the best models in both dry and moist conditions. The RF algorithm 

generated the model with the best performance using moist soil samples (R2 = 0.73, RMSE = 

1.09% and RPD = 2.00). 

Figs. 6 and 7 suggest that the use of sensors separately tend to underestimate SOM 

content in soils with high contents of this attribute, regardless the algorithm, the use of soil 

horizon data as predictor variables or the moisture condition of the samples. However, this 

trend did not occur with the combination of sensors in moist soil samples via the best 

performing algorithm (RF), even with soil horizons as auxiliary input data. This approach 

accurately predicted high and low SOM contents, as the scatter points and the 1:1 line were 

closer than those based on single sensor datasets. 
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Fig. 6. Coefficient of determination (R2), root mean square error (RMSE) and residual 

prediction deviation (RPD) for soil organic matter (SOM) content prediction models in 

Brazilian soil samples. SMLR - stepwise multiple linear regression; SVM - support vector 

machine with linear core; RF - random forest. 
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Fig. 7. Scatter plots between the soil organic matter (SOM) obtained from traditional 

laboratory analysis and content predicted by models trained with data obtained by Nix Pro™ 

and portable X-ray fluorescence (pXRF) spectrometry separately and combined, in dry and 

moist soil samples, with or without the introduction of soil horizons data as a predictor 
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variable in Brazilian soil samples. SMLR - stepwise multiple linear regression; SVM - 

support vector machine with linear core; RF - random forest. 

 

The Nix Pro™ color sensor has been more commonly used in soil science since 2016 

(Stiglitz et al., 2016, 2017a) by demonstrating that Nix Pro™ can successfully generate 

models capable of predicting SOM and SOC contents. The authors concluded that only the L 

(lightness) and A (redness) parameters of the CIELAB color system combined with soil 

sampling depth were sufficient to generate SOC content prediction models with values of R2 

= 0.80 for dry soil samples and R2 = 0.73 for moist soil samples through multiple linear 

regression from soils of the USA. Similar results were obtained by Mukhopadhyay et al. 

(2020), who obtained R2 values of 0.70 for SOC content prediction models in dry soil samples 

in India; however, the authors did not include data from soil horizons in the model. In 

contrast, Raeesi et al. (2019), used Nix Pro™ data to predict SOM content in soils of arid and 

semi-arid areas in Iran and observed that the best prediction model was generated using the 

RF algorithm for moist soil samples with an R2 of 0.62. In the present study, using only Nix 

Pro™ data, the best R2 value was 0.50 via the RF algorithm in moist soil samples and with the 

addition of soil horizons data as an auxiliary variable. This result was considerably lower than 

those reported in the literature, regardless of soil moisture condition and the algorithm used, 

probably due to the large variability of soil colors used herein, associated with the much 

greater content of Fe-oxide minerals and their strong pigmenting power, mainly hematite. 

Conceivably, models developed per soil color (e.g., red, red-yellow, yellow, gray, black, etc.) 

could generate better results using only Nix Pro™. 

The use of only pXRF data for prediction of SOM or SOC content can also be found 

in the literature. Wang et al. (2015) concluded that pXRF data were able to predict SOC 

content with an R2 of 0.77 via RF in soils from the USA. However, for soils in tropical 

regions, Silva et al. (2017), Andrade et al. (2020b) and Tavares et al. (2020b) obtained 

prediction models for SOM with R2 of 0.60 (Random Forest), 0.59 (eXtreme Gradient 

Boosting) and 0.61 (multiple linear regression), respectively. Conversely, sensor data 

combination (Nix Pro™ + pXRF) tested in this study was sufficient to obtain good 

predictions with an R2 = 0.73, RMSE = 1.09% and RPD = 2.00 using the RF for moist soil 

samples with soil horizons as auxiliary input data; a promising achievement for tropical soils 

research. These findings also highlight the importance of soil moisture conditions in the 

generation of reliable and robust models for the prediction of SOM content in tropical soils. 
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The lower accuracy of predictive models using data only from Nix Pro™ in soils from 

different regions of the world reinforces that additional tests are important to achieve an ideal 

methodology to provide the best results for each environmental condition. The present study, 

to the authors’ knowledge, is the first attempt to use data from Nix Pro™ in the generation of 

models capable of predicting SOM content in Brazilian soils. However, the results obtained 

herein reinforce that the information from a single proximal sensor is sometimes not enough 

to obtain promising and reliable predicted results due to the complex nature and large 

variability of SOM contents (Wan et al., 2019, 2020), mainly for Brazilian soils, which 

present a peculiar simple mineralogy with a much higher proportion of Fe-oxide minerals, 

mainly hematite, than temperate soils. This unique condition requires the combination of 

proximal sensors and robust algorithms for predicting SOM content with greater accuracy. 

The number of studies exploring this approach is constantly growing in Brazil and worldwide 

(Andrade et al., 2020c, 2020d; Benedet et al., 2020a, 2020b; O’Rourke et al., 2016; Wan et 

al., 2019; Wang et al., 2015; Xu et al., 2019). 

 

3.5. Importance of predictor variables for the best model 

 

Prediction results showed that the combination of data obtained by both sensors, using 

soil horizons data as a predictor variable, generated the best prediction model via the RF 

algorithm, with an R2 = 0.73 in a large and variable dataset (Figs. 6 and 7). The relative 

importance of the predictor variables calculated using the percent of increment in mean square 

error (%IncMSE) for the best SOM content prediction model is shown in Fig. 8. In general, 

the most important variables for predicting SOM content were those with the highest 

correlations with this attribute (Tables 1 and 2), as discussed in the previous sections. Thus, 

the most important variable for the model was soil horizons, followed by Ca, chroma (C – 

CIELCH), Si, yellowness (B–CIELAB), and Mn (Fig. 8). As SOM content decreases with soil 

depth (Jobbagy and Jackson, 2000; Li et al., 2020), it explains the importance of the soil 

horizons as an auxiliary variable for the models. The importance of soil horizons data in SOM 

content prediction models has already been reported in studies conducted by Mikhailova et al. 

(2017) and Stiglitz et al. (2017a), but only in models developed for temperate soils. The 

importance of the color variable chroma relates to the decrease in chroma values as SOM 

increases, and B – which represents color variation from blue to yellow – might be associated 

with changes in saturation caused by SOM content variation. 
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Fig. 8. Importance of variables in decreasing order for the model built using the random forest 

(RF) algorithm trained from combined data obtained by Nix Pro™ and portable X-ray 

fluorescence (pXRF) spectrometry, in moist Brazilian soil samples, combined with soil 

horizons as an auxiliary input data. 

 

The importance of Ca and Mn is related to the application of limestone and/or 

agricultural gypsum to correct surface and/or subsurface soil acidity (Lopes and Guilherme, 

2016). In addition, Mn-oxide minerals favor darker colors of tropical soils. The importance of 

Si is mainly associated with quartz, a mineral very resistant to weathering, commonly found 

in the coarse fractions of tropical soils, besides kaolinite in the clay fraction. Thus, sandy soils 

are largely dominated by quartz and showed the lowest contents of SOM, due to the 

dominance of sparse vegetation in these areas, causing little deposition of plant biomass to the 

soil, and high decomposition rates through microorganisms, associated with great porosity. 

Conversely, clayey soils, due to the higher specific surface area, tend to present a greater 

accumulation of SOM (Dijair et al., 2020; Kampf et al., 2012; Silva et al., 2019a, 2019b; 

Silva et al., 2020), taking into account more available microsites for strong interaction 

between these soil particles. 

The importance of the color variable chroma relates to the decrease in chroma values 

as SOM increases, especially when soil is moist (Baumgardner et al., 1969; Demattˆe et al., 

2006; Demattê et al., 2011; Shields et al., 1968; Shonk et al., 1991). Variables L (lightness of 
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color) and K (black) were not as relevant as variables associated with red/ yellow colors and 

saturation, showing that the discoloring caused by SOM was more significant to predictions 

than color brightness (Table 1). This might indicate a trend for very weathered-leached 

tropical soils, naturally presenting greater color saturation due to the much higher content of 

Fe-oxide minerals. 

Finally, Nix Pro™ alone was not sufficient to generate reliable prediction models for 

SOM content in tropical soils regardless of the tested algorithms, soil moisture conditions and 

the introduction of sampled horizon as auxiliary data. These findings differ from those 

reported by Stiglitz et al. (2017a) using Nix Pro™ in temperate soils. However, it is 

advantageous to use the combined data of Nix Pro™ + pXRF, along with the addition of soil 

horizons information as an auxiliary input data, in the generation of robust models through the 

RF algorithm, capable of predicting SOM content in tropical soils, mainly in moist soils. 

Thus, despite the large variability of soil classes, sampling depths, land uses and sampling 

sites, the best prediction model for SOM (Random Forest) in this study with tropical soils was 

classified according to Chang et al. (2001) and Viscarra Rossel et al. (2010) as good and with 

satisfactory predictive capacity, since it presents values of R2 = 0.73, RMSE = 1.09% and 

RPD = 2.00. This indicates the reliability of this method for general SOM content assessments 

and motivates further investigations on the use of this approach in new studies about soil 

carbon dynamics and predictions via proximal sensors. The prospects for more specific uses 

of SOM modeling require further research, but the results herein demonstrate the possibility 

of SOM prediction even in complex and highly variable soil samples. Advantages of this 

approach include reduced time to obtain SOM results in comparison to traditional wet-

chemistry laboratory analyses, minimal sample preparation, elimination of chemical waste 

(environmentally-friendly method) and reduction in costs of analyses (Benedet et al., 2021). 

 

4. Conclusions 

 

SOM content in Brazilian soils was predicted with accuracy using pXRF and Nix 

Pro™ sensors (R2 = 0.73, RMSE = 1.09% and RPD = 2.00) (analyses via Nix Pro™ were 

performed in moist soil samples). These results were attained via the RF algorithm with 

combined data from the Nix Pro™ and pXRF sensors and using soil horizons as auxiliary 

input data. However, the use of sensors data separately was not sufficient to generate reliable 

SOM content prediction models, regardless of soil moisture conditions, probably because the 

soils were rife with Fe-oxide minerals, mainly hematite. For tropical soils, adding horizons as 
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auxiliary input data and using moist soil samples in the analyses via Nix Pro™ yielded 

promising results in all evaluated models. The most important predictor variable for SOM 

content was soil horizons, followed by variables: Ca, chroma (C–CIELCH), Si, yellowness 

(B–CIELAB), and Mn. The correlations obtained between SOM and the total elemental 

contents obtained by pXRF showed higher values for the elements Ca, Mn, S and P. Results 

show the applicability of this method for general SOM prediction in tropical soils, but 

seemingly indicate the promising possibility of using such proximal sensors in more specific 

assessments of carbon in soils, especially considering more homogeneous datasets. The 

acquired results showed that the combination of data provided by Nix Pro™ and pXRF can 

accurately be used to model and predict SOM content for a wide variety of Brazilian soils, 

including different soil classes, parent materials, sampling depths, land uses and sampling 

sites. 

 

5. Acknowledgments  

 

The authors would like to thank the Brazilian funding agencies named CNPq, CAPES and 

FAPEMIG for the financial support for the development of this study. 

 

References 

 

Akaike, H., 1973. Information theory and an extension of maximum likelihood principle. In: 

Petrov, B.N., Csaki, F. (Eds.), Second International Symposium on Information Theory, 

Akademia Kiado, Budapest. pp. 267–281. 

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Moraes G.J.L., Sparovek, G., 2013. Köppen’s 

climate classification map for Brazil. Meteorologische Zeitschrift 22, 711–728. 

https://doi.org/10.1127/0941-2948/2013/0507 

Andrade, R, Faria, W., Silva, S., Chakraborty, S., Weindorf, D., Mesquita, L., Guilherme, L., 

Curi, N., 2020a. Prediction of soil fertility via portable X-ray fluorescence (pXRF) 

spectrometry and soil texture in the Brazilian Coastal Plains. Geoderma 357, 113960. 

https://doi.org/10.1016/j.geoderma.2019.113960 

Andrade, R., Silva, S.H.G., Weindorf, D., Chakraborty, S., Faria, W.M., Mesquita, L.F., 

Guilherme, L.R.G., Curi, N., 2020b. Assessing models for prediction of some soil 

chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in 

Brazilian Coastal Plains. Geoderma 357, 113957. 



76 

 

https://10.1016/j.geoderma.2019.113957 

Andrade, R., Silva, S.H.G., Faria, W.M., Poggere, G.C., Barbosa, J.Z., Guilherme, L.R.G., 

Curi, N., 2020c. Proximal sensing applied to soil texture prediction and mapping in 

Brazil. Geoderma Regional 23, e00321. https://doi.org/10.1016/j.geodrs.2020.e00321 

Andrade, R., Silva, S.H.G., Weindorf, D.C., Chakraborty, S., Missina, W., Guilherme, 

L.R.G., Curi, N., 2020d. Tropical soil order and suborder prediction combining optical 

and X-ray approaches. Geoderma Regional 23, e00331. 

https://doi.org/10.1016/j.geodrs.2020.e00331 

Anjos, L.H.C., Jacomine, P.T.K., Santos, H.G., Oliveira, V.A., Oliveira, J.B., 2012. Sistema 

brasileiro de classificação de solos. In: Ker, J.C., Curi, N., Schaefer, C.E.G.R., Vidal- 

Torrado, P. (Eds.), Pedologia - Fundamentos. SBCS, Viçosa. pp. 303–343. 

Araujo, M.A., Pedroso, A.V., Amaral, D.C., Zinn, Y.L., 2014. Paragênese mineral de solos 

desenvolvidos de diferentes litologias na região sul de Minas Gerais. Revista Brasileira 

de Ciencia do Solo 38, 11–25. 

Baumgardner, M.F., Kristof, S., Johannsen, C.J., Zachary, A., 1969. Effects of organic matter 

on the multispectral properties of soils. Agricultural Experiment Station Journal 3939, 

413–422. 

Baumgardner, M.F., Kristof, S.J., Johannsen, C.J., Zachary, A.L., 1970. The effects of 

organic matter on multispectral properties of soils. Proceedings of the Indiana Academy 

of Science 79, 413–422. 

Benedet, L., Acuna-Guzman, S.F., Faria, W.M., Silva, S.H.G., Mancini, M., Teixeira, A.F.S., 

Pierangeli, L.M.P., Acerbi Júnior, F.W., Gomide, L.R., Padua Júnior, A.L., Souza, I.A., 

Menezes, M.D., Marques, J.J., Guilherme, L.R.G., Curi, N., 2021. Rapid soil fertility 

prediction using X-ray fluorescence data and machine learning algorithms. Catena 197, 

105003. https://doi.org/10.1016/j.catena.2020.105003 

Benedet, L., Faria, W.M., Silva, S.H.G., Mancini, M., Demattê, J.A.M., Guilherme, L.R.G., 

Curi, N., 2020a. Soil texture prediction using portable X-ray fluorescence spectrometry 

and visible near-infrared diffuse reflectance spectroscopy. Geoderma 376. 

https://doi.org/10.1016/j.geoderma.2020.114553 

Benedet, L., Faria, W.M., Silva, S.H.G., Mancini, M., Guilherme, L.R.G., Demattê, J.A.M., 

Curi, N., 2020b. Soil subgroup prediction via portable X-ray fluorescence and visible 

near-infrared spectroscopy. Geoderma 365, 114212. 

https://doi.org/10.1016/j.geoderma.2020.114212 

Bertol, I., Albuquerque, J.A., Leite, D., Amaral, A.J., Zoldan Junior, W.A., 2004. Physical 



77 

 

soil properties of conventional tillage and no-tillage, in crop rotation and succession, 

compared with natural pasture. Revista Brasileira de Ciencia do Solo 28, 155–163. 

Borges, C.S., Weindorf, D.C., Nascimento, D.C., Curi, N., Guilherme, L.R.G., Carvalho, 

G.S., Ribeiro, B.T., 2020. Comparison of portable X-ray fluorescence spectrometry and 

laboratory-based methods to assess the soil elemental composition: Applications for 

wetland soils. Environmental Technology & Innovation 19, 100826. 

https://doi.org/10.1016/j.eti.2020.100826 

Broadbent, F. E. (1953). The soil organic fraction. Advances in Agronomy, 153–183. 

doi:10.1016/s0065-2113(08)60229-1 

Brodský, L., Vašát, R., Klement, A., Zádorová, T., Jakšík, O., 2013. Uncertainty propagation 

in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma 199, 54–63. 

http://dx.doi.org/10.1016/j.geoderma.2012.11.006 

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32. 

Brinatti, A.M., Mascarenhas, Y.P., Pereira, V.P., Partiti, C.S.M., Macedo, Á., 2010. 

Mineralogical characterization of a highly-weathered soil by the rietveld method. 

Scientia Agricola 67, 454–464. https://doi.org/10.1590/s0103-90162010000400013 

Cardinael, R., Chevallier, T., Cambou, A., Beral, C., Barthes, B.G., Dupraz, C., Chenu, C., 

2017. Increased soil organic carbon stocks under agroforestry: a survey of six different 

sites in France. Agriculture, Ecosystems & Environment 236, 243–255. 

Carvalho Filho, A., Curi, N., Marques, J.J.G.S.M., Shinzato, E., Freitas, D.A.F., Jesus, E.A., 

Massahud, R.T.R., 2011. Óxidos de Manganês em Solos do Quadrlátero Ferrífero (MG). 

Revista Brasileira de Ciencia do Solo 35, 793–804. 

Castro Filho, C., Muzilli, O., Padanoschi, A.L., 1998. Soil aggregate stability and its relation 

with organic carbon in a typic haplorthox, as a function of tillage systems, crop rotations 

and soil sample preparation. Revista Brasileira de Ciencia do Solo 22, 527–538. 

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error 

(MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model 

Development 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014 

Chakraborty, S., Li, B., Weindorf, D.C., Deb, S., Acree, A.P., Panda, P., 2019. Use of 

portable X-ray fluorescence spectrometry for classifying soils from different land use 

land cover systems in India. Geoderma 338, 5–13. 

https://doi.org/10.1016/j.geoderma.2018.11.043 

Chang, C., Laird, D.A., Mausbach, M.J., Hurburgh, C.R.J., 2001. Near-infrared reflectance 

spectroscopy-principal components regression analyses of soil properties. Soil Science 



78 

 

Society of America Journal 65, 480–490. https://doi.org/10.2136/sssaj2001.652480x 

Chatterjee, A., Lal, R., Wielopolski, L., Martin, M.Z., Ebinger, M.H., 2009. Evaluation of 

different soil carbon determination methods. Critical Reviews in Plant Science 28, 164–

178. https://doi.org/10.1080/07352680902776556 

Correa, M.M., Ker, J.C., Barrón, V., Fontes, F.M.P., Torrent, J., Curi, N., 2008. 

Caracterização de óxidos de ferro de solos do ambiente Tabuleiros Costeiros. Revista 

Brasileira Ciência do Solo 32, 1017–1031. https://doi.org/10.1590/S0100-

06832008000300011 

Costa, S.Â.D., Ker, J.C., Simões, D.F.F., Fontes, M.P.F., Fabris, J.D., Andrade, F.V., 2014. 

Pedogênese e classificação de latossolos desenvolvidos de itabiritos no Quadrilátero 

Ferrífero, MG. Revista Brasileira de Ciencia do Solo 38, 359–371. 

https://doi.org/10.1590/S0100-06832014000200001 

Curi, S., Silva, S.H.G., Poggere, G.C., Menezes, M.D., 2017. Mapeamento de Solos e 

Magnetismo no Campus da UFLA Como Traçadores Ambientais, First. ed. 147p. 

Demattê, J.A.M., Bortoletto, M.A.M., Vasques, G.M., Rizzo, R., 2011. Quantificação de 

matéria orgânica do solo através de modelos matemáticos utilizando colorimetria no 

sistema munsell de cores. Bragantia 70, 590–597. https://doi.org/10.1590/S0006-

87052011005000006 

Demattê, J.A.M., Sousa, A.A., Alves, M.C., Nanni, M.R., Fiorio, P.R., Campos, R.C., 2006. 

Determining soil water status and other soil characteristics by spectral proximal sensing. 

Geoderma 135, 179–195. 

Dijair, T.S.B., Silva, F.M., Teixeira, A.F.S., Silva, S.H.G., Guilherme, L.R.G., Curi, N., 2020. 

Correcting field determination of elemental contents in soils via portable X-ray 

fluorescence spectrometry. Ciência e Agrotecnologia 44. https://doi.org/10.1590/1413-

7054202044002420 

Dotto, A.C., Dalmolin, R.S.D., Caten, T.A., Grunwald, S., 2018. A systematic study on the 

application of scatter-corrective and spectral-derivative preprocessing for multivariate 

prediction of soil organic carbon by Vis-NIR spectra. Geoderma 314, 262–274. 

https://doi.org/10.1016/j.geoderma.2017.11.006 

Duda, B.M., Weindorf, D.C., Chakraborty, S., Li, B., Man, T., Paulette, L., Deb, S., 2017. 

Soil characterization across catenas via advanced proximal sensors. Geoderma 298, 78–

91. 

Dwivedi, D., Riley, W.J., Torn, M.S., Spycher, N., Maggi, F., Tang, J.Y., 2017. Mineral 

properties, microbes, transport, and plant-input profiles control vertical distribution and 



79 

 

age of soil carbon stocks. Soil Biology and Biochemistry 107, 244–259. 

https://doi.org/10.1016/j.soilbio.2016.12.019 

Faria, A.J.G., Silva, S.H.G., Melo, L.C.A., Andrade, R., Mancini, M., Mesquita, L.F., 

Teixeira, A.F.S., Guilherme, L.R.G., Curi, N., 2020. Soils of the Brazilian Coastal Plains 

biome : prediction of chemical attributes via portable X-ray fluorescence (pXRF) 

spectrometry and robust prediction models. Soil Research 59, 640–653. 

https://doi.org/10.1071/SR20136 

Forkuor, G., Hounkpatin, O., Welp, G., Thiel, M., 2017. High resolution mapping of soil 

properties using Remote Sensing variables in south-western Burkina Faso: A comparison 

of machine learning and multiple linear regression models. PLoS ONE 12, 1–21. 

https://doi.org/10.1371/journal.pone.0170478 

Gomes, L.C., Faria, R.M., Souza, E., Veloso, G.V., Schaefer, C.E.G.R., Filho, E.I.F., 2019. 

Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340, 337–350. 

https://doi.org/10.1016/j.geoderma.2019.01.007 

González, S., Herrera, F., García, S., 2015. Monotonic random forest with an ensemble 

pruning mechanism based on the degree of monotonicity. New Generation Computing 

33, 367–388. 

Hastie, T., Tibshirani, R.J., Friedman, J.H., 2009. The elements of statistical learning: data 

mining, inference, and prediction, second. ed. https://doi.org/10.1007/b94608 

Horta, A., Malone, B., Stockmann, U., Minasny, B., Bishop, T.F.A., McBratney, A.B., 

Pallasser, R., Pozza, L., 2015. Potential of integrated field spectroscopy and spatial 

analysis for enhanced assessment of soil contamination: A prospective review. 

Geoderma 241–242, 180–209. https://doi.org/10.1016/j.geoderma.2014.11.024 

Howard, P. (1965). The carbon-organic matter factor in various soil types. Oikos, 15(2), 229-

236. doi:10.2307/3565121 

Jia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., Shi, Z., 2017. Organic carbon prediction in soil 

cores using VNIR and MIR techniques in an alpine landscape. Scientific Reports 7, 1–9. 

https://doi.org/10.1038/s41598-017-02061-z 

Jobbagy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its re- 

lation to climate and vegetation. Ecological Applications 10, 423–436. 

Johnston, A.E., Poulton, P.R., Coleman, K., 2009. Soil Organic Matter. Its Importance in 

Sustainable Agriculture and Carbon Dioxide Fluxes, 1st ed, Advances in Agronomy. 

Elsevier Inc. https://doi.org/10.1016/S0065-2113(08)00801-8 

Kagiliery, J., Chakraborty, S., Acree, A., Weindorf, D.C., Brevik, E.C., Jelinski, N.A., Li, B., 



80 

 

Jordan, C., 2019. Rapid quantification of lignite sulfur content: Combining optical and 

X-ray approaches. International Journal of Coal Geology 216 

https://doi.org/10.1016/j.coal.2019.103336. 

Kämpf, N., Marques, J.J., Curi, N., 2012. Mineralogia de Solos Brasileiros, in: In: Pedologia 

Fundamentos. SBCS, Viçosa, MG. p. 343. 

Kämpf, N., Woods, W.I., Sombroek, W., Kern, D.C., Cunha, T.J.F., 2003. Classification of 

Amazonian Dark Earths and other ancient anthropic soils. p. 77-102. In: Lehmann, J.; 

Kern, D.C.; Glaser, B.; Woods, W.I. (Eds.). Amazonian Dark Earths. Origin, properties 

and management. Kluwer Academic Publishers, Dordrecht. 

Kämpf, N., Curi, N., 2000. Óxidos de ferro: Indicadores de atributos e ambientes 

pedogenênicos e geoquímicos. In: Novais, R.F., Alvarez V.H., Schaefer, C.E.G.R., eds. 

Tópicos em ciência do solo. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, 

p.107-138. 

Kheir, R.B., Greve, M.H., Bøcher, P.K., Greve, M.B., Larsen, R., McCloy, K., 2010. 

Predictive mapping of soil organic carbon in wet cultivated lands using classification-

tree based models: The case study of Denmark. Journal of Environmental Management 

91, 1150–1160. https://doi.org/10.1016/j.jenvman.2010.01.001 

Komarov, A., Chertov, O., Bykhovets, S., Shaw, C., Nadporozhskaya, M. Frolov, P., 

Zubkova, E., 2017. RomulHum model ofsoil organic matter formation coupled with soil 

biota activity. I. Problem formulation, model description, and testing. Ecological 

Modelling 345, 113–124. 

Kuhn, M., 2008. Building Predictive Models in R Using the caret Package. Journal of 

Statistical Software 28, 1–26. https://doi.org/10.18637/jss.v028.i05 

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, 

Z., Kenkel, B., Team, R.C., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, 

Y., Candan, C., Hunt, T., 2018. Package ‘caret’. https://cran.r-project.org/web/ 

packages/caret/caret.pdf. Accessed 30 Jul 2020. 

Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.S., 2001. Methods of Assessment of Soil 

Carbon. CRC Press, Boca Raton, FL. 696p.  

Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A.C., Et., A., 

2018. Global Carbon Budget 2018. Earth System Science Data Discussions 10, 2141–

2194. https://doi.org/10.5194/essd-10-2141-2018 

Li, Q., Li, A., Dai, T., Fan, Z., Luo, Y., Li, S., Yuan, D., Zhao, B., Tao, Q., Wang, C., Li, B., 

Gao, X., Li, Y., Li, H., Wilson, J.P., 2020. Depth-dependent soil organic carbon 



81 

 

dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. 

Global Change Biology 26, 4134–4146. https://doi.org/10.1111/gcb.15110 

Li, Y., Cui, S., Chang, S.X., Zhang, Q., 2018. Liming effects on soil pH and crop yield 

depend on lime material type , application method and rate , and crop species : a global 

meta-analysis. 128-137 19, 1393–1406. https://doi.org/10.1007/s11368-018-2120-2 

Li, Z., Liu, C., Dong, Y., Chang, X., Nie, X., Liu, L., Zeng, G., 2017. Response of soil 

organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly–

gully region of China. Soil & Tillage Research 166, 1–9. 

Liaw, A., Wiener, M., 2002. Classification and regression by random forest. R News 2, 18–

22. 

Lima, M.T., Weindorf, D.C., Curi, N., Guilherme, L.R.G., Lana, R.M.Q., Ribeiro, B.T., 2019. 

Geoderma Elemental analysis of Cerrado agricultural soils via portable X-ray 

fluorescence spectrometry : Inferences for soil fertility assessment. Geoderma 353, 264–

272. https://doi.org/10.1016/j.geoderma.2019.06.045 

Lopes, A.S., Guilherme, L.R.G., 2016. A career perspective on soil management in the 

Cerrado Region of Brazil. Advances in Agronomy 137, 1–72. 

Lorenz, K., Lal, R., 2016. Environmental Impact of Organic Agriculture, Advances in 

Agronomy. Elsevier Inc. https://doi.org/10.1016/bs.agron.2016.05.003 

Mancini, M., Weindorf, D.C., Chakraborty, S., Silva, S.H.G., Teixeira, A.F.S., Guilherme, 

L.R.G., Curi, N., 2019. Tracing tropical soil parent material analysis via portable X-ray 

fluorescence (pXRF) spectrometry in Brazilian Cerrado. Geoderma 337, 718–728. 

https://doi.org/10.1016/j.geoderma.2018.10.026 

Mancini, M., Weindorf, D.C., Monteiro, M.E.C., Faria, Á.J.G., Teixeira, A.F.S., Lima, W., 

Lima, F.R.D., Dijair, T.S.B., Marques, F.D.A., Ribeiro, D., Silva, S.H.G., Chakraborty, 

S., Curi, N., 2020. From sensor data to Munsell color system: Machine learning 

algorithm applied to tropical soil color classification via NixTM Pro sensor. Geoderma 

375, 114471. https://doi.org/10.1016/j.geoderma.2020.114471 

McCarty, G.W., Reeves, J.B., 2006. Comparison of IR and MIR diffuse reflectance spectros- 

copy for field-scale measurement of soil fertility parameters. Soil Science 171, 94–102. 

https://doi.org/10.1097/01.ss.0000187377.84391.54 

McDowell, M.L., Bruland, G.L., Deenik, J.L., Grunwald, S., Knox, N.M., 2012. Soil total 

carbon analysis in Hawaiian soils with visible, near-infrared and mid-infrared diffuse 

reflectance spectroscopy. Geoderma 189–190, 312–320. 

https://doi.org/10.1016/j.geoderma.2012.06.009 



82 

 

Mikhailova, E.A., Stiglitz, R.Y., Post, C.J., Schlautman, M.A., Sharp, J.L., Gerard, P.D., 

2017. Predicting Soil Organic Carbon and Total Nitrogen in the Russian Chernozem 

from Depth and Wireless Color Sensor Measurements. Eurasian Soil Science 50, 1414–

1419. https://doi.org/10.1134/S106422931713004X 

Moritsuka, N., Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Andriamananjara, A., 

Rakotoson, T., Razafimbelo, T., 2019. Comparison of visual and instrumental 

measurements of soil color with different low-cost colorimeters. Soil Science and Plant 

Nutrition 65, 605–615. https://doi.org/10.1080/00380768.2019.1676624 

Mukhopadhyay, S., Chakraborty, S., Bhadoria, P.B.S., Li, B., Weindorf, D.C., 2020. 

Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence 

spectrometry and NixProTM sensor in landfill soils of India. Geoderma Regional 20, 

e00249. https://doi.org/10.1016/j.geodrs.2019.e00249 

Munõz-Rojas, M., Abd-Elmabod, S.K., Zavala, L.M., De la Rosa, D., Jordan, A., 2017. 

Climate change impacts on soil organic carbon stocks ofMediterranean agricultural 

areas: a case study in Northern Egypt. Agriculture, Ecosystems & Environment 238, 

142–152. https://doi.org/10.1016/j.agee.2016.09.001 

Muñoz, J.D., Kravchenko, A., 2011. Soil carbon mapping using on-the-go near infrared 

spectroscopy, topography and aerial photographs. Geoderma 166, 102–110. 

https://doi.org/10.1016/j.geoderma.2011.07.017 

Nawar, S., Mouazen, A.M., 2019. On-line vis-NIR spectroscopy prediction of soil organic 

carbon using machine learning. Soil and Tillage Research 190, 120–127. 

https://doi.org/10.1016/j.still.2019.03.006 

O’Rourke, S.M., Minasny, B., Holden, N.M., McBratney, A.B., 2016. Synergistic use of Vis-

NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry. Soil 

Science Society of America Journal 80, 888. https://doi.org/10.2136/sssaj2015.10.0361 

Pacheco, A.A., Ker, J.C., Schaefer, C.E.G.R., Fontes, M.P.F., Andrade, F. V., Martins, 

E.D.S., Oliveira, F.S.D., 2018. Mineralogy, micromorphology, and genesis of soils with 

varying drainage along a hillslope on granitic rocks of the Atlantic Forest. Revista 

Brasileira de Ciencia do Solo 42, e0170291. 

Paulette, L., Man, T., Weindorf, D.C., Person, T., 2015. Rapid assessment of soil and 

contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, 

Romania. Geoderma 243–244, 130–140. https://doi.org/10.1016/j.geoderma.2014.12.025 

Pelegrino, M.H.P., Weindorf, D.C., Silva, S.H.G., de Menezes, M.D., Poggere, G.C., 

Guilherme, L.R.G., Curi, N., 2019. Synthesis of proximal sensing, terrain analysis, and 



83 

 

parent material information for available micronutrient prediction in tropical soils. 

Precision Agriculture 20, 746–766. https://doi.org/10.1007/s11119-018-9608-z 

Poggere, G.C., Inda, A.V., Barrón, V., Kämpf, N., Brito, A.D.B., Barbosa, J.Z., Curi, N., 

2018. Maghemite quantification and magnetic signature of Brazilian soils with 

contrasting parent materials. Applied Clay Science 161, 385–394. 

https://doi.org/10.1016/j.clay.2018.05.014 

R Core Team, 2018. R: A language and environment for statistical computing. R Foundation 

for Statistical Computing, Vienna. 

Raeesi, M., Zolfaghari, A.A., Yazdani, M.R., Gorji, M., Sabetizade, M., 2019. Prediction of 

soil organic matter using an inexpensive colour sensor in arid and semiarid areas of Iran. 

Soil Research 57, 276–286. https://doi.org/10.1071/SR18323 

Raij, B. V., 1969. A capacidade de troca de cátions das frações orgânica e mineral em solos. 

Bragantia 28, 85–112. 

Ramos, P.V., Inda, A.V., Barrón, V., Siqueira, D.S., Marques Júnior, J., Teixeira, D.D.B., 

2020. Color in subtropical Brazilian soils as determined with a Munsell chart and by 

diffuse reflectance spectroscopy. Catena 193, 104609. 

https://doi.org/10.1016/j.catena.2020.104609 

Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., Paulette, L., Weindorf, D.C., 2019. 

Determination of base saturation percentage in agricultural soils via portable X-ray 

fluorescence spectrometer. Geoderma 338, 375–382. 

https://doi.org/10.1016/j.geoderma.2018.12.032 

Resende, M., Curi, N., Ker, J.C., Rezende, S.B., 2011. Mineralogy of Brazilian soils: 

interpretation and applications. Editora UFLA: Lavras. 201p. 

Ribeiro, B.T., Silva, S.H.G., Silva, E.A., Guilherme, L.R.G., 2017. Portable X-ray 

fluorescence (pXRF) applications in tropical Soil Science. Ciência e Agrotecnologia 41, 

245–254. https://doi.org/10.1590/1413-70542017413000117 

Santos, R.D., Lemos, R.C., Santos, H.G., Ker, J.C., Anjos, L.H.C., Shimizu, S.H., 2015. 

Manual de descrição e coleta de solo no campo. 7. edição revisada e ampliada. Viçosa, 

MG: Sociedade Brasileira de Ciência do Solo, 170 p. 

Santos, H.G., Carvalho Júnior, W., Dart, R.O., Áglio, M.L.D., Sousa, J.S., Pares, J.G., 

Fontana, A., Martins, A.L.S., Oliveira, A.P.O., 2011. O novo mapa de solos do Brasil: 

legenda atualizada, Empresa Brasileira de Pesquisa Agropecuária. 67p. 

Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Lumbreras, J.F., Coelho, 

M.R., Almeida, J.A., Araujo Filho, J.C., Oliveira, J.B., Cunha, T.J.F., 2018. Sistema 



84 

 

Brasileiro de Classificação de Solos. 5th. Embrapa Solos, Brasília revista e ampliada ed. 

353 p. 

Sharma, A., Weindorf, D.C., Wang, D.D., Chakraborty, S., 2015. Characterizing soils via 

portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). 

Geoderma 239, 130–134. https://doi.org/10.1016/j.geoderma.2014.10.001 

Shields, J., Paul, E., Arnaud, R., Head, W., 1968. Spectrophotometric measurement of soil 

color and its relationship to moisture and organic matter. Canadian Journal of Soil 

Science 48, 271–280. 

Shonk, G.A., Gaultney, L.D., Schulze, D.G., Van Scoyoc, G.E., 1991. Spectroscopic sensing 

of soil organic matter content. Transactions - American Society of Agricultural 

Engineers 34, 1978–1984. 

Silva, E.A., Weindorf, D.C., Silva, S.H.G., Ribeiro, B.T., Poggere, G.C., Carvalho, T.S., 

Gonçalves, M.G.M., Guilherme, L.R.G., Curi, N., 2019. Advances in tropical soil 

characterization via portable X-ray fluorescence spectrometry. Pedosphere 29, 468–482. 

https://doi.org/10.1016/S1002-0160(19)60815-5 

Silva, F.M., Weindorf, D.C., Silva, S.H.G., Silva, E.A., Ribeiro, B.T., Guilherme, L.R.G., 

Curi, N., 2019. Tropical soil toposequence characterization via pXRF spectrometry. Soil 

Science Society of America Journal 83, 1153–1166. 

https://doi.org/10.2136/sssaj2018.12.0498 

Silva, J.E., Lemanski, J., Resck, D.V.S., 1994. Perdas de matéria orgânica e suas relações 

com a capacidade de troca de catiônica em solos da região de Cerrados do oeste baiano. 

Revista Brasileira de Ciência do Solo 18, 541–547. 

Silva, S.H.G., Ribeiro, B.T., Guerra, M.B.B., Carvalho, H.W.P., Lopes, G., Carvalho, G.S., 

Guilherme, L.R.G., Resende, M., Mancini, M., Curi, N., Rafael, R.B.A., Cardelli, V., 

Cocco, S., Corti, G., Chakraborty, S., Weindorf, D.C. 2021. pXRF in tropical soils: 

Methodology, applications, achievements and challenges. Advances Agronomy. 167, p. 

1-62. https://doi.org/10.1016/bs.agron.2020.12.001 

Silva, S.H.G., Silva, E.A., Poggere, G.C., Guilherme, L.R.G., Curi, N., 2018. Tropical soils 

characterization at low cost and time using portable X-ray fluorescence spectrometer 

(pXRF): Effects of different sample preparation methods. Ciência e Agrotecnologia 42, 

80–92. https://doi.org/10.1590/1413-70542018421009117 

Silva, S.H.G., Teixeira, A.F.S., Menezes, M.D., Guilherme, L.R.G., Moreira, F.M. S., Curi, 

N., 2017. Multiple linear regression and random forest to predict and map soil properties 

using data from portable X-ray fluorescence spectrometer (pXRF). Ciência e 



85 

 

Agrotecnologia 41, 648–664. https://doi.org/10.1590/1413-70542017416010317 

Silva, S.H.G., Weindorf, D.C., Pinto, L.C., Faria, W.M., Acerbi Junior, F.W., Gomide, L.R., 

Mello, J.M., Pádua Junior, A.L., de Souza, I.A., Teixeira, A.F. dos S., Guilherme, 

L.R.G., Curi, N., 2020. Soil texture prediction in tropical soils: A portable X-ray 

fluorescence spectrometry approach. Geoderma 362. 

https://doi.org/10.1016/j.geoderma.2019.114136 

Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. ed. USDA, Washington, DC. 

Stanley, P.L., Rowntree, J.E., Beede, D.K., DeLonge, M.S., Hamm, M.W., 2018. Impacts of 

soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA 

beef finishing systems. Agricultural Systems 162, 249–258. 

https://doi.org/10.1016/j.agsy.2018.02.003 

Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., 2017a. Using an inexpensive 

color sensor for rapid assessment of soil organic carbon. Geoderma 286, 98–103. 

https://doi.org/10.1016/j.geoderma.2016.10.027 

Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., 2016. Evaluation of an 

inexpensive sensor to measure soil color. Computers and Electronics in Agriculture 121, 

141–148. https://doi.org/10.1016/j.compag.2015.11.014 

Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., Pargas, R., Glover, B., 

Mooney, J., 2017b. Soil color sensor data collection using a GPS-enabled smartphone 

application. Geoderma 296, 108–114. https://doi.org/10.1016/j.geoderma.2017.02.018 

Tavares, T.R., Molin, J.P., Nunes, L.C., Alves, E.E.N., Melquiades, F.L., Carvalho, H.W.P., 

Mouazen, A.M., 2020a. Effect of x-ray tube configuration on measurement of key soil 

fertility attributes with XRF. Remote Sensing 12. https://doi.org/10.3390/rs12060963 

Tavares, T.R., Mouazen, A.M., Alves, E.E.N., Santos, F.R., Melquiades, F.L., Carvalho, 

H.W.P., Molin, J.P., 2020b. Assessing soil key fertility attributes using a portable X-ray 

fluorescence: A simple method to overcome matrix effect. Agronomy 10. 

https://doi.org/10.3390/agronomy10060787 

Teixeira, A.F. S., Pelegrino, M.H.P., Faria, W.M., Silva, S.H.G., Gonçalves, M.G.M., Acerbi 

Júnior, F.W., Gomide, L.R., Pádua Júnior, A.L., Souza, I.A., Chakrabortyd, S., 

Weindorfe, D.C., Guilherme, L.R.G., Curi, N., 2020. Tropical soil pH and sorption 

complex prediction via portable X-ray fluorescence spectrometry. Geoderma 361, 

114132. https://doi.org/10.1016/j.geoderma.2019.114132 

Valadares, J.M.A., Bataglia, O.C., Furlani, P.R., 1974. Estudo de materiais calcários usados 

como corretivo do solo no Estado de São Paulo. IQ - Determinação de Mo, Co, Cu, Zn,, 



86 

 

Mn e Fe. Bragantia 33, 147–152. 

Verdade, F.C., 1956. Influência da matéria orgânica na capacidade de troca de cátions do 

solo. Bragantia 15, 35–42. 

Viscarra Rossel, R.A., Adamchuk, V.I., Sudduth, K.A., McKenzie, N.J., Lobsey, C., 2011. 

Proximal soil sensing: an effective approach for soil measurements in space and time, 

Advances in Agronomy 113, 237-282. https://doi.org/10.1016/B978-0-12-386473-

4.00005-1 

Viscarra Rossel, R.A., Fouad, Y., Walter, C., 2008. Using a digital camera to measure soil 

organic carbon and iron contents. Biosystems Engineering 100, 149–159. 

https://doi.org/10.1016/j.biosystemseng.2008.02.007 

Viscarra Rossel, R.A., McBratney, A.B., Minasny, B., 2010. Proximal soil sensing. 1st ed. 

Springer Science Business Media B.V.: Dordrecht. 446p. https://doi.org/10.1007/978-90-

481-8859-8 

Viscarra Rossel, R.A., Minasny, B., Roudier, P., McBratney, A.B., 2006. Colour space 

models for soil science. Geoderma 133, 320–337. 

https://doi.org/10.1016/j.geoderma.2005.07.017 

Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil 

organic matter and a proposed modification of the chromic acid titration method. Soil 

Science 37, 29–38. 

Wan, M., Hu, W., Qu, M., Li, W., Zhang, C., Kang, J., Hong, Y., Chen, Y., Huang, B., 2020. 

Rapid estimation of soil cation exchange capacity through sensor data fusion of portable 

XRF spectrometry and Vis-NIR spectroscopy. Geoderma 363, 114163. 

https://doi.org/10.1016/j.geoderma.2019.114163 

Wan, M., Qu, M., Hu, W., Li, W., Zhang, C., Cheng, H., Huang, B., 2019. Estimation of soil 

pH using PXRF spectrometry and Vis-NIR spectroscopy for rapid environmental risk 

assessment of soil heavy metals. Process Safety and Environmental Protection 132, 73–

81. https://doi.org/10.1016/j.psep.2019.09.025 

Wang, D., Chakraborty, S., Weindorf, D.C., Li, B., Sharma, A., Paul, S., Ali, M.N., 2015. 

Synthesized use of VisNIR DRS and PXRF for soil characterization: Total carbon and 

total nitrogen. Geoderma 243–244, 157–167. 

https://doi.org/10.1016/j.geoderma.2014.12.011 

Wang, X., Wang, J., Zhang, J. , 2012. Comparisons of Three methods for organic and 

inorganic carbon in calcareous soils of Northwestern China. PLoS One 7, e44334. 

https://doi.org/10.1371/journal.pone.0044334 



87 

 

Weindorf, D.C., Bakr, N., Zhu, Y., 2014. Advances in portable X-ray fluorescence (PXRF) 

for environmental, pedological, and agronomic applications, Advances in Agronomy 

128, 1-45. https://doi.org/10.1016/B978-0-12-802139-2.00001-9 

Weindorf, D.C., Chakraborty, S., 2016. Portable X-ray fluorescence spectrometry analysis of 

soils. In: Hirmas, D. (Ed.), Methods of Soil Analysis. Soil Science Society of America, 

Madison, WI, pp. 1–8. https://doi.org/10.2136/methods-soil.2015.0033.  

Xu, D., Zhao, R., Li, S., Chen, S., Jiang, Q., Zhou, L., Shi, Z., 2019. Multi-sensor fusion for 

the determination of several soil properties in the Yangtze River Delta, China. European 

Journal of Soil Science 70, 162–173. https://doi.org/10.1111/ejss.12729 

Yeomans, J.C., Bremner, J.M., 1988. A rapid and precise method for routine determination of 

organic carbon in soil. Communications in Soil Science and Plant Analysis 19, 1467–

1476. 

Zandoná, R.R., Beutler, A.N., Burg, G.M., Barreto, C.F., Schmidt, M.R., 2015. Gypsum and 

lime increase soybean and maize yield and decrease drought stress. Pesquisa 

Agropecuária Tropical 45, 128–137. https://doi.org/10.1590/1983-40632015v4530301 

Zhao, L., Sun, Y., Zhang, X., Yang, X., Drury, C.F., 2006. Soil organic carbon in clay and silt 

sized particles in Chinese mollisols: relationship to the predicted capacity. Geoderma 

132, 315–323. https://doi.org/10.1016/j.geoderma.2005.04.026 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

 

ARTICLE 3 - Relationship between elemental content determined via portable X-ray 

fluorescence and traditional acid-digestion-based methods in tropical soils 

 

Article published in Soil Research 

v.60, n.3, p. 320-340, 2022 

(https://doi.org/10.1071/SR21272) 

 

Álvaro José Gomes de Fariaa, Sérgio Henrique Godinho Silvaa, Leônidas Carrijo Azevedo 

Meloa, Lívia Botelhoa, Luiz Roberto Guimarães Guilhermea, Nilton Curia, 

 

aDepartment of Soil Science, Federal University of Lavras – UFLA, Doutor Sylvio Menicucci 

Avenue, Lavras, Minas Gerais State, 37200-900, Brazil. E-mail addresses: 

ajgomesdefaria@hotmail.com, sergio.silva@ufla.br, leonidas.melo@ufla.br,  

livia.botelho@ufla.br, guilherm@ufla.br, niltcuri@ufla.br.  

 

Abstract 

Context: Studies comparing the elemental contents obtained via portable X-ray fluorescence 

(pXRF) spectrometry under different scanning conditions and traditional time-consuming 

concentrated acid-digestion-based methods are rare in tropical soils. Aims: i) To compare the 

contents of Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr obtained by pXRF with the 

results of the USEPA 3051a method; and ii) to evaluate the impacts of different conditions on 

the pXRF results. Methods: Soil samples were analyzed with pXRF under five conditions: 

field (F), post-field (PF), air-dried fine earth (ADFE, < 2 mm), macerated (M), and macerated 

and sieved (MS, <150 µm). Linear regressions were adjusted between the USEPA 3051a and 

pXRF results for the five conditions. Coefficient of determination (R²), root-mean-square 

error (RMSE), and residual prediction deviation (RPD) were used as validation parameters for 

the models. Key results: The different scanning conditions provided contrasting results for 

the total elemental contents via pXRF. The validation generated good models, as indicated by 

the condition, R2, and RPD values, and the results were, respectively: Ca (M; 0.88; 3.00), Cu 

(F; 0.91; 3.29), Fe (ADFE; 0.94; 4.14), Mn (F; 0.85; 2.65), Cr (ADFE; 0.86; 2.77), and Ni 

(ADFE and M; 0.74 for both; 2.10 and 2.08). Conclusions: PXRF can accurately determine 

the contents of Ca, Cu, Fe, Mn, Cr, and Ni in tropical soils compared with the 3051a method. 
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Implications: Results of the USEPA 3051a method can be accurately predicted via pXRF and 

regression models, reducing time, cost, and work required.  

 

Keywords: Tropical soils, chemical attributes modeling, ICP atomic emission spectroscopy, 

pedology, geochemistry. 

 

1. Introduction 

 

Soil is a fundamental, slowly-renewable natural resource for many human activities, 

sustaining life on the planet and aiding the economic development of nations (Adhikari and 

Hartemink 2016). Soil characterization provides a solid support for decision-making related to 

engineering, geochemical mapping, environmental monitoring, and food production (Zhang 

and Hartemink 2019). Consequently, strategies such as in situ observations, sampling, and 

laboratory analyses with different levels of complexity for soil characterization are 

fundamental (Shepherd and Walsh 2002; Evanylo and McGuinn 2009; Zhang and Hartemink 

2019). 

Soil elemental composition is an important chemical attribute for both agronomic 

purposes and environmental monitoring, because it affects soil reactions, salinity, cation 

exchange capacity, plant nutrient availability, and heavy metal contamination (Towett et al. 

2015; Weindorf and Chakraborty 2020), among others. Traditionally, total elemental content 

in soil has been determined by concentrated acid-digestion-based methods, such as USEPA 

3050b, 3051a and 3052, followed by elemental content determination via atomic absorption 

spectrometry (AAS) or inductively coupled plasma optical emission spectrometry (ICP-OES) 

(Chen and Ma 1998; USEPA 2007a; Silva et al. 2014; Weindorf and Chakraborty 2020). 

Although these methods have been widely used, they require intensive, time-consuming, and 

laborious preparation of soil samples. Moreover, these methods involve the use of strong 

acids (e.g., HNO3, H2SO4, HCl, and HF) that produce hazardous chemical wastes (Chen and 

Ma 1998; Qu et al. 2019; Silva et al. 2019), which need to be handled properly to avoid 

undesirable pollution. Thus, novel, environmentally friendly methods for total elemental 

content assessment that are chemical-free and require minimal soil sample preparation are 

urgently needed. Proximal sensors, such as the portable X-ray fluorescence (pXRF) 

spectrometer, are being increasingly adopted for multiple applications in soil science and 

other fields of study. 
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The pXRF equipment has been recognized worldwide as a reliable, easy to use, fast, 

no cost, and environmentally friendly method for total elemental content determination of 

soils both in the field (in situ) and laboratory (ex situ), with minimal or no sample preparation 

(Horta et al. 2015; Stockmann et al., 2016a; Ribeiro et al. 2017; Feng et al. 2021; Silva et al. 

2021). Considering environmental sciences, several methods of analysis methods have been 

proposed for characterization of soils and sediments. For instance, method 6200 (USEPA 

2007b) was originally established and further improved for temperate soils by the Soil Survey 

Staff (2014a) and Weindorf and Chakraborty (2020), and recently for tropical soils by Silva et 

al. (2021). The pXRF has been increasingly adopted for numerous applications in soils from 

temperate and tropical regions for agronomic, pedological, and environmental purposes 

(Rouillon and Taylor 2016; Stockmann et al. 2016a; Mancini et al. 2019; Qu et al. 2019; 

Acree et al. 2020; Borges et al. 2020; Faria et al. 2020; Teixeira et al. 2020; Benedet et al. 

2021). 

Comparison of pXRF with acid-digestion-based methods for total elemental content 

determination has been more explored in soils from temperate regions, and strong relations 

between these methods have been determined (Kilbride et al. 2006; Radu and Diamond 2009; 

Peinado et al. 2010; McLaren et al. 2012; Rouillon and Taylor 2016; Horta et al. 2021). 

Conversely, few studies have been conducted for tropical soils (Silva et al. 2019; Borges et al. 

2020). Silva et al. (2019) found strong correspondences between pXRF and the 3051a method 

for the elements Ca, Cu, Fe, Mn, Cr, V, and Ni, with values of R² ranging from 0.85 to 0.95. 

However, a poor correlation was obtained for Al, K, Ti, and Zr, ranging from 0.1 to 0.42. 

Borges et al. (2020) also observed strong correlations between the results of pXRF and 

extraction by the 3051a method, followed by determination via graphite-furnace atomic 

absorption spectrometry (GFAAS) for Cu (R² = 0.83), Fe (R² = 0.83), and Pb (R² = 0.82), but 

found poor correlations for As (R² = 0.47), Zn (R² = 0.42), and Mn (R² = 0.28). These studies, 

however, have not investigated the effect of sample preparation method and conditions of 

sample analyses on the pXRF results and their correlation with the acid-digested-based 

method.  

Soil sample preparation in the previously mentioned studies included air-dried, 

ground, and sieved (<2 mm) samples for further scanning with pXRF in a laboratory (ex situ). 

However, it is well-known that pXRF results obtained under field conditions differ from those 

obtained in a laboratory; even sieving samples at different particle sizes may cause variation 

in the pXRF results (Stockmann et al. 2016a; Silva et al. 2018; Dijair et al. 2020), but little 
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has been done aimed at evaluating the effect of different sample preparation conditions on the 

correspondence between pXRF and 3051a results, mainly in tropical soils. 

In Brazil, these investigations have been rare, and strong correlations with pXRF may 

contribute to reduced cost, time, the amount of the chemical residues generated, and the 

financial resources needed for such analyses. However, particle size distribution, moisture, 

and soil structure may affect pXRF results, raising questions about the best condition for 

analyzing samples via pXRF for correlations with the 3051a method. In this context, the aims 

of this pilot study involving tropical soils were to: i) evaluate the impact of different pXRF 

scanning conditions of soil samples, as follows: in the field (F), post-field (PF), air-dried, 

disaggregated, and sieved at 2 mm (ADFE), ADFE followed by grinding (M), and M sieved 

at 150 µm (MS); the five scanning conditions were used to determine the total elemental 

contents of Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr; ii) determine the relationship 

between the 12 elements obtained with the five scanning conditions with pXRF and the 

traditional acid-digested-based method (USEPA 3051a/ICP-OES) via linear regression 

models and validation.  

 

2. Materials and methods  

 

2.1 Soil sampling and analyses 

                                                                                                                                                                                                                                                                                                                                   

This study was conducted with composite soil samples collected in Lavras, Minas 

Gerais State, Brazil, representing the main soil classes of the Brazil. There was no application 

of amendments. According to the Köppen classification system, the region’s climate is framed 

as Cwa, with dry winters and rainy summers (Alvares et al. 2013). The mean annual 

precipitation and temperature are 1450 mm and 20.4°C (Dantas et al. 2007; Alvares et al. 

2013). The study area and a flowchart of the procedures performed to obtain data with pXRF 

and the reference method (USEPA 3051a/ICP-OES) are shown in Fig. 1. 
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Fig. 1. Location of the sampling sites and a flowchart of the procedures conducted in this 

study. F, field; PF, post-field; ADFE, air-dried fine earth; M, macerated; MS, macerated and 

sieved. SIRGAS 2000 stands for Geocentric Reference System for the Americas, which has 

been the official reference system for datum of geographic coordinates since 2005 for the 

activities of Brazilian cartography. 

 

Seven soil profiles were morphologically described (Santos et al. 2015) and classified 

according to the Brazilian Soil Classification System (Santos et al. 2018) and the US Soil 

Taxonomy (Soil Survey Staff 2014) as: Red Latosol (Anionic Acrudox), Red-Yellow Latosol 

(Typic Hapludox), Haplic Gleysol (Typic Endoaquent), Haplic Cambisol (Typic Dystrustept), 

Yellow Argisol (Inceptic Hapludult), Red Argisol (Typic Rhodudult), and Red Nitosol 

(Rhodic Kandiudult). The soil parent materials were gabbro (Anionic Acrudox and Rhodic 

Kandiudult), colluvio-alluvial sediments (Typic Endoaquent), and gneiss (the other soils) 

(Curi et al. 2017). 

In each soil profile, A and B horizons (A and Cg horizons in the case of Typic 

Endoaquent) were analyzed via pXRF (better described below) directly on the soil profile 

wall (field - F – condition). Then, samples were collected from the soil profile, placed into 

plastic bags, and taken to the laboratory for analyses via pXRF and USEPA 3051a. In the 

laboratory, samples were analyzed while still moist (post-field – PF – condition). Then, they 
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were air-dried, disaggregated, and passed through a 2-mm sieve (air-dried fine earth - ADFE 

–condition) with sample moisture ranging from 1.24 to 3.84% (Fig. 2). Then, soil samples 

were analyzed again via pXRF, followed by grinding the ADFE samples in a mortar with 

agate pistil (macerated - M – condition) and another pXRF scanning was performed. In 

sequence, these soil samples were sieved at 150 µm (macerated and sieved - MS – condition) 

and analyzed again via pXRF. All pXRF analyses were performed in triplicate. After that, MS 

samples were analyzed following the USEPA 3051a method (USEPA 2007a). 

 

 

Fig. 2. Mean moisture content of soil samples under different scanning conditions with pXRF. 

A, A horizon; B, B horizon; Cg, Cg horizon; F, field; PF, post-field; ADFE, air-dried fine 

Earth; RL, Red Latosol (Anionic Acrudox); RYL, Red-Yellow Latosol (Typic Hapludox); 

HG, Haplic Gleysol (Typic Endoaquent); HC, Haplic Cambisol (Typic Dystrustept); YA, 

Yellow Argisol (Inceptic Hapludult); RA, Red Argisol (Typic Rhodudult); RN, Red Nitosol 

(Rhodic Kandiudult). 

 

All soil samples were analyzed individually by a pXRF model S1 Titan LE (Bruker 

Nano Analytics, Kennewick, WA, USA), according to Silva et al. (2021) for tropical soils. 

Samples were scanned in triplicate in Trace (dual soil) mode integrated with the Geochem 

software with a scanning time of 60 s. The pXRF equipment has an X-ray tube with a thin 
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rhodium (Rh) window, 4 W, 15–50 keV X-ray generator with 5–100 μA, and a silicon drift 

detector (SDD) with typical resolution <145 eV. 

Quality control of the pXRF analyses was tested by running two samples certified by 

the National Institute of Standards and Technology (NIST), 2710a and 2711a, and a sample 

certified by the pXRF manufacturer (Check Sample - CS) to determine the recovery rates for 

each element [% Recovery = (elementary content via pXRF/certified elementary content) x 

100]. The recovery values (%) for the elements identified in all samples were 

(2710a/2711a/CS): Al (64/127/97), Ca (86/45/--), Cu (84/67/95), Fe (108/98/90), K 

(52/33/89), Mn (73/64/88), Zn (99/81/--), Cr (--/129/--), Ni (--/104/110), Ti (169/118/--), V (--

/20/--), and Zr (105/--/--). Dashed lines (--) indicate either the absence of reference values for 

an element or its value was below the detection limit of the pXRF equipment. 

For the USEPA 3051a method, 0.5 g of the MS samples were weighed, in triplicate, 

and transferred to 50 ml Teflon® vessels containing 5 mL of concentrated HNO3. Samples 

were heated for 10 min in a microwave (CEM MARS-5, CEM Corp., Matthews, NC, USA) at 

180 ºC under a pressure of 448 kPA (USEPA 2007a). After completing the digestion process, 

samples were filtered through a Whatman filter paper No. 40 and rinsed with ultrapure water 

until the 50 mL volume was completed. After that, the extracts were quantified by inductively 

coupled plasma optical emission spectrometry (ICP-OES), model Spectro Blue (Spectro 

Analytical Instruments, Kleve, Germany) (Soltanpour et al. 1996). The following elements, 

based on the following wavelengths (nm), were identified and quantified: Al (396.152), Ca 

(315.887), Cu (324.754), Fe (373.486), K (766.491), Mn (403.076), Zn (213.856), Cr 

(205.618), Ni (232.003), Ti (334.941), V (309.311), and Zr (343.823). A multi-elemental 

calibration curve was used for the quantification of elements ranging from 0.1 to 50 mg L-1. 

The USEPA 3051a method provides semi-total contents of soil elements and it has 

been a reference method for environmental monitoring analyses in Brazil, where most soils 

are highly weathered and leached and have very low reserves of plant nutrients, whose 

dominant minerals are quartz and muscovite in the sand fraction, quartz in the silt fraction, 

and hydroxy-interlayered vermiculite, kaolinite, gibbsite, hematite, and goethite, in different 

proportions, in the clay fraction (Brinatti et al. 2010; Kämpf et al. 2012). In these soils, the 

USEPA 3051a method presents recovery values, for most elements, comparable to more acid-

aggressive methods (e.g., USEPA 3052), which employ HF, thus dissolving also silicate 

minerals (Silva et al. 2014). Thus, the USEPA 3051a method was considered as a reference 

method for comparisons with pXRF results obtained from the five different sampling 

conditions. 
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2.2 Dataset generated with pXRF and statistical analyses 

 

Datasets obtained with pXRF analyses were compared with one another for elemental 

contents to check for variations among the soil sample conditions. These datasets included 

sample variations in particle size distribution, moisture degree, and soil structure, acquired 

both in the field (in situ) and in the laboratory (ex situ). Results from each pXRF condition 

were also compared with those obtained by the reference method (USEPA 3051a/ICP-OES) 

in order to assess which condition would be more appropriate in terms of cost and time 

required to process and obtain information comparable to a reference method.  

Soil moisture degree (%) was also determined for F, PF, and ADFE conditions by the 

formula: [(WW-DW) / DW] x 100, where WW is the wet weight and DW is the dry weight 

obtained after 24 h at 105 °C, to verify the influence of soil moisture degree on pXRF 

performance under different conditions. Results of soil moisture for different soil samples are 

shown in Fig. 2 (Silva et al. 2018). 

The contents of Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr obtained by the 

USEPA 3051a and by the pXRF methods, under the five scanning conditions, were submitted 

to descriptive statistics to obtain the maximum, minimum, average, and coefficient of 

variation (CV%) values. The elemental contents obtained from pXRF and the USEPA 3051a 

methods were also analyzed using boxplots to assist in the characterization and identification 

of intrinsic differences in elemental quantification due to soil moisture degree, particle size 

distribution, soil structure, and locality of analyses (field vs. laboratory). 

A linear regression model (y = a + bx) was adjusted between the contents of Al, Ca, 

Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr to assess the correspondence between the USEPA 

3051a and pXRF methods under the different conditions. Pearson's correlation coefficients, as 

well as the ratios between the methods for different elemental contents, were also calculated.  

For linear regression equations obtained for each element, the values of coefficient of 

determination (R2, Eq. 1) and correlation (r) were considered as statistical parameters for 

evaluation. Properly adjusted equations (R² ≥ 0.60) (Viscarra Rossel et al. 2010) with a 

significant correlation (p ≤ 0.05) were validated by the leave-one-out cross validation 

(LOOCV) method using the caret package (Kuhn et al. 2018) of the R software (R 

Development Core Team 2019). Validation of the models was performed by R² (Eq. 1), root-

mean-square error (RMSE, Eq. 2), and residual prediction deviation (RPD, Eq. 3) values, 
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where the highest values of R2 and RPD and the lowest values of RMSE were considered the 

best ones.  

 

 𝑅² = 1 −
∑ (𝑦𝑖 − 𝑚𝑖)𝑛

𝑖=1
2

∑ (Ȳ𝑛
𝑖=1 − 𝑚𝑖)²

                                                                                                           𝐸𝑞. 1 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
  ∑ (𝑦𝑖 − 𝑚𝑖)²𝑛

𝑖=1                                                                                         Eq. 2 

 

𝑅𝑃𝐷 = 𝑆𝐷/𝑅𝑀𝑆𝐸                                                                                                           Eq. 3 

 

Where: n - number of observations, yi - value estimated by the model, mi - value obtained 

using the USEPA 3051a method, Ȳ - average of values obtained by USEPA 3051a method, 

and SD is the standard deviation of the mean. 

 

3. Results and discussion 

 

3.1 Overview 

 

Descriptive statistics for Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr obtained by 

the reference (USEPA 3051a) and pXRF methods under the different conditions for scanning 

soil samples are shown in Table 1. Regarding the 3051a method, the greatest concentrations 

were obtained for Fe (43,608.16 mg kg-1) and Al (41,073.15 mg kg-1), which reflect the 

predominance of highly weathered and leached soils used in this study that tend to accumulate 

hydroxy-interlayered vermiculite, kaolinite, and Fe and Al oxide minerals in the clay fraction 

(Brinatti et al. 2010; Resende et al. 2011; Kämpf et al. 2012; Barbosa et al. 2021). Moreover, 

the USEPA 3051a method has higher capacity to dissolve oxide minerals than silicate 

minerals in the soil clay fraction, because it does not include hydrofluoric acid in its 

methodology. 

In relation to number of samples with results (SwR) for each element, six soil samples 

showed Ni values below the quantification limit for the USEPA 3051a method, including 

samples from Typic Hapludox, Inceptic Hapludult, and Typic Dystrustept, all developed from 

gneiss, as well as Typic Endoaquent formed from alluvial-colluvial sediments. Similar results 

were obtained by Silva et al. (2019) for soils from the same region. High Ni concentrations 
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are generally found in soils derived from mafic rocks (Kabata-Pendias 2010; Tsadilas et al. 

2019), as observed in this study for the Anionic Acrudox derived from gabbro.  

 

Table 1. Descriptive analysis for the elements Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and 

Zr (mg kg-1) obtained by the reference method (USEPA 3051a) and by pXRF under different 

soil sample conditions. 

Method/ 
Conditions  

Al  Ca 

SwR6 Max.7 Min.8 Mean CV9  SwR Max. Min. Mean CV 

3051a 14 98,720.97 6,336.10 41,073.15 63.50  14 1,134.96 208.33 510.73 48.43 

F1 14 59,520.28 24,616.64 38,739.41 27.59  00 <LOD <LOD10 <LOD <LOD 

PF2 14 64,209.31 33,489.56 48,355.15 17.29  12 1,238.79 <LOD 421.01 88.46 

ADFE3 14 160,737.71 67,016.21 109,318.87 26.46  12 1,818.08 <LOD 492.93 92.39 

M4 14 148,011.91 68,422.45 113,524.53 22.55  13 1,771.20 <LOD 590.14 77.83 

MS5 14 144,015.84 49,532.03 86,730.37 25.24  13 1,889.01 <LOD 468.59 97.27 

Method/ 
Conditions  

Cu  Fe 

SwR Max. Min. Mean CV  SwR Max. Min. Mean CV 

3051a 13 79.06 <LOQ11 19.85 123.21  14 110,178.55 1,532.47 43,608.16 92.06 

F 14 81.50 13.00 27.75 72.32  14 75,442.02 6,651.45 25,819.17 80.44 

PF 14 90.00 6.33 27.12 80.90  14 108,232.00 5,071.48 43,270.10 77.26 

ADFE 14 147.00 11.67 40.62 88.82  14 139,337.50 8,242.38 55,163.43 75.04 

M 14 165.33 16.33 45.21 88.69  14 152,762.26 8,413.63 60,007.92 75.36 

MS 14 177.33 13.33 42.00 102.72  14 146,749.92 0.65 50,939.65 84.66 

Method/ 
Conditions  

K  Mn 

SwR Max. Min. Mean CV  SwR Max. Min. Mean CV 

3051a 14 703.17 334.37 516.72 20.85  14 998.10 4.93 367.80 93.63 

F 14 2,759.47 1,760.98 2,280.02 15.17  13 581.66 <LOD 205.43 95.19 

PF 14 4,023.84 620.56 1,722.33 58.97  13 680.35 <LOD 194.62 107.57 

ADFE 14 6,848.61 660.40 2,577.58 65.47  14 1,158.68 21.16 336.87 105.43 

M 14 6,880.70 622.78 2,683.23 65.97  14 909.71 18.83 333.08 88.28 

MS 14 4,844.99 625.27 2,223.04 60.29  14 873.33 32.51 307.14 99.85 

Method/ 
Conditions  

Zn  Cr 

SwR Max. Min. Mean CV  SwR Max. Min. Mean CV 

3051a 14 41.20 0.36 16.71 80.36  14 1,943.80 58.56 515.87 123.44 

F 14 68.50 24.00 42.94 36.87  14 1,143.00 22.67 344.69 107.48 

PF 14 54.00 15.67 30.74 37.52  13 2,684.33 <LOD 714.67 138.61 

ADFE 14 70.00 21.33 39.24 32.90  14 3,631.33 102.00 1,107.29 122.54 

M 14 68.67 22.67 41.88 32.67  14 4,784.67 144.00 1,313.93 122.70 

MS 14 82.00 20.33 40.69 38.79  14 4,146.00 95.00 1,139.97 125.39 

Method/ 
Conditions  

Ni  Ti 

SwR Max. Min. Mean CV  SwR Max. Min. Mean CV 

3051a 08 174.33 <LOQ 46.35 134.43  14 839.30 3.75 249.01 127.86 

F 14 183.33 4.67 72.92 89.61  14 3,751.74 648.92 2,126.19 42.02 

PF 14 238.33 4.33 85.17 96.84  14 5,745.41 2,232.87 3,608.90 36.65 

ADFE 14 345.67 17.00 128.21 97.56  14 6,822.81 2,024.02 4,810.74 32.60 

M 14 385.00 17.33 140.74 96.84  14 7,404.04 2,253.84 5,135.38 33.67 

MS 14 409.00 13.33 127.79 102.82  14 7,493.69 2,007.65 4,314.98 39.66 

Method/ 
Conditions  

V  Zr 

SwR Max. Min. Mean CV  SwR Max. Min. Mean CV 

3051a 14 443.57 52.33 184.99 61.77  14 41.36 6.85 19.43 56.90 

F 03 42.50 <LOD 6.49 208.96  14 244.67 94.33 144.82 29.50 

PF 06 260.00 <LOD 56.29 163.27  14 233.67 89.00 150.57 28.52 

ADFE 13 404.33 <LOD 136.86 94.52  14 341.67 130.33 198.81 28.36 

M 10 393.00 <LOD 136.10 88.83  14 334.00 143.00 233.40 25.54 

MS 13 344.67 <LOD 122.31 93.19  14 287.67 137.00 194.62 22.29 
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1 F – Field; 2 PF – Post-Field; 3 ADFE – Air-dried fine earth, 4 M - Macerated; 5 MS – Macerated and sieved; 6 

SwR – Samples with results; 7 Max. - Maximum values; 8 Min. - Minimum values; 9 CV – Coefficient of 

variation (%); 10 <LOD - < limit of detection; 11 <LOQ - < limit of quantification.  

 

The pXRF data under the F condition showed the lowest average concentrations for Al 

(38,739.41 mg kg-1), Ca (<LOD), Fe (25,819.17 mg kg-1), Mn (205.43 mg kg-1), Cr (344.69 

mg kg-1), and V (6.49 mg kg-1), with values lower than the USEPA 3051a, but also lower than 

the other scanning conditions (Table 1). The same trend was observed for the PF condition, 

whose average concentrations obtained for Al (48,355.15 mg kg-1), Ca (421.01 mg kg-1), Fe 

(43,270.10 mg kg-1), Mn (194.62 mg kg-1), Cr (714.67 mg kg-1), and V (56.29 mg kg-1) were 

lower than the other pXRF scanning conditions and the reference method. These results show 

that both F and PF scanning conditions can underestimate the elemental content for these 

elements via pXRF, likely due to a greater moisture content (between 18.14 and 39.70%) 

(Fig. 2), as has been reported in other studies (Hu et al. 2014; Stockmann et al. 2016a; Dijair 

et al. 2020; Horta et al. 2021). The presence of water molecules between the mineral and 

organic particles in soil can cause the scattering of primary X-rays or absorbance of secondary 

X-rays, promoting an underestimation of the content of a particular element, especially those 

with low atomic number (Parsons et al. 2013; Weindorf et al. 2014b; Ribeiro et al. 2018; 

Santana et al. 2018, 2019; Padilla et al. 2019). 

Conversely, both F and PF scanning conditions with pXRF showed greater average 

concentrations for Cu (27.75 and 27.12 mg kg-1), K (2,280.02 and 1,722.33 mg kg-1), Zn 

(42.94 and 30.74 mg kg-1), Ni (72.92 and 85.17 mg kg-1), Ti (2,126.19 and 3,608.90 mg kg-1), 

and Zr (144.82 and 150.57 mg kg-1) than the USEPA 3051a method. All samples under the F 

condition with pXRF showed Ca content below the limit of detection, while only two soil 

samples showed this limitation in the PF condition. Concerning V, 11 and 8 samples were 

below the limit of detection for F and PF conditions, respectively. Conversely, ADFE, M, and 

MS conditions revealed a much greater number of soil samples with contents above the limit 

of detection for such elements. 

Both F and PF conditions had a similar moisture degree (Fig. 2), but contrasting 

results for elemental concentrations, except for Cu and Mn (Table 2). The results showed that 

both soil moisture content and soil structure affect the results obtained by pXRF in the PF 

scanning condition. Silva et al. (2018) also found similar results evaluating different sample 

preparation methods on pXRF results. The authors observed that scanning the same samples 

with pXRF directly in the soil profile and in the laboratory provided different concentrations 
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of Fe2O3 and TiO2, whose diverse results were attributed to be a consequence of either the 

disturbance or the preservation of structure of the soil samples, because in both scanning 

conditions the samples had a similar moisture degree. 

The M condition showed the highest average concentrations for most elements among 

the ADFE, M and MS, as follows: Al (113,524.53 mg kg-1), Ca (590.14 mg kg-1), Cu (45.21 

mg kg-1), Fe (60,007.92 mg kg-1), K (2,683.23 mg kg-1), Cr (1,313.93 mg kg-1), Ni (140.74 mg 

kg-1), Ti (5,135.38 mg kg-1), and Zr (233.40 mg kg-1) compared to the ADFE and MS 

conditions (Table 1). For Mn and V, the greatest concentrations obtained in the M condition 

were still lower than the USEPA 3051a method. Similarly, Silva et al. (2018) found the 

greatest concentrations for Fe2O3 and TiO2 via pXRF by scanning the samples under the M 

condition followed by ADFE. 

Soil samples with finer particle sizes tend to produce greater concentrations of 

elements measured via pXRF than soil samples with coarser particle sizes (Laiho and 

Peramaki 2005; Markowicz 2008). Thus, it was expected that the MS condition would 

provide the greatest elemental contents in this study, but such results were lower than those 

under M and ADFE conditions, which have larger particle sizes. These results indicate that 

grinding samples to a smaller particle size (<150 µm) does not always promote greater 

content reported by pXRF for all the elements evaluated. It is also worth mentioning that a 

good homogenization of soil samples is important before performing pXRF analyses, in order 

to guarantee that elements present in trace contents may be evenly distributed in the analyzed 

sample layer by pXRF (Markowicz 2008).  

Soil samples under the ADFE, M and MS conditions had only 2, 1, and 1 samples with 

results below the detection limit for Ca, and 1, 4, and 1 samples with results below the limit of 

detection for V, respectively, via pXRF (Table 1). This suggests that for these elements a 

minimum soil sample preparation, e. g., drying and homogenization, is required to achieve the 

best performance by pXRF. Thus, reducing soil moisture content seems to be sufficient and 

effective for determination of such elements by this method. 

As these three conditions, as cited above, have low moisture content (Fig. 2), the 

influence of moisture on Ca detection should be minimal (Parsons et al. 2013; Weindorf et al. 

2014a). The low Ca detection under the ADFE, M, and MS conditions should be associated 

with the fact that most Brazilian soils tend to be deprived of Ca-bearing minerals; so, soils 

without application of fertilizers, lime, and agricultural gypsum, as is the case in this study, 

have naturally very low Ca contents (Kämpf et al. 2012; Resende et al. 2021). 
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The coefficient of variation (CV) ranged from 15.17% (for K) to 107.48% (for Cr) for 

the F condition, without considering the element V due to the low number of samples with 

results below the limit of detection. For the PF condition, CV ranged from 17.29% to 

138.61% for Al and Cr, respectively, again without considering the element V. For the ADFE 

and M conditions, CV results varied between 26.46% (Al) and 122.54% (Cr), and between 

22.55% (Al) and 122.70% (Cr), respectively. Finally, for the MS condition, the scans 

provided CV between 22.29% (Zr) and 125.39% (Cr). Thus, for most conditions evaluated 

with pXRF, the lowest and highest variations in results were obtained for Al and Cr, and the 

PF condition provided the largest range of CV values among the studied elements, reflecting 

the large variability of soil samples used in this study, which represent the most important soil 

classes in Brazil. 

Boxplots show the distribution of samples per element according to the values 

generated by both the USEPA 3051a and pXRF methods (Fig. 3). In general, there was a high 

dispersion and variability of the elements obtained in each data set, mainly for the ADFE, M, 

and MS conditions via pXRF. This was due to the high variability of the studied soil classes 

(Latosol, Gleysol, Cambisol, Argisol, and Nitosol), different soil horizons, and different soil 

parent materials (gneiss, gabbro, and alluvial-colluvial sediments). The highest contents of Al, 

Ca, Cu, Fe, K, Mn, Cr, Ni, Ti, V, and Zr were found under the M scanning condition, 

followed by ADFE (Fig. 3). Under the F and PF scanning conditions, soil moisture had a 

great effect in causing underestimation and lower data dispersion for Al, Ca, Fe, Mn, Cr, and 

V in comparison with the USEPA 3051a method and the other pXRF scanning conditions. 

Several regression models (e.g., simple linear, polynomial, power regression, and 

more robust algorithms) can be generated for assessing the correspondence of elements 

obtained with pXRF and the USEPA 3051a methods. Auxiliary variables (e.g., soil organic 

matter, moisture content, and texture) can be added to models in order to improve the results 

obtained in each condition and, consequently, approach the values generated by standard 

methods under laboratory conditions (Stockmann et al. 2016b; Ribeiro et al. 2018; Silva et al. 

2018; Qu et al. 2019; Dijair et al. 2020). Simple linear models will be discussed later in the 

section “Elementary correspondence between pXRF and USEPA 3051a methods”. 
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Fig. 3. Boxplots comparing the elemental content of Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V 

and Zr in soil samples obtained using the reference method (USEPA 3051a) and the pXRF in 

the field (F), post-field (PF), air-dried fine earth (ADFE), macerated (M) and macerated and 

sieved (MS) conditions. 

 

3.2 Ratios between pXRF and USEPA 3051a methods 

 

Mean ratios between contents of Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V, and Zr 

obtained by pXRF and the USEPA 3051a methods in each scanning condition are shown in 

Fig. 4. In general, for Cu, K, Zn, Ti, and Zr contents, high ratios were found, regardless of the 
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scanning condition, which indicates that much greater concentrations were obtained for the 

pXRF than for the USEPA 3051a method. The highest ratios were found for Ti followed by 

Zr, whose values ranged from 15.8 (F) to 28.8 (M), and from 11.0 (F and PF) to 17.4 (M), 

respectively. In contrast, the average ratios for V were less than 0.8 in all scanning conditions 

with pXRF, and the lowest values were observed for the F (0.04) and PF (0.4) conditions, 

confirming the lower elemental contents via pXRF in such conditions. 
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Fig. 4. Mean ratios between the reference (USEPA 3051a) and pXRF methods under different 

conditions for Al, Ca, Cu, Fe, K, Mn, Zn, Cr, Ni, Ti, V and Zr in tropical soil samples. F, 

field; PF, post-field; ADFE, air-dried fine earth; M, macerated; MS, macerated and sieved. 

Error bars show the standard error (n = 14); dashed lines show the 1:1 ratio. 

 

For Al, Fe, Cr, and Ni, ratios close to 1 were observed for pXRF only in F and PF 

scanning conditions, indicating that in these situations the pXRF is capable of delivering 

values close to those of the reference method. However, for ADFE, M, and MS conditions, 

high ratios were observed for these elements. For Ca, the M condition would be the most 

appropriate one because it provided ratios close to 1, while for Mn, the highest ratios were 

obtained under the ADFE and M conditions. The other conditions provided lower ratios for 

Ca and Mn. 

Quantification of Al, Fe, Cr, and Ni contents, both under F and PF conditions, is 

promising, because they provide values close to the USEPA 3051a method in a fast, 

inexpensive, and reliable way (Fig. 4). However, for Ca and Mn, the M and ADFE conditions 

are recommended for scanning with pXRF. Borges et al. (2020) evaluated the ratios between 

the values obtained by the pXRF under the MP condition and the USEPA 3051a method 

assisted by GFAAS in hydromorphic tropical soils, similar to the Gleysol studied here, and 

found high ratios for Zn, Cu, Fe, As, and Mn, varying between 2.2 and 7.8, while for Pb the 

ratios were close to 1. 

 

3.3 Elementary correspondence between pXRF and USEPA 3051a methods 

 

The linear regression equations, the coefficients of determination (R²), the correlation 

coefficients (r), and the p-values of the relationships between the elemental contents obtained 

by the reference (USEPA 3051a) and by the pXRF methods under various conditions are 

shown in Table 2, while Fig. 5 shows the graphical representation for each element, whose 

dispersion points (n = 14) are distributed around the 1:1 line. In general, an adequate linear 

regression for each element is totally dependent on the soil scanning condition via pXRF. 

Only 10 out of 60 linear regression models were interpreted as good (R² = 0.61 to 0.80), while 

19 models were classified as very good (R² = ≥ 0.81) (highlighted in bold in Table 3), 

according to Viscarra Rossel et al. (2010). The prediction accuracy of these models for each 

element through validation will be discussed later.  
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Table 2. Linear equations, coefficient of determination (R²), and correlation (r) for the 

relations between elemental contents obtained via the reference method (USEPA 3051a) and 

pXRF under different soil sampling conditions. 

Elements Conditions  Linear Equation R² R p - value 

Al 

F1 Y = 52255.5546 - 0.3291x 0.65 -0.80 <0.01 

PF2 Y = 44791.0042 + 0.0868x 0.07 0.27 ns 

ADFE3 Y = 124097.9723 - 0.3598x 0.11 -0.32 ns 

M4 Y = 123673.5857 - 0.2471x 0.06 -0.25 ns 

MS5 Y = 93708.0767 - 0.1699x 0.04 -0.20 ns 

Ca 

F -- -- -- -- 

PF Y = -186.1206 + 1.2269x 0.70 0.87 <0.01 

ADFE Y = -414.0340 + 1.7753x 0.91 0.92 <0.01 

M Y = -300.6874 + 1.7533x 0.91 0.96 <0.01 

MS Y = -429.1067 + 1.7486x 0.87 0.94 <0.01 

Cu 

F Y = 12.0655 + 0.7901x 0.93 0.96 <0.01 

PF Y = 17.2756 + 0.4958x 0.31 0.55 <0.05 

ADFE Y = 12.4335 + 1.4198x 0.93 0.96 <0.01 

M Y = 14.2441 + 1.5600x 0.91 0.95 <0.01 

MS Y = 9.4384 + 1.6402x 0.87 0.93 <0.01 

Fe 

F Y = 7703.2874 + 0.4154x 0.65 0.80 <0.01 

PF Y = 34037.1126 + 0.2117x 0.07 0.25 ns 

ADFE Y = 10965.8920 + 1.0135x 0.97 0.98 <0.01 

M Y = 12179.8055 + 1.0968x 0.95 0.97 <0.01 

MS Y = 5598.2291 + 1.0397x 0.94 0.97 <0.01 

K 

F Y = 1821.9826 + 0.8864x 0.08 0.28 ns 

PF Y = -92.4834 + 3.5122x 0.14 0.37 ns 

ADFE Y = 106.0205 + 4.7831x 0.09 0.31 ns 

M Y = -37.0965 + 5.2646x 0.10 0.32 Ns 

MS Y = -355.3052 + 4.9898x 0.16 0.40 Ns 

Mn 

F Y = 16.2718 + 0.5233x 0.87 0.94 <0.01 

PF Y = 31.3278 + 0.4538x 0.56 0.76 <0.01 

ADFE Y = 23.2822 + 0.8526x 0.68 0.83 <0.01 

M Y = 66.9078 + 0.7237x 0.72 0.85 <0.01 

MS Y = 2.7429 + 0.8280x 0.86 0.93 <0.01 

Zn 

F Y = 27.1763 + 0.9432x 0.64 0.80 <0.01 

PF Y = 30.2531 + 0.0290x 0.00 0.03 ns 

ADFE Y = 29.7183 + 0.5696x 0.35 0.59 <0.05 

M Y = 31.7185 + 0.6081x 0.36 0.60 <0.05 

MS Y = 29.4263 + 0.6740x 0.33 0.57 <0.05 

Cr 

F Y = 154.2734 + 0.3698x 0.40 0.63 <0.05 

PF Y = 945.0711 -0.3190x 0.04 -0.15 ns 

ADFE Y = 50.5874 + 2.0524x 0.92 0.96 <0.01 

M Y = 66.0106 + 2.4237x 0.91 0.96 <0.01 

MS Y = 71.9094 + 2.0737x 0.85 0.93 <0.01 

Ni 

F Y = 37.0918 + 0.8899x 0.86 0.92 <0.01 

PF Y = 68.0372 - 0.0951x 0.01 -0.05 ns 

ADFE Y = 59.1555 + 1.7463x 0.84 0.95 <0.01 

M Y = 65.5612 + 1.8996x 0.84 0.94 <0.01 



105 

 

MS Y = 50.2901 + 1.8700x 0.82 0.94 <0.01 

Ti 

F Y = 2156.5606 - 0.1220x 0.00 -0.04 ns 

PF Y = 3791.8750 - 0.7348x 0.03 -0.18 ns 

ADFE Y = 4069.8662 + 2.9753x 0.37 0.60 <0.05 

M Y = 4182.6988 + 3.8259x 0.50 0.70 <0.01 

MS Y = 3187.6807 + 4.5271x 0.71 0.84 <0.01 

V 

F -- -- -- -- 

PF Y = 87.3052 - 0.2666x 0.04 -0.06 ns 

ADFE Y = -9.6339 + 0.8426x 0.61 0.76 <0.01 

M Y = 53.2672 + 0.6487x 0.69 0.79 <0.01 

MS Y = -22.1618 + 0.8010x   0.67 0.83 <0.01 

Zr 

F Y = 184.6614 - 2.0507x 0.28 -0.53 ns 

PF Y = 165.4130 - 0.7640x 0.04 -0.20 ns 

ADFE Y = 247.5426 - 2.5085x 0.24 -0.49 ns 

M Y = 289.2736 - 2.8758x 0.28 -0.53 <0.05 

MS Y = 241.3783 - 2.4069x 0.38 -0.61 <0.05 
1 F – Field; 2 PF – Post-Field; 3 ADFE – Air-dried fine earth; 4 M - Macerated; 5 MS – Macerated and sieved. 
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Fig. 5. Graphical representation of the relations between the elemental content obtained by the 

reference (USEPA 3051a) and pXRF methods under different scanning conditions of soil 

samples: field (F); post-field (PF); air-dried fine earth (ADFE); macerated (M); macerated and 

sieved (MS). 

 

The vast majority of soil-sample-preparation conditions provided equations with high 

R2 values (between 0.61 and 0.97) in addition to strong and significant correlations (between 

0.76 and 0.98) for Ca, Cu, Fe, Mn, Cr, Ni, and V (Table 2). Thus, the results indicate that the 
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use of pXRF to predict the content of these elements obtained by the USEPA 3051a method is 

adequate, except for the F and PF conditions for Ca (R² = 0.00 and 0.70; r = 0.00 and 0.87), 

Fe (R² = 0.65 and 0.07; r = 0.80 and 0.25), Cr (R² = 0.40 and 0.04; r = 0.63 and -0.15), and V 

(R² = 0.00 and 0.04; r = 0.00 and -0.06), when compared to laboratory scanning conditions 

(ADFE, M, and MS). This is also true for Cu (R² = 0.31; r = 0.55), Mn (R² = 0.56; r = 0.76), 

and Ni (R² = 0.01; r = -0.05), but only under the PF condition. Therefore, pXRF scanning 

under F and PF conditions are not recommended for Ca, Fe, Cr, and V, while for Cu, Mn, and 

Ni scanning under the PF condition is not recommended. Low or no correspondence between 

field results through pXRF scanning and standard laboratory methods has also been reported 

by Hu et al. (2014), Santana et al. (2018), Silva et al. (2018), and Horta et al. (2021) for the 

elements As, Pb, Cu, Zn, Ti, and Si.  

For Al (except for the F condition), K, Zn (except for the F condition), Ti (except for 

the MS condition), and Zr, linear models with low R² values (between 0.08 and 0.38) and 

non-significant correlations were obtained between results of pXRF and the USEPA 3051a 

method, regardless of the scanning condition (Table 2). However, for Al and Zn, the F 

condition provided linear models with R² values of 0.65 and 0.64, as well as correlation 

values of -0.80 and 0.80, respectively, while for Ti, R² values of 0.71 and correlation values of 

0.84 were obtained under the MS condition. 

The low correspondence between pXRF data and the reference method for Al and K is 

because in most Brazilian soils these elements are commonly found in the crystalline structure 

of silicate minerals, such as muscovite [K(Al2)Si3Al)O10(OH)2] in the sand fraction and 

kaolinite Al2Si2O5(OH)4 and hydroxy-interlayered vermiculite [nH2O,Al2(Si4Al)O10(OH)2] in 

the clay fraction (Brinatti et al. 2010; Inda et al. 2010; Resende et al. 2011; Kämpf et al. 

2012), and they are not dissolved by the USEPA 3051a method, because it does not employ 

hydrofluoric acid. Likewise, Zr is commonly found in silicate minerals that are resistant to 

weathering, such as zirconite (ZrSiO4) present in the sand fraction (Curi and Franzmeier 

1987; Santos et al. 2016; Stockmann et al. 2016a).  Also, Ti is widely found in the crystalline 

structure of non-silicate primary minerals (titanium oxides), such as ilmenite (FeTiO2) and 

rutile (TiO2), which are generally found in the clay fraction, and they are quite resistant to 

weathering and tend to accumulate in most tropical soils (Kämpf et al. 2012; Costa et al. 

2014; Santos et al. 2016; Lyu et al. 2017). Therefore, these elements are greatly 

underestimated by the USEPA 3051a acid digestion method (USEPA 2007; Silva et al. 2014, 

2019; Tavares et al. 2020). Conversely, pXRF determines the total elemental content of soils 

(Weindorf et al. 2014b; Ribeiro et al. 2017; Silva et al. 2021), which explains the high 
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contents for Al, K, Zr and Ti (Table 2) and, consequently, their low or no correspondence 

with the reference method (Table 3). The low performance of the USEPA 3051a method in 

the dissolution of Ti oxides minerals (ilmenite and rutile) was also observed by Silva et al. 

(2019), who found Ti values 20 times lower and a low correspondence between methods (R² 

= 0.31) for the reference in comparison with the pXRF method.   

 

3.4 Validation of linear equations 

 

Validation parameters for linear regression models with R2 ≥ 0.60 and significant (p ≤ 

0.05) correlation values are shown in Table 3. As expected, due to the low correspondence 

with the reference method (Table 2), the validation for Al and Zn in the field (F), and for V in 

the air-dried fine-earth (ADFE), macerated (M), and macerated and sieved (MS) conditions, 

resulted in low values of R² (from 0.40 to 0.56) and RPD (from 1.23 to 1.48), as well as high 

values of RMSE (from 9.26 to 13757.48 mg kg-1). Thus, models generated for these elements 

were classified as having poor prediction performance (Chang et al. 2001; Viscarra Rossel et 

al. 2010). For Ti, the model generated for the MS condition was considered good with a 

reasonable prediction performance, providing R² of 0.61 and RPD of 1.65, as well as RMSE 

of 192.57 mg kg-1. In general, estimating Al, Zn, V, and Ti with pXRF is only recommended 

when moderate accuracy of the models is sufficient.  

 In contrast, Ca validation in the M condition produced superior results in comparison 

with other conditions, with R² values of 0.88, RPD of 3.00, and the lowest values of RMSE 

(80.28 mg kg-1). For Cu, the R² values were above 0.70 in the F, ADFE, M, and MS 

conditions, but the best result was observed for the F condition (R² = 0.91, RMSE = 7.44 mg 

kg-1 and RPD = 3.29). Scanning with pXRF for the ADFE condition produced the best 

validation results for Fe, reaching R² of 0.94 and RPD of 4.15, as well as the lowest values of 

RMSE (9679.38 mg kg-1) when compared with other scanning conditions. 

For Mn, the greatest values of R² and RPD were obtained for the F condition (R² = 

0.85 and RPD = 2.65), which made it possible to generate the lowest RMSE values (129.7 mg 

kg-1). The ADFE condition produced the best validation parameters for Cr with values of R², 

RMSE and RPD of 0.86, 229.55 mg kg-1, and 2.77, respectively. The ADFE and M conditions 

provided the best validation results for Ni, with values of R², RMSE, and RPD reaching 0.74, 

30.09 mg kg-1, and 2.10 for the ADFE condition, while for the M condition the values were 

0.74, 30.37 mg kg-1, and 2.08, respectively. Therefore, the linear regression models obtained 

were classified as very good for Ca, Cu, Fe, Mn, and Cr, and as good for Ni under the ADFE 
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and M conditions (Viscarra Rossel et al. 2010). All the models for these elements had 

excellent prediction performance (Chang et al. 2001). 

 

Table 3. Results of equations to validate predictions concerning the contents of elements 

determined by the reference method (USEPA 3051a), which were compared to the data 

obtained via pXRF under different conditions of soil-sample scanning. 

Conditions  
 Al  Ca 

 R² RMSE6 RPD7  R² RMSE RPD 

F1  0.52 17660.41 1.48  -- -- -- 

PF2  -- -- --  0.45 174.52 1.39 

ADFE3  -- -- --  0.84 114.55 2.06 

M4  -- -- --  0.88 80.28 3.00 

MS5  -- -- --  0.75 183.41 1.31 

Conditions  
 Cu  Fe 

 R² RMSE RPD  R² RMSE RPD 

F  0.91 7.44 3.29  0.57 26006.91 1.54 

PF  -- -- --  -- -- -- 

ADFE  0.84 12.31 1.99  0.94 9679.38 4.15 

M  0.80 13.89 1.76  0.92 11280.77 3.56 

MS  0.71 20.87 1.17  0.88 14068.12 2.85 

Conditions  
 Mn  Zn 

 R² RMSE RPD  R² RMSE RPD 

F  0.85 129.77 2.65  0.50 9.26 1.45 

PF  -- -- --  -- -- -- 

ADFE  0.56 228.73 1.51  -- -- -- 

M  0.62 208.20 1.65  -- -- -- 

MS  0.83 138.51 2.49  -- -- -- 

Conditions  
 Cr  Ni 

 R² RMSE RPD  R² RMSE RPD 

F  -- -- --  0.74 83.71 0.75 

PF  -- -- --  -- -- -- 

ADFE  0.86 229.55 2.77  0.74 30.09 2.10 

M  0.84 243.14 2.61  0.74 30.37 2.08 

MS  0.72 326.41 1.95  0.65 37.13 1.70 

Conditions  
 Ti  V 

 R² RMSE RPD  R² RMSE RPD 

F  -- -- --  -- -- -- 

PF  -- -- --  -- -- -- 

ADFE  -- -- --  0.40 93.68 1.23 

M  -- -- --  0.56 80.82 1.41 

MS  0.61 192.57 1.65  0.46 84.77 1.35 
1 F – Field; 2 PF – Post-Field; 3 ADFE – Air-dried fine earth; 4 M - Macerated; 5 MS – Macerated and sieved; 6 

RMSE – Root Mean Square Error; 7 RPD - Residual Prediction Deviation. “--” - The validation parameters are 

related to linear regression models with R² < 0.60 and with non-significant correlation values (p > 0.05). K and 

Zr do not appear in the table because the coefficients of determination (R²) of the linear regression models for all 

different scanning conditions with pXRF remained below 0.60.  
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The results demonstrate strong potential of applying data generated by pXRF to 

estimate results obtained by the USEPA 3051a method in tropical soils for Ca (M condition), 

Cu (F condition), Fe (ADFE condition), Mn (F condition), Cr (ADFE condition), and Ni 

(ADFE and M conditions) using regression equations. This may simplify sample preparation, 

reduce cost and time, besides being an environmentally friendly, chemical-free technique. We 

also emphasize that for Ca, Cu, Fe, Mn, Cr, and Ni, the ADFE condition (commonly used for 

scans with pXRF) provided good results. Silva et al. (2019) found lower R² and greater 

RMSE values for Ca, Cu, Fe, Mn, Cr, and Ni via pXRF scanning soil samples when 

compared with the best results found in the present study for these same elements, when both 

studies considered the USEPA 3051a method as reference (Table 3).  

 

4. Conclusion 

 

Variations in particle size distribution, degree of soil moisture, alteration or 

preservation of soil structure, and evaluation of locality (field vs. laboratory) provided 

contrasting results for the total elemental content obtained from pXRF for Al, Ca, Cu, Fe, K, 

Mn, Zn, Cr, Ni, Ti, V, and Zr. For the vast majority of elements evaluated, the M condition, 

followed by ADFE, provided the largest number of samples reaching quantification and the 

greatest elemental concentrations in relation to the other scanning conditions with pXRF, 

when the reference method was USEPA 3051a / ICP-OES. In contrast, the results obtained by 

pXRF under F and PF conditions were highly influenced by soil moisture. 

Contents of Ca (M condition), Cu (F condition), Fe (ADFE condition), Mn (F 

condition), Cr (ADFE condition), and Ni (ADFE and M conditions) obtained by pXRF can be 

used to predict results obtained by the USEPA 3051a method. However, moderate 

relationships were observed for Al (F condition), Zn (F condition), Ti (MS condition), and V 

(M condition). Moreover, it was not possible to reasonably predict K and Zr contents, 

regardless the pXRF scanning conditions. These results show that pXRF is a promising tool 

for determining the elemental composition of tropical soils, and it can be considered a 

replacement alternative for the costly and time-consuming USEPA 3051a method, especially 

for Ca, Cu, Fe, Mn, Cr, and Ni. It is advisable to remove moisture from the soil sample to 
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improve the accuracy of the method. The ADFE condition is recommended, because of the 

ease of sample preparation in relation to the M and MS conditions. Similar results were 

provided by the ADFE, M, and MS conditions, and, in general for most of the elements 

evaluated, they give more reliable results than the F and PF conditions evaluated.  
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Abstract 

In Brazil, USEPA 3051a is considered a standard analytical methodology for the extraction of 

inorganic substances in soils commonly used for environmental monitoring, mainly 

geochemical balance. However, these analyzes are expensive, time-consuming and produce 

chemical residues. Conversely, proximal sensors such as portable X-ray fluorescence (pXRF) 

spectrometry reduce analysis time, costs and consequently offer a valuable alternative to 

laboratory analyses. This study aimed to investigate the development and validation of 

models to predict the results of the USEPA 3051a method for 28 chemical elements from 

pXRF data, through linear regressions and robust machine learning algorithms. A total of 179 

samples (considering horizons A and B) representing a large area from Brazil were analyzed 

for elemental composition using the USEPA 3051a method and pXRF. Four prediction 

models - simple linear regression (SLR), stepwise multiple linear regressions (SMLR), 

support vector machine (SVM) and random forest (RF) - were tested and compared. Modeling 

was developed with 70% of the data, while the remaining 30% were used for validation by 

calculating R2, residual prediction deviation (RPD), root mean square error (RMSE) and 

normalized root mean square error (NRMSE). The results demonstrated that most of the 

elements obtained via pXRF were well correlated with the USEPA 3051a method. Machine 

learning algorithms (SVM and RF) performed better than SLR and SMLR for the prediction 

of Al, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Mg, Mn, Mo, P, Pb, Sn, Sr, Ti, Tl, V, Zn and Zr in 

tropical soils, whose R² and RPD values ranged from 0.52 to 0.94 and 1.43 to 3.62, 

respectively, as well as the lowest values of RMSE and NRMSE values (0.28 to 0.70 mg kg-
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1). Unsatisfactory results (R² < 0.50; RPD < 1.4) were generated for K, Ni, Be, Li, Na and S, 

regardless of the prediction models. Most USEPA 3051a results can be accurately predicted 

from pXRF data through SVM and RF algorithms, saving cost, time, and ensuring routine 

geochemical characterization of tropical soils on a large scale in an environmentally friendly 

way. 

 

Keywords: portable X-ray fluorescence spectrometry, rapid soil analysis, total elemental 

content, support vector machine, random forest. 

 

1. Introduction 

 

Portable X-ray fluorescence (pXRF) spectrometry is one of the proximal sensing 

techniques that has received great attention in soil science in recent years (O’Rourke et al., 

2016a; Ravansari et al., 2020). This growing use of pXRF occurs due to technological 

advances, which include equipment miniaturization, advances in computing power, battery 

life capability, and high-energy X-ray generating tubes (Declercq et al., 2019; Javadi and 

Mouazen, 2021; Tavares et al., 2021). However, in tropical developing countries, studies with 

this technique are still scarce and recent considering the wide range of purposes in which this 

tool can be used for (e.g., agronomic, pedological, environmental and geochemical) 

(O’Rourke et al., 2016b; Ravansari et al., 2020; Silva et al., 2021).  

PXRF has changed the acquisition of multielemental soil data (from Mg to U on the 

Periodic Table) with a wide concentration range (ppm or mg kg-1), non-destructive, fast 

(approximately 60 s), low-cost and environmentally correct both in the field and in the 

laboratory (Hseu et al., 2016; Vasques et al., 2020; Weindorf et al., 2014). In temperate soils, 

several methods have been proposed for soil and sediment characterization (Soil Survey Staff, 

2014; USEPA, 2007a; Weindorf and Chakraborty, 2020), and a methodology for tropical soils 

via pXRF has also recently been made available (Silva et al., 2021). Studies have shown that, 

in addition to soil, different matrices can also be characterized using this tool, including 

parent material (Mancini et al., 2019b, 2019a), different types of sediments (Ferreira et al., 

2021; Knight et al., 2021), leaf tissues (Borges et al., 2020a), water (Pearson et al., 2016), and 

organic compounds (e.g., manure and biochar) (Faria et al., 2021; Weindorf et al., 2018). 

Commonly, the quantification of the total or semi-total elemental concentration in 

soils is performed by traditional wet methods based on concentrated acid digestion (e.g., 

USEPA 3050b, 3051a and 3052), which convert solid samples into liquid extracts with 
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quantification in inductively coupled plasma optical emission spectrometry (ICP-OES) (Chen 

and Ma, 1998; Silva et al., 2014; USEPA, 2007b). According to the Brazilian Environmental 

Legislation, the USEPA 3051a method is a standard semi-total wet analytical procedure for 

the extraction of inorganic substances in soils (CETESB, 2014; CONAMA, 2009; COPAM, 

2011). This method is widely used in highly weathered and leached tropical soils because it 

has recovery values comparable to more aggressive methods (e.g., USEPA 3052), without 

requiring hydrofluoric acid manipulation (Bispo et al., 2021; Bocardi et al., 2020; Faria et al., 

2022; Ribeiro et al., 2019). However, unlike pXRF, these traditional wet methods based on 

acid digestion, including USEPA 3051a or more aggressive ones (e.g., USEPA 3052) can be 

quite expensive, time consuming and hazardous as they may involve the use of large amounts 

of strong acids and the generation of chemical residues which can have impacts on the 

environment and human health (Benedet et al., 2021; Nascimento and Tenuta Filho, 2010; 

Wan et al., 2020). 

To overcome the negative environmental impact of wet geochemistry, efforts are 

being made to establish an accurate elementary relationship between pXRF data and 

conventional laboratory analysis results, mainly in tropical developing countries, whose 

studies in this regard are still very limited. Silva et al. (2019) and Faria et al. (2022) used 

pXRF to collect elementary data from only 22 and 14 soil samples, respectively, in order to 

estimate the results obtained by the 3051a method by applying simple linear regressions 

(SLR). These authors concluded that the prediction results were satisfactory only for the 

elements Ca, Cu, Fe, Mn, Cr and Ni with R² values ranging from 0.56 (Mn) to 0.94 (Fe). 

Borges et al. (2020b) used 144 soil samples combined with simple linear regressions and also 

observed a strong elementary relationship between the pXRF results and the 3051a method 

for some elements, such as: Cu (R² = 0.83), Fe (R² = 0.83) and Pb (R² = 0.82). However, these 

works involve more homogeneous soils, which instigates the investigation of this new 

approach involving a more diverse set of soils. In addition, previous studies have shown that 

machine learning algorithms, such as: random forest (RF) and support vector machine (SVM) 

with linear kernel, have provided highly accurate results (Andrade et al., 2021; Faria et al., 

2020; Liu et al., 2021; Meier et al., 2018; Silva et al., 2020; Wu et al., 2018), especially in 

large heterogeneous areas with great variability of soils, parent materials and land use (Araújo 

et al., 2014; Lucà et al., 2017; Wan et al., 2019).  

The authors of the present study are unaware of any other work carried out in tropical 

soils using linear and non-linear models combined with a heterogeneous database for 

predicting the results of the USEPA 3051a method from data obtained by pXRF. Thus, the 
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objectives of this study were: i) to use pXRF to characterize the elemental content of highly 

heterogeneous tropical soils; and ii) develop and validate prediction models for 28 elements 

traditionally obtained by the USEPA 3051a method based on data generated by pXRF 

through machine learning algorithms (RF and SVM) and simple (SLR) and multiple (SMLR) 

linear regressions. We hypothesize that the results of soil chemical composition determined 

by pXRF will be well correlated with the USEPA 3051a method for tropical soils, despite 

their different quantification methodologies, which will allow the development of robust 

prediction models using only pXRF data as input variables associate with machine learning 

algorithms. 

 

2. Material and Methods 

 

2.1 Soil sampling 

 

This study was carried out with 179 soil samples collected in the Brazilian states of 

Minas Gerais, Bahia, Espírito Santo, Rio de Janeiro, São Paulo and Santa Catarina, whose 

territorial extension reached is 1,587,169 km2 (Fig. 1). According to the Köppen classification 

system, these regions have different tropical and subtropical climate conditions, as shown in 

Fig. 1 (Alvares et al., 2013).  



123 

 

 

Fig. 1. Study area, distribution of the collected samples in six Brazilian states and Köppen 

(1936) climate classification for Brazil. A - tropical zone (Af - without dry season, Am - 

monsoon, Aw - with dry winter, As - with dry summer), B - dry zone [Bs - semiarid (BSh - 

low latitude and altitude)], C - Humid subtropical zone [Cf - oceanic climate, without dry 

season (Cfa - with hot summer, Cfb - with temperate summer), Cw - with dry winter (Cwa - 

and hot summer, Cwb - and temperate summer, Cwc - and short and cool summer), Cs - with 

dry summer (Csa - and hot, Csb - and temperate)]. 

 

The samples were collected in a wide range of soil classes described according to 

Santos et al. (2015) and classified according to the Brazilian Soil Classification System 

(Santos et al., 2018) as (n = number of samples): Argisols (n = 57), Latosols (n = 48), 

Cambisols (n = 32), Nitosols (n=16), Neosols (n=12), Espodosols (n=09), Luvisols (n=02), 

Plintosols (n=02) and Chernosols (n=01). The approximate correspondence by US Soil 

Taxonomy (Soil Survey Staff, 2014) is: Ultisols, Oxisols, Inceptisols, Oxisols and Ultisols, 

Entisols, Spodosols, Alfisols, Oxisols (Plinthaquoxes) and Mollisols, respectively. In total, 77 

samples were collected on the A horizon (between 0 – 20 cm) and 102 samples on the B 
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horizon (between 60 and 120 cm), totaling the 179 soil samples used in this study. Notably, 

these mentioned soil classes correspond to 90% of the Brazilian territory (~ 7,665,400 km2) 

(Santos et al., 2018). 

The following parent materials were identified in the soil sample collection areas 

during fieldwork: granite, gneiss, gabbro, basalt, alluvial and colluvial sediments, shale, 

sandstone, quartzite, phyllite, itabirite, mica-schist, amphibolite, charnockite and tuff. Finally, 

the areas where the samples were collected were under different land uses, such as: native 

vegetation, planted or native pastures and cultivated with coffee (Coffea arabica and/or 

canephora) and eucalyptus (Eucalyptus spp). In cultivated areas, agronomic management 

included the application of limestone and agricultural gypsum prior to mineral fertilizers, 

according to the needs of each crop. No management practices were carried out in areas under 

native vegetation.  

 

2.2 Laboratory analyses by USEPA 3051a and pXRF 

 

All 179 soil samples were initially air-dried, passed through a 2 mm sieve (air-dried 

fine earth – ADFE) and individually analyzed by both wet (USEPA 3051a) and dry (pXRF) 

geochemical methods. To facilitate the USEPA 3051a analysis, a portion of each ADFE (~15 

g) was ground using an agate mortar and passed through a 150 µm sieve. Subsequently, in 

triplicate, 0.5 g of the ground soil was transferred to 50-mL Teflon® vessels containing 5 mL 

of concentrated HNO3. Digestion was performed by heating the samples for 10 min in a 

microwave (CEM MARS-5, CEM Corp., USA) at 180 °C under a pressure of 448 kPA 

(USEPA, 2007b). After completing the digestion process, the samples were passed through 

No 40 Whatman filter paper, rinsing with ultrapure water until the volume of 50 mL was 

completed. The extracts obtained were analyzed by inductively coupled plasma optical 

emission spectrometry (ICP-OES), Spectro Blue model (Spectro Analytical Instruments, 

Germany) (Soltanpour et al., 1996). Thus, 28 elements, based on the following wavelengths 

(nm), were obtained: Al (196,152), Ba (233,527), Be (313,042), Bi (206,170), Ca (315,887), 

Cd (214,438), Ce (413,380), Co (230,786), Cr (267,716), Cu (327,396), Fe (238,204), K 

(766,491), Li (670,780), Mg (285,213), Mn (403,076), Mo (203,909), Na (588,995), Ni 

(231,604), P (178,287), Pb (220,353), S (182,034), Sr (460,733), Sn (189,991), Ti, (336,121), 

Tl (276,787), V (292,402), Zn (206,200) and Zr (339,198). A multi-elemental calibration 

curve between 0.1 to 50 mg L-1 was used to quantify these elements.  
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For comparison purposes, a new portion of ADFE (~15 g) was analyzed using a pXRF 

model S1 Titan LE (Bruker Nano Analytics, Kennewick, WA, USA), according to the 

methodologies recommended by Silva et al. (2021) for tropical soils. The samples were 

scanned in triplicate in Trace mode (dual soil), integrated into the GeoChem software, using 

two sequential operating beams. Each beam was set to scan for 30s, so the entire scan was 

completed in 60s. The pXRF features a Rh tube (4 W, 15–50 keV, and 5–100 μA) and a 

silicon shift detector (SDD) with typical resolution <145 eV, which allows the elemental 

identification and quantification between Mg and U in the Periodic Table. Despite the large 

amount of elements that pXRF can identify and quantify (~ 45 elements), only 15 elements 

that presented readings in more than 50% of the soil samples were considered for this study 

(e.g., Al, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr – all in mg kg-1). Thus, 

elements with no or just a few readings (< 50%) were disregarded. 

The pXRF performance was assessed by scanning certified reference materials (CRM) 

by the National Institute of Standards and Technology (NIST) (2710a and 2711a) and a 

sample certified by the manufacturer (check sample - CS) of the equipment for the elements 

detected in most samples. The recovered values [% Recovery = (elementary content via 

pXRF/certified elementary content) x 100] for these elements compared to the information 

from CRM 2710a and 2711a and from the manufacturer's sample (CS), were respectively: Al 

(64/127/97), Ca (86/45/--), Cr (--/129/--), Cu (84/67/95), Fe (108/98/90), K (52/33/89), Mn 

(73/64/88), Ni (--/104/110), P (--/69/93), Pb (--/--/98), Sr (198/172/--), Ti, (169/118/--), V (--

/20/--), Zn (99/81/--) and Zr (105/--/--). Dashed lines (--) indicate the absence of reference 

values for an element or it was below the pXRF detection limit. 

 

2.3 Statistical analysis and validation of models 

 

The 28 elements obtained by the USEPA 3051a wet method, as well as the 15 

elements delivered by pXRF were initially analyzed using boxplots and histograms to assist in 

the characterization and identification of intrinsic differences in the elemental quantification 

obtained by both methods in highly heterogeneous tropical soils. All statistical analyses were 

performed using R software version 4.0.3 (R Development Core Team, 2018).  

In order to evaluate the elementary relationship between the used methods (USEPA 

3051a and pXRF) in a very simple way, simple linear regressions (SLR) were created 

between the elements obtained by both USEPA 3051a and pXRF methods (Al, Ca, Cr, Cu, 

Fe, K, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr). Also, in order to generate more robust prediction 
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models, stepwise multiple linear regression (SMLR), random forest (RF) and support vector 

machine (SVM) with linear kernel were also created to predict the 28 elements obtained via 

USEPA 3051a based on the 15 elements detected and quantified by pXRF in all samples.  

The prediction models were created using R software, with RF contained in the 

“randomForest” package (Liaw and Wiener, 2015) and SVM contained in the “e1071” 

package (Hornik et al., 2015). The RF analysis was performed with the following parameters: 

number of trees of the model (ntrees) = 1000, node size = 5, and number of variables used in 

each tree (mtry) = 4, equivalent to the number of variables divided by 3, as suggested by 

(Liaw and Wiener, 2002). The RF does not provide a final equation, but the variable 

importance of the generated model can be assessed. One of the metrics released by the 

algorithm is the percent increase in mean square error (% IncMSE). The higher the % 

IncMSE value, the greater the importance of the variable for the model (González et al., 

2015).  

Prior to the modeling, all pXRF results from scans of soil samples were normalized 

(normalized elemental content = (x - mean (x)) / std(x), where x is the original elementary 

content, mean (x) is the mean of the values for each element, and std(x) is the standard 

deviation of the values of each element) and scaled (scaled elemental content = (x – mean(x)), 

where x is the original elemental content).  

For SLR, SMLR, RF and SVM prediction models, the total database (n = 179) was 

randomly separated into modeling (125 samples - 70%) and validation sub-datasets (54 

samples - 30%). Samples from A and B horizons from the same soil profile were kept in the 

same dataset (either modeling or validation) in order to ensure true data independence during 

the validation procedure. The accuracy of the prediction models was assessed by comparing 

the predicted with the observed values through the following statistical indexes: determination 

coefficient (R2, Eq. 1), root mean square error (RMSE, Eq. 2), normalized root mean square 

error (NRMSE, Eq. 3) and residual prediction deviation (RPD, Eq. 4). 

 

R2= 1- 
∑ (ei - mi)2n

i=1

∑ (ei - Ȳi)2n
i=1

 Eq. 1 

  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑒𝑖 − 𝑚𝑖)²

𝑛

𝑖=1
 Eq. 2 
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𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑆𝐷
 Eq. 3 

  

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
 Eq. 4 

 

Where: n - number of observations; ei - values estimated by the model; mi - values obtained 

through USEPA 3051a; Ȳi - represents the mean of the values observed in the USEPA 3051a 

analyses; SD - is the standard deviation of the values observed in the USEPA 3051a analyses. 

 

The R2 values of the generated models and their validations were classified as: very 

good (> 0.81), good (0.61 - 0.80), regular (0.41 - 0.60) and low (< 0. 4), according to Viscarra 

Rossel et al. (2010). The normalized RMSE facilitates the comparison between datasets or 

models with different data ranges. Models with lower RMSE and NRMSE values indicate 

better performance and reliability of predictions (Chai and Draxler, 2014; Jalali et al., 2019; 

Taebi and Mansy, 2017). The generated RPD were classified into three classes: RPD > 2, 

models with accurate predictions, 1.4 ≤ RPD ≤ 2, models with reasonable predictions and 

RPD < 1.4, models without prediction capability (Chang et al., 2001). The models with 

greater R2 and RPD and smaller RMSE and NRMSE were considered the best ones for 

predicting USEPA 3051a laboratory analyses. 

 

3. Results and Discussion 

 

3.1 Descriptive analysis 

 

The boxplots and histograms for the 28 elements determined by USEPA 3051a, as 

well as for the 15 elements delivered by pXRF, can be seen in Fig. 2. High amplitude and 

variability were observed in the data determined by the USEPA 3051a method. Of the 28 

elements determined by the USEPA 3051a method, the averages values followed in the order 

of Fe > Al > Ca > K > Mn > P > Ti, and ranged from 141 (Ti) to 21,525.40 mg kg-1 (Fe). In 

contrast, the lowest values were found in Mo > Sr > Sn > Co > Li > Cd > Be, ranging from 

0.30 (Be) to 8.30 mg kg-1 (Mo). Similar range values were observed by Coringa et al. (2014) 

and Souza et al. (2015) using USEPA 3051a method for geochemical evaluation of a wide 

variety of tropical soils. 
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Fig. 2. Boxplots, histograms, and mean values for elemental content obtained by the USEPA 

3051a (28 elements) and pXRF (15 elements) methods in Brazilian tropical soils. 

 

The contents of Ba (29.60 mg kg-1), Co (5.46 mg kg-1), Cu (18.02 mg kg-1), Mo (8.30 

mg kg-1), Ni (10.86 mg kg-1), V (54.31 mg kg-1) and Zn (16.88 mg kg-1) are below the limits 

stablished by the Brazilian Environmental Legislation (CETESB, 2014; CONAMA, 2009; 

COPAM, 2011), that consider the USEPA 3051a method as standard analytical method for 

the extraction of inorganic substances in soils. Conversely, Cd (2.62 mg kg-1) and Cr (92.84 

mg kg-1) are above the recommended levels, and can potentially poses risk to human health. 

High levels of Cr in tropical soils were also reported by Rosolen et al. (2015) and Souza et al. 

(2015), being attributed to agricultural practices and the chemical composition of parent 

materials. 

The content of the 15 elements determined by both methods (USEPA 3051a and 

pXRF) presented completely different results (Fig. 2), which was expected due to the intrinsic 

characteristics of each method. Commonly, USEPA 3051a in tropical soils extract semi-total 

contents, mainly due to the non-dissolution of silicates. Thus, satisfactory recovery rates of 

elements are usually obtained from non-silicate minerals in different soil granulometric 

fractions, and from soil organic matter (SOM) fraction (Silva et al., 2019, 2014; USEPA, 

2007b). Contrariwise, the elemental content delivered by pXRF is considered a total 

determination (Costa et al., 2019; Pelegrino et al., 2021; Ravansari et al., 2021; Silva et al., 

2021), which explains the difference in results between the methods. 

The results obtained by pXRF presented higher amplitudes, variability, and mean 

values for all 15 elements evaluated compared to the USEPA 3051a method. PXRF yielded 

the highest values for Al, Fe, Ti and K, whose values were: 77,407.56, 61,228.23, 11,361.60 

and 4,012.00 mg kg-1, respectively. This was likely to occur because Brazilian tropical soils 

have different proportions of minerals such as muscovite, ilmenite, and rutile in the sand 

fraction, as well as kaolinite, hematite, goethite, gibbsite and anatase in the silt and clay 

fractions (Brinatti et al., 2010; Kämpf et al., 2012; Melo et al., 2002b). The abundance of 

these minerals explains the high values of Al, Fe and Ti obtained in this study, which are 

present in the crystalline structure of these minerals. In addition to the presence in muscovite, 

K levels are also due to the presence of K-feldspar traces and agronomic amendments, such as 

potassium fertilization (Kämpf et al., 2012). Overall, the mean values for most of the 15 

elements evaluated were consistent with Marques et al. (2004a) that evaluated the content of 

20 elements via wavelength scattering X-ray fluorescence in Brazilian Cerrado soils.  
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The greater data variability determined by pXRF was mainly associated with the 

parent material diversity, which in turn directly influences the chemical composition of soils 

(Gozukara et al., 2021; Mancini et al., 2019b; Souza et al., 2021; Stockmann et al., 2016), in 

addition to different management practices, such as application of acidity correctives and 

fertilizers. The dataset in the present study presents soils developed from acidic rocks (e.g., 

granite, gneiss, sandstone, and quartzite) and soils developed from basic rocks (e.g., gabbro 

and basalt), explaining the greater variability of the chemical element contents. 

 

3.2 Correlations between USEPA 3051a and pXRF 

 

The correlation between the 28 elements obtained by the USEPA 3051a method with 

the 15 elements delivered by pXRF for all soil samples (n = 179) (Fig. 3) demonstrates the 

vast majority of positive correlations. Evaluating the content of the elements obtained by both 

methods (USEPA 3051a and pXRF), positive and strong correlations were observed for Cr (r 

= 0.98), Ni (r = 0.95), Ca (r = 0.87), Cu (r = 0.85), Fe (r = 0.82), Mn (r = 0.82), Zn (r = 0.78) 

and V (r = 0.71). The strong correlations are due to the fact that most of these elements can be 

found in tropical soils in the following situations: i) constituents of the crystalline structure of 

the Fe, Al, and Mn oxides (e.g., Cr and V) (Hseu et al., 2016; Marques et al., 2004a), ii) 

strongly adsorbed on clay-sized minerals, mainly iron oxides, as well as forming stable 

complexes with SOM (e.g., Cr, Ni, Cu, Zn and Mn) (Marques et al., 2004b; Meurer et al., 

2010), and iii) present in soil solution, such as Ca and P, since most tropical soils have only 

traces of minerals containing this element, where their contents are basically derived from the 

application of correctives and soil conditioners (Brinatti et al., 2010; Kämpf et al., 2012; 

Lopes and Guilherme, 2016). Therefore, the contents of Cr, Ni, Ca, Cu, Fe, Mn, Zn and V are 

easily recoverable using the USEPA 3051a method, which in turn provided high correlation 

values with the data via pXRF. Similar results were reported by Silva et al. (2019) in tropical 

soils, that showed correlation indices between pXRF and USEPA 3051a for these same eight 

elements ranging from 0.57 (Zn) to 0.97 mg kg-1 (Cr). 
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Fig. 3. Color correlation between the elemental contents obtained by the standard method 

USEPA 3051a (28 elements) and by pXRF method (15 elements) in Brazilian tropical soil 

samples (n = 179). 

 

The fact that SOM forms stable complexes with most divalent and trivalent cations in 

soil, making them easily recovered by both methods (USEPA 3051a and pXRF), may also 

explain other highly significant correlations observed, such as: Bi-USEPA 3051a (Bi3+) with Cr-

pXRF (Cr3+) (r = 0.98) and Bi-USEPA 3051a (Bi3+) with Ni-pXRF (Ni2+) (r = 0.93), in addition to the 

results between Cu-USEPA 3051a (Cu2+) and Zn-pXRF (Zn2+) (r = 0.78) and Cr-USEPA 3051a and Ni-

pXRF (r = 0.93) (Fig. 3). The close relationship between most of these elements and SOM can 

be seen in studies carried out by Lima et al. (2019), Faria et al. (2022), Murata (2010) and 

Hou et al. (2005). 

The results also demonstrated that Cd content (USEPA 3051a) was strongly correlated 

(r = 0.87) with Fe (pXRF) (Fig. 3). Regarding the high correlation values between Sr-USEPA 

3051a and Ca-pXRF (r = 0.77), Drouet et al. (2007) and Kabata-Pendias (2010) explain that both 

elements have similar geochemical and biochemical behavior during weathering processes. 

The results also demonstrated that Ti via USEPA 3051a was well correlated with Cu (r = 

0.75), Fe (r = 0.77) and V (r = 0.81) delivered by pXRF. A correlation value of 0.89 was 

obtained between Tl-USEPA 3051a and Fe-pXRF, due to Tl being associated with Fe oxides, and to 
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SOM (Kabata-Pendias and Mukherjee, 2007) which, consequently, indirectly explains the 

high correlations between Tl and Cr, Cu and Zn.  

Considering that the methods are semi-total (USEPA 3051a) and total (pXRF) 

determination, the results showed that both methods tested can provide similar recovery 

values for many elements present in tropical soils, indicating that they can be used as a basis 

for the development of promising and accurate prediction models in the geochemical 

assessment of soils from tropical regions. More details will be discussed in the following 

sections. 

In Fig. 3 is also shown positive and moderate correlations for Al (r = 0.52), K (r = 

0.52) and P (r = 0.50), as well as low or no positive correlations for Ti (r = 0.37), Pb (r = 

0.33), Zr (r = 0.12), and Sr (r = 0.10) obtained by both the USEPA 3051a and pXRF methods 

in soils. Despite the correlation results delivered for Al, K and Zr were superior to those found 

by Silva et al. (2019) and Faria et al. (2022), due to the presence of these elements in the 

crystal structure of silicate minerals not digested by USEPA 3051a, stronger correlations 

between the methods were not found. Thus, the contents of Al, K, Ti and Zr was not fully 

recovered by the USEPA 3051a method, since this method has a greater capacity to dissolve 

non-silicate minerals present in the different granulometric fractions of tropical soils 

(Abbruzzini et al., 2014; Chen and Ma, 1998; Silva et al., 2014). The use of pXRF provides 

the ability to identify and quantify the total multielemental content of soil (Silva et al., 2021; 

Weindorf et al., 2014), which explains the higher content of these elements compared to the 

traditional method (Fig. 2) and, consequently, the low correlation results (Fig. 3).  

Contrariwise, an unexpected result occurred since in tropical soils Ti is found mainly 

in non-silicate minerals (e.g., ilmenite, rutile and anatase) present in the sand and clay fraction 

(Kämpf et al., 2012; Marques et al., 2004a; Melo et al., 2002a) which, in turn, should be 

digestible by USEPA 3051a. However, the standard method used was not able to 

satisfactorily recover this element when compared to pXRF, resulting in a low correlation (r = 

0.37) (Fig. 3). This result is probably due to the large amount of these minerals in the coarse 

fraction (e.g., ilmenite and rutile), resistant to weathering and with a tendency to accumulate 

in most tropical soils, interfering on USEPA 3051a digestion process.  

Studies with low or no correlation between Al, K, Ti and Zr contents obtained by 

traditional methodologies and by pXRF are already reported in soils of the tropical regions 

(e.g., Faria et al., 2022; Silva et al., 2019). However, Declercq et al. (2019) evaluating 128 

soil samples collected in 10 different countries, mostly distributed in temperate regions, 
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reported correlations above 0.80 for K and Al obtained between pXRF and acid digestion 

methods. 

The low correlation results for Pb and Sr, commonly found in minerals such as galena 

and celestite (non-silicate) in the clay fraction, may be due to the low natural concentration of 

these elements in tropical soils (Kabata-Pendias, 2010; Marques et al., 2004a), and to the 

great variability of factors in this study (e.g., degree of soil weathering, parent materials, 

collection depth, soil use and management practices) which may have contributed to a non-

linear relationship between USEPA 3051a and pXRF. This variability of factors may also 

have contributed to the large amount of low correlations (negative or positive) between 

elemental contents via USEPA 3051a and pXRF, especially for elements with low 

concentrations, such as: Ce, Li, Be, Na and Sn (Fig. 3). 

Finally, P showed moderate and positive correlation (r = 0.50) between methods, 

which was already expected due to the main source of this element in Brazilian soils being of 

anthropic origin via successive applications of phosphate fertilizers (Benedet et al., 2021; 

Yang and Post, 2011), easily determined by both methods. In tropical soils, Silva et al. (2019) 

and Lima et al. (2019) found strong positive correlations (0.71 and 0.68) between P content 

via digestion methods and pXRF. 

 

3.3 Modeling and validation from pXRF data via: 

 

3.3.1 Simple linear regression and stepwise multiple linear regression 

 

Models generated through simple linear regressions (SLR) and stepwise multiple 

linear regression (SMLR) with their respective R2 values for prediction of Al, Ca, Cr, Cu, Fe, 

K, Mn, Ni, P, Pb, Sr, Ti, V, Zn and Zr are shown in Table 1. In general, the R² values of the 

models generated by the SLR ranged from 0.00 (Zr) to 0.96 (Cr and Ni), while for SMLR, the 

R² values ranged between 0.38 (Zr) and 0.84 (Cr). 

 

Table 1. Prediction models generated by simple linear regression (SLR) and stepwise multiple 

linear regression (SMLR) with their respective R² to predict 15-element results via the 

USEPA 3051a method from portable X-ray fluorescence (pXRF) spectrometry data in 

Brazilian tropical soils. 
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Elements Prediction Models R² 

Al 

SLR Al USEPA 3051a = 1.6198 AlpXRF + 52075 0.26 

SMLR 
Al USEPA 3051a = 15780.7 + 4390.5Al + 6442.7Fe - 1333.5Mn + 

1908.3P - 1987.1Pb + 1348.7Ti 
0.50 

Ca 

SLR Ca USEPA 3051a = 1.941 CapXRF + 278.56 0.82 

SMLR 
Ca USEPA 3051a = 745.25 + 126.71Al + 870.88Ca + 68.02Fe - 

97.93K + 126.59P - 57.21Ti 
0.83 

Cr 

SLR Cr USEPA 3051a = 3.5078 CrpXRF - 93.586 0.96 

SMLR 
Cr USEPA 3051a = 95.880 + 6.785Al + 195.626Cr - 19.065Cu + 

32.920Fe + 30.028Ni + 6.253P - 19.421Pb + 10.676Ti 
0.84 

Cu 

SLR Cu USEPA 3051a = 1.5395 CupXRF + 5.2731 0.75 

SMLR 

Cu USEPA 3051a = 17.0199 - 6.3559Cr + 13.6047Cu + 3.9761Fe + 

1.2706K - 2.3862Mn + 5.6033Ni + 2.3353P - 1.8938Pb + 

2.2116Zn 

0.76 

Fe 

SLR Fe USEPA 3051a = 2.6233 FepXRF + 1095.8 0.74 

SMLR 

Fe USEPA 3051a = 20477.1 - 1186.7Ca - 8992.0Cr - 1922.2Cu + 

16909.3Fe + 1090.1K + 8337.2Ni + 1361.4P - 4665.2Pb + 

1979.3Ti 

0.74 

K 

SLR K USEPA 3051a = 11.577 KpXRF + 1426.2 0.28 

SMLR 
K USEPA 3051a = 288.59 + 96.69Fe + 102.58K - 84.04Pb + 

128.68Sr - 82.86V + 79Zn 
0.46 

Mn 

SLR Mn USEPA 3051a = 1.0197 MnpXRF + 92.515 0.72 

SMLR 

Mn USEPA 3051a = 221.771 - 17.807Al + 39.183Cu - 56.842Fe - 

27.411K + 268.869Mn + 134.391Ni + 43.331Sr - 25.153Ti - 

56.313V 

0.78 

Ni 

SLR Ni USEPA 3051a = 3.6101 NipXRF - 3.4733 0.96 

SMLR 
Ni USEPA 3051a = 11.6196 - 1.4216Al - 1.0173K + 1.5590Mn + 

30.2747Ni - 0.9719P - 1.8194Pb + 2.9803Sr 
0.73 

P 

SLR P USEPA 3051a = 0.5647 PpXRF + 146.97 0.26 

SMLR 
P USEPA 3051a = 198.37 + 23.01Al + 32.39Ca - 61.09Cu + 

92.35Fe - 62.14K - 27.19Ni + 110.22P + 110.02Zn 
0.53 

Pb 

SLR Pb USEPA 3051a = 0.7495 PbpXRF + 0.4526 0.17 

SMLR 

Pb USEPA 3051a = 18.1187 + 3.0021Al + 1.3258Cr - 2.0862Cu + 

7.1281Fe + 1.5390P + 3.7537Ti - 2.7515V + 1.7137Zn - 

1.8988Zr 

0.50 

Sr 

SLR Sr USEPA 3051a = 0.6803 SrpXRF + 7.4886 0.27 

SMLR 

Sr USEPA 3051a = 8.3426 + 0.9898Al + 5.7868Ca + 1.5523Fe - 

2.1433K + 1.2559P + 2.0973Sr - 0.7700Ti - 1.1799V + 

1.2941Zn 

0.57 

Ti 

SLR Ti USEPA 3051a = 14.607 TipXRF + 8462.9 0.08 

SMLR 
Ti USEPA 3051a = 125.93 - 29.7Al + 108.63Cr + 94.59Cu - 

86.17Ni - 33.99P - 33.98Pb + 52.2Ti + 127.86V - 33.81Zr 
0.70 

V SLR V USEPA 3051a = 2.1084 VpXRF - 28.759 0.63 
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SMLR 
V USEPA 3051a = 49.733 - 3.973Ca - 27.706Cr + 8.798Cu + 

22.511Fe + 26.032Ni - 12.843Pb + 5.935Ti + 18.676V 
0.64 

Zn 

SLR Zn USEPA 3051a = 1.2828 ZnpXRF + 7.9433 0.64 

SMLR 
Zn USEPA 3051a = 16.4514 - 3.3954Cu + 2.7334Fe - 1.1970K - 

1.4173Mn + 3.0195P - 2.8368Pb + 1.6409Ti + 13.5105Zn 
0.66 

Zr 

SLR Zr USEPA 3051a = -1.1264 ZrpXRF + 346.43 0.00 

SMLR 
Zr USEPA 3051a = 15.4435 + 3.0327K - 4.2521Ni - 2.1370P - 

6.6159Pb - 2.1958Sr + 5.3779Ti + 16.6906V 
0.38 

 

The results showed that both SLR and SMLR provided promising prediction models 

for Ca (R² = 0.82 and 0.83), Cr (R² = 0.96 and 0.84), Cu (R² = 0.75 and 0.76), Fe (both with 

R² = 0.74), Mn (R² = 0.72 and 0.78), Ni (R² = 0.96 and 0.73), V (R² = 0.63 and 0.64), Ti (R² = 

0.70 for SMLR only) and Zn (R² = 0.64 and 0.66) (Table 1). Similar results were observed by 

Borges et al. (2020b) and Faria et al. (2022) using SLR with R² values from 0.61 (V) to 0.97 

(Fe). 

Models with regular or low accuracy due to their low R2 values (from 0.00 Zr – SLR 

to 0.57 Sr – SMLR), were generated for Al, K, P, Pb, Sr, Zr and Ti, the latter just by SLR. 

The results suggest that there are non-linear relationships between the content obtained by 

both USEPA 3051a and pXRF methods for some elements and the use of more robust non-

linear algorithms may provide better results (Wan et al., 2020). The generation of unreliable 

models is due to the occurrence of elements in the crystalline structure of silicate (e.g., Al, K 

and Zr) and non-silicate (e.g., P and Ti) minerals present mainly in the sand fraction of 

tropical soils (Brinatti et al., 2010; Kämpf et al., 2012) and, consequently, not accessed by the 

traditional method USEPA 3051a (Chen and Ma, 1998; Silva et al., 2014). The low 

concentrations of Pb and Sr in tropical soils, together with the great variability of factors in 

this study, may have contributed to a non-linear response of these elements. 

It was observed in the models generated by the SMLR that of the 15 elements 

provided by pXRF, between 6 and 10 elements were incorporated into the models (Table 1), 

where Fe and P appeared more frequently (both in 12 equations), followed by Ti (11 

equations), Al (9 equations), Ni (9 equations) and Cu (9 equations). This result demonstrates 

that some elements that are easily accessed with pXRF can be well correlated with the 

occurrence of other elements in soil, facilitating the development of prediction models. 

The validation indices (R², RPD, RMSE, NRMSE) between observed and predicted 

values generated for validation sub-dataset (n = 54) using SLR and SMLR, as well as their 

graphical representation (1:1 graphs), can be observed in Fig. 4. Overall, the models delivered 
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by SMLR showed better performance in predicting the 15 elements compared to models via 

SLR. According to Forkuor et al. (2017), SMLR is one of the widely used linear regression 

techniques and has a good ability to handle data multicollinearity in estimating soil attributes 

based on linear relationships between soil properties and pXRF elemental contents. However, 

only the model for predicting Cr via SMLR was considered reliable and with excellent 

prediction capacity (R² = 0.97, RPD = 3.37, RMSE = 54.24 mg kg-1 and NRMSE = 0.30). 

Conversely, the validation results for the prediction models for Ca, Cu, P, Pb, Ti and Zn were 

classified between good and regular with reasonable prediction capacity, with R² and RPD 

values ranged from 0.49 to 0.70 and 1.40 to 1.65 respectively, and consequently presented the 

lowest RMSE and NRMSE. 
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Fig. 4. Scatter plots and validation parameters between observed laboratory values (USEPA 

3051a) versus values predicted by simple (SLR) and multiple linear regression (SMLR) for 15 

elements using data obtained by pXRF in Brazilian tropical soils. 

 

Despite the SLR having provided relatively high R² values for some elements (e.g., 

Ca, Cr, Cu, Fe, Mn and Ni), the models in general were classified as poor and unreliable for 

the prediction, according to the RPD, RMSE and NRMSE values (Chang et al., 2001). High 

RPD combined with low RMSE and NRMSE values is recommended to ensure the smallest 

errors, better performance and reliability for the model (Chai and Draxler, 2014; Jalali et al., 

2019; Taebi and Mansy, 2017), which did not occur with the models generated by the SLR 

and for some models via SMLR. This can be the result of non-linear nature of some elements 

determined by USEPA 3051a and pXRF, mainly in the validation of Al, K, Ti and Zr. The 

validation for these elements were already expected to be low according to the correlation 

analysis (Fig. 3) and the R² of the models (Table 1). Similar results were observed by others 

authors in soils of tropical region (e.g., Andrade et al., 2020; Benedet et al., 2021; Faria et al., 

2022; Santana et al., 2018; Silva et al., 2019). The use of machine learning algorithms for 

these elements as well as for others is encouraged and will be discussed below. 

 

3.3.2 Validation via random forest and support vector machine 

 

Based on the validation results presented in Fig. 5, the use of random forest (RF) and 

support vector machine (SVM) algorithms provided promising models, capable of predicting 

accurately and reliably for 13 out of the first 15 elements evaluated in the studied soils when 

compared to SLR and SMLR. Despite of the good performance of the SVM, the models 

generated by RF were superior to all other models generated (e.g., SVM, SLR and SMLR) 

and provided the highest values of R² (between 0.51 and 0.83) and RPD (between 0.51 and 

0.83) (Fig. 5). Therefore, the values predicted by RF for each element had a smaller 

dispersion in relation to the 1:1 line, and were close to those measured in the laboratory (Fig. 

5). However, a more detailed observation shows that RF had difficulty in predicting high 

values measured in the laboratory (e.g, P, Ti, V, Zn and Zr) underestimating the results and 

negatively influencing the validation parameters. The underestimations may be due to the 

relative scarcity of samples with high contents at the upper ends of each element, making it 

impossible to effectively train the models for these situations, as already described by Wang 

et al. (2015) and Benedet et al. (2021). 
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Fig. 5. Scatter plots and validation parameters between measured/observed laboratory values 

(USEPA 3051a) versus values predicted by Support Vector Machine with (SVM) linear 

kernel and Random Forest (RF) for 15 elements using datasets obtained by pXRF in Brazilian 

tropical soils. 

 

The use of RF generated a greater number of models classified as reliable and with 

great predictive capacity, such as: Cr, Fe and Mn. The R² values for these elements were 0.83, 

0.80 and 0.78, and values for RPD of 2.45, 2.00 and 2.00, respectively. These elements also 

stand out from the others for providing the lowest NRMSE values (Cr = 0.41, Fe = 0.51 and 

Mn = 0.50) among all the first 15 predicted elements, through the tested models. For Cr, 

despite the excellent performance of RF, it is important to show that the models delivered by 
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SVM and SMLR were superior (R² = 0.94 and 0.97; RPD = 3.62 and 3.37; NRMSE = 0.28 

and 0.30, respectively), and considered the best among all elements (n = 28) predicted in this 

study. 

The number of models considered good and regular with reasonable prediction 

capacity also increased with the use of RF algorithm and was observed for Al, Ca, Cu, P, Pb, 

Sr, Ti, V, Zn and Zr, with R² values between 0.51 (P) to 0.78 (Zr), RPD between 1.41 (P) to 

1.89 (Cu), NRMSE between 0.53 (Cu) to 0.71 (P) and one of the lowest RMSE results. For P, 

the model generated by SMLR was still superior to machine learning algorithms (SVM and 

RF) for delivering the highest values of R² = 0.53, RPD = 1.43, RMSE = 139.92 mg kg-1 and 

NRMSE = 0.70, delivering a regular model with reasonable predictive ability. 

According to the literature, RF algorithm is one of the most promising machine 

learning techniques currently available to perform predictions of various soil attributes in 

tropical and temperate regions (Chagas et al., 2016; Dharumarajan et al., 2017; Faria et al., 

2022; Mancini et al., 2020; Nawar et al., 2019; Wang et al., 2015). A similar behavior was 

observed for the prediction of semi-total elemental content in heterogeneous tropical soils, as 

it was shown that among the 15 elements detailed in Fig. 4, where RF promoted promising 

results for 13 of them (Fig. 5). However, even with the use of robust algorithms, it was still 

not possible to obtain satisfactory models for K and Ni.  

 

3.4 Modeling and validation for 13 remaining elements from pXRF data 

 

3.4.1 Stepwise multiple linear regression, support vector machine and random forest 

 

Models generated by stepwise multiple linear regression (SMLR) with their respective 

R2 values for prediction of 13 elements (e.g., Ba, Be, Bi, Cd, Ce, Co, Li, Mg, Mo, Na, S, Sn 

and Tl) acquired via USEPA 3051a based on data obtained by pXRF are shown in Table 2. 

The R² values of the models generated by the SMLR ranged from 0.14 (Li) to 0.86 (Bi). 

However, only the model for predicting Bi was interpreted as very good (R² ≥ 0.81), while 

models for predicting Cd, Mo, Sn and Tl were classified as good (R² between 0.61 to 0.80). 

Similarly, to the results presented in Table 1, these results also indicate the potential of using 

pXRF to provide promising elementary variables that fit the prediction models of elements 

that are uncommon in works with this approach in heterogeneous tropical soils, therefore, it 

contributes for the most complete geochemical characterization. 
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Table 2. Models generated by stepwise multiple linear regression with their respective R² to 

predict results of 13 elements via acid digestion (USEPA 3051a) from portable X-ray 

fluorescence spectrometry (pXRF) data in tropical soils. 

Elements Prediction Model R² 

Ba 
Ba USEPA 3051a = 34.515 - 6.319Al + 15.060Cu - 7.306K + 15.646Mn - 

10.356Pb + 23.412Sr - 17.619V + 26.910Zn 
0.34 

Be 

Be USEPA 3051a = 0.31847 - 0.06797Al - 0.04745Ca - 0.22001Cr + 

0.19155Cu + 0.06862Fe - 0.04348K + 0.22249Ni - 0.05450P - 0.04400Pb 

+ 0.17737Sr - 0.11980V + 0.06088Zn - 0.06159Zr 

0.48 

Bi 
Bi USEPA 3051a = 96.668 + 7.578Al + 192.236Cr - 19.687Cu + 34.797Fe + 

28.057Ni + 6.670P - 19.66Pb + 10.837Ti 
0.86 

Cd 
Cd USEPA 3051a = 2.39769 + 0.27973Al + 1.71069Fe - 0.28504Mn + 

0.16583Ni + 0.19971P - 0.33858Pb + 0.18738Ti 
0.77 

Ce 
Ce USEPA 3051a = 25.100 + 4.453Al - 14.885Cr + 8.848Fe + 2.063K + 

12.171Ni - 6.362Pb + 7.294Ti - 5.839Zr 
0.46 

Co 
Co USEPA 3051a = 5.6312 - 0.7841Al + 2.0686Cu - 1.0912K + 3.2285Mn + 

5.5202Ni + 0.9930Pb + 1.3571Sr - 1.6918Ti 
0.56 

Li 
Li USEPA 3051a = 5.9269 - 0.8942Ca - 4.3790Cr + 2.3372Cu + 0.8718K - 

0.8471Mn + 4.4136Ni - 0.7992Pb + 1.2483Sr 
0.14 

Mg 
Mg USEPA 3051a = 288.21 - 73.47Al + 61.31Ca - 61.89K - 100.68P - 

119.29Pb + 288.25Sr + 117.36Zn - 73.12Zr 
0.34 

Mo 
Mo USEPA 3051a = 7.5068 + 2.1338Al + 2.9126Cr - 0.9806Cu + 5.0856Fe - 

1.0392Mn - 2.2942Ni + 1.0919P - 1.1572Pb + 0.7677Ti 
0.70 

Na Na USEPA 3051a = 112.307 + 60.174Al + 132.061Cr - 97.033Ni + 33.255P 0.31 

S 
S USEPA 3051a = 97.393 + 41.123Ca + 91.392Cr - 27.323Cu - 26.196K - 

83.421Ni + 11.028P + 16.584Ti - 20.507V + 53.520Zn 
0.41 

Sn 
Sn USEPA 3051a = 5.9821 + 1.6313Al + 2.0528Cr - 0.8654Cu + 4.0085Fe - 

0.7023Mn - 1.5654Ni + 0.8992P - 0.9117Pb + 0.6360Ti 
0.69 

Tl 
Tl USEPA 3051a = 32.722 - 9.47Cr - 2.817Cu + 24.846Fe + 11.641Ni + 

2.330P - 3.861Pb 
0.79 

 

Among the 15 elements determined by pXRF, from 4 to 13 elements were 

incorporated into the models (Table 2), as they present satisfactory correlation values (Fig. 3) 

with USEPA 3051a method. In the 13 models, it is observed that Al appeared the most (10 

equations), followed by Cr and Cu (both in 9 equations). Cr and Cu measured by pXRF 

showed moderate to high correlations for most elements obtained by the USEPA 3051a 

method (Fig. 2), which favored the inclusion of both elements in most prediction models. 

Among them, the prediction model for Bi stands out, which obtained a high value of R² = 

0.86. The probable explanation for Al and Fe inclusion in several models (Table 1 and 2) is 

due to the fact that these elements tend to accumulate residually in large amounts in tropical 
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soils, as they are part of the crystalline structure of several minerals present in the clay 

fraction, as well as their interaction or geochemical behavior are similar to other elements 

(Brinatti et al., 2010; Kabata-Pendias, 2010; Kämpf et al., 2012). 

The performance of the models generated by SMLR, SVM and RF algorithms for the 

prediction of the 13 elements via the USEPA 3051a method are presented in Fig. 6. Overall, 

the validation for the 13 elements was promising both in the use of SMLR and in the use of 

SVM and RF. However, only for Bi that all models tested were classified as reliable and with 

excellent predictive capacity with R² ≥ 0.80, RPD ≥ 2.00 and very low values of RMSE and 

NRMSE. Thus, the validation parameters for Bi delivered R² = 0.81 (RF), 0.94 (SVM) and 

0.96 (SMLR), RPD = 2.30 (RF), 3.37 (SMLR) and 3.49 (SVM), as well as NRMSE = 0.29 

(SMLR) ), 0.30 (SVM) and 0.43 (RF) which, together with those observed for Cr (SVM and 

SMLR with NRMSE = 0.28 and 0.30, respectively), were the best and most accurate results 

among all elements (n = 28) tested in this study. 
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Fig. 6. Scatter plots and validation parameters between measured/observed values in the 

laboratory (USEPA 3051a) versus values predicted by Stepwise Multiple Linear Regression 

(SMLR), Support Vector Machine (SVM) with linear kernel and Random Forest (RF) for 13 

elements using datasets obtained by pXRF in Brazilian tropical soils. 

 

Unlike Cr, Bi is considered a rare metal in the earth's crust and is usually found 

associated with some metals (e.g., Ag, Co, Pb, Zn, Al and Fe). Thus, Cr contents in soils are 

much higher than Bi, as observed in Fig. 2, where both are directly inherited from the parent 

material, mainly in ultramafic and mafic igneous rocks. Even with the lowest levels of Bi in 

the soils, after the weathering of the minerals bismuthinite (Bi2S3) and bismite (Bi2O3), there 

is a direct contribution of SOM and contents of Fe and Al in the retention of this element in 
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tropical soils (Hou et al., 2005; Kabata-Pendias, 2010), which explains the high correlations 

of Bi with Ni, Cr and Zn, metals complexed by MOS, and moderate correlations (r = 0.49) 

mainly with Fe (Fig. 3). 

The prediction of Cd and Tl also provided satisfactory and similar validation results, 

regardless of the model generated. For Cd, models generated by SMLR and SVM showed 

more accuracy by delivering values of R² = 0.71, RPD = 1.55, RMSE = 1.55 mg kg-1 and 

NRMSE = 0.65 for both. As for Tl, SMLR (R² = 0.73, RPD = 1.72, RMSE = 19.31 mg kg-1 

and NRMSE = 0.58) and SVM (R² = 0.74, RPD = 1.80, RMSE = 18.39 mg kg-1 and NRMSE 

= 0.55) delivered models with superior validation. Unlike Bi, Cd and Tl, the best prediction 

performances for Ba, Co and Sn were achieved by only one prediction model (Fig. 6). Thus, 

the results delivered for Ba showed that the use of SVM was better than the others (R² = 0.63, 

RPD = 1.40, RMSE =19.41 mg kg-1 and NRMSE = 0.72). As for the prediction of Co, the 

model generated by the RF was superior to the results delivered by SMLR and SVM, with 

values of R², RPD, RMSE and NRMSE corresponded to 0.68, 1.76, 4.56 mg kg-1 and 0.57, 

respectively. In contrast, for Sn, the validation values generated by SMLR provided the best 

result (R² = 0.62, RPD = 1.40, RMSE = 4.32 mg kg-1 and NRMSE = 0.72) when compared 

with other algorithms tested. Therefore, the models generated for Cd, Tl, Ba, Co and Sn were 

classified as good and with reasonable prediction capacity (R² between 0.61 to 0.80, RPD 

between 1.4 to 2.00, as well as low values of RMSE and NRMSE). 

For Ce and Mg, the results obtained via RF and SVM, respectively, were also relevant 

and promising, classified with reasonable prediction capacity (R² between 0.41 to 0.60 and 

RPD between 1.4 to 2.00). Due to the relative scarcity of samples with high contents, the best 

models also had difficulty in predicting mainly high values measured in the laboratory, 

underestimating the results, and negatively influencing the validation parameters. Similar to 

what was observed for K and Ni, for the elements Be, Li, Mo, Na and S, the use of pXRF data 

alone was not able to generate satisfactory predictive models, regardless of the use of linear 

regressions or algorithms of machine learning. 

In summary, in terms of predictive performance presented in this study, the use of the 

SVM and RF algorithms produced excellent adjustments in relation to linear models by 

providing high values of R² and RPD, the lowest values of RMSE and especially the lowest 

values of NRMSE (Fig. 7). Despite the RF being considered the best prediction model for 18 

elements, it is also important to highlight that the use of this algorithm provided accurate and 

reliable prediction models for 13 elements (e.g., Al, Ca, Cu, Fe, Mn, Pb, Sr, Ti, V, Zn, Zr, Ce 

and Co), since SVM and SMLR provided such an approach in only six (e.g., Cr, Ba, Bi, Cd, 
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Mg and Tl) and three (e.g, P, Cd and Sn) elements, respectively (Table 3). Thus, even using a 

large and heterogeneous dataset, the RF was able to deliver R² values between 0.52 and 0.79, 

RPD ranging from 1.43 to 2.00, NRMSE between 0.50 and 0.70 and the lowest values of 

RMSE. 

 

Fig. 7. Normalized root mean square error (NRMSE) corresponding to the validation between 

measured/observed values in the laboratory (USEPA 3051a) versus values predicted by 

simple linear regression (SLR), Stepwise Multiple Linear Regression (SMLR), Support 

Vector Machine (SVM) with linear kernel and Random Forest (RF) using datasets obtained 

by pXRF in Brazilian tropical soils. 
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Table 3. Summary of the final interpretation of the best models generated using pXRF data 

for the prediction of 28 elements commonly acquired via USEPA 3051a in Brazilian tropical 

soils. 

Elements Best Model 

Parameters 

R² RPD 
RMSE 

(mg kg-1) 
NRMSE 

Al RF 0.72 1.58 5646.74 0.63 

Ca RF 0.67 1.70 498.82 0.59 

Cr SVM 0.94 3.62 50.50 0.28 

Cu RF 0.74 1.89 11.58 0.53 

Fe RF 0.79 1.98 8132.65 0.51 

K RF 0.59 1.05 179.94 0.95 

Mn RF 0.78 2.00 116.60 0.50 

Ni RF 0.50 0.91 15.13 1.10 

P SMLR 0.53 1.43 139.92 0.70 

Pb RF 0.52 1.43 8.37 0.70 

Sr RF 0.70 1.64 3.86 0.61 

Ti RF 0.70 1.66 174.19 0.60 

V RF 0.58 1.45 40.82 0.69 

Zn RF 0.61 1.60 10.35 0.63 

Zr RF 0.78 1.53 18.25 0.65 

Ba SVM 0.63 1.40 19.41 0.72 

Be RF 0.60 1.26 0.14 0.80 

Bi SVM 0.94 3.49 51.73 0.29 

Cd SMLR/SVM 0.70 1.55 1.55 0.65 

Ce RF 0.51 1.43 13.88 0.70 

Co RF 0.68 1.76 4.56 0.57 

Li RF 0.31 0.71 3.80 1.41 

Mg SVM 0.57 1.50 151.88 0.67 

Mo SMLR 0.59 1.37 5.64 0.73 

Na RF 0.35 1.14 86.12 0.85 

S SVM 0.42 1.32 67.53 0.76 

Sn SMLR 0.62 1.40 4.32 0.72 

Tl SVM 0.74 1.80 18.39 0.55 

RF - Random Forest; SMLR - Stepwise Multiple Linear Regression; SVM - Support Vector 

Machine with linear kernel; R² - coefficient of determination; RPD – residual prediction 

deviation; RMSE - root mean square error; NRMSE - normalized root mean square error. 

 

Therefore, the results delivered by this study show that when dealing with a very 

heterogeneous set of samples, arising from large areas, in which the soil composition can vary 

considerably, the precision of linear regression techniques decreases due to the non-linear 
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nature of the relationship between the data obtained by pXRF and the dependent variable 

(USEPA 3051a results). Thus, to obtain robustness and reliability in the prediction, an 

appropriate nonlinear model, mainly RF, is an essential factor for a successful elementary 

prediction. Thus, the results of this study indicate an advance for soils of tropical region in 

relation to what has been reported in the literature for the indirect quantification of elemental 

contents in such soils, contributing to a fast and environmentally friendly geochemical 

analysis of these weathered and leached soils.  

The present study is the first attempt to use pXRF-only data linked to the use of simple 

and multiple linear regression, as well as machine learning algorithms in the generation and 

validation of models capable of predicting the elementary content of a large number of 

elements in highly heterogeneous tropical soils based on the USEPA 3051a method. The few 

existing studies approach the prediction of a small number of elements through the use of 

simple linear regression only, use a relatively smaller dataset for this purpose and with more 

similar soils than in this study (e.g., Borges et al., 2020b; Faria et al., 2022; Silva et al., 2019). 

 

3.5. Important variables for Random Forest prediction models 

 

Assessing all models created via Random Forest (RF) using the dataset via pXRF (n = 

179), it is possible to identify the variables that most contributed to the predictions of the 28 

elements of the studied soils, only using the percentage of increment in the mean square error 

(% IncMSE) (Fig. 8). In general, when analyzing the importance of the variables up to the 

fifth position, we can observe that 23 out of the 28 predicted elements had Zn among the most 

important variables, followed by Fe, Cu and V, which were also highly relevant for the 

predictions of the contents of 19, 17 and 15 elements, respectively. Zinc, Fe, Cu and V 

delivered by pXRF were highly and positively correlated with the vast majority of the 28 

elements determined by the USEPA 3051a standard method (Fig. 3), which also explains the 

strong influence of these elements on elementary prediction through the RF algorithm.  
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Fig. 8. Importance of variables in decreasing order expressed by percentage increase in mean 

square error (% IncMSE) for models built using the Random Forest (RF) algorithm trained 

from data generated by pXRF in Brazilian tropical soils. 

 

Analyzing the first 15 elements obtained via USEPA 3051a, it can be observed that 

their correspondents delivered by pXRF are presented as the first or second most important 

variable (Fig. 8). The correlation results between the elements common to both methods 

already showed the trend of being satisfactorily for the vast majority of elements, as discussed 

previously. In contrast, the 13 elements shown in Fig. 8 do not have their counterparts via 

pXRF in this study, since they were mostly below the detection limits of pXRF, but the 

validation data of the predictions were satisfactory for seven of these elements (e.g., Ba, Bi, 

Cd, Ce, Co, Mg and Tl) using machine learning algorithms (SVM or RF). Therefore, the use 

of algorithms combined with available pXRF data becomes efficient in the indirect prediction 

of elements of interest. This result further demonstrates that elements easily accessed with 

pXRF can be well correlated with the occurrence of other elements in tropical, heterogeneous, 

and leached soils. 

 

4. Conclusion 

 

The pXRF data proved to be of great importance for the characterization and 

geochemical monitoring of tropical soils in a fast, accurate and environmentally friendly way. 

Strong positive correlations (ranging from 0.50 to 0.98) between the elementary content 

provided by pXRF and the USEPA 3051a method were obtained, allowing the development 

of accurate prediction models.  

The use of the RF algorithm was superior to others models for providing accurate and 

reliable prediction models for 13 elements (e.g., Al, Ca, Cu, Fe, Mn , Pb, Sr, Ti, V, Zn, Zr, Ce 

and Co),. However, models for Cr and Bi via SVM delivered the best results in terms of 

precision and accuracy among all. Unsatisfactory results (R² < 0.50; RPD < 1.4) were 

generated for K, Ni, Be, Li, Mo, Na and S, regardless of the models used.  

For the RF algorithm, the predictor variables Zn, Fe, Cu and V via pXRF were highly 

relevant for the prediction of the vast majority of the 28 elements for being positively 

correlated with the results of the USEPA 3051a method. Therefore, the results of this study 

clearly show that it is possible to develop prediction models for chemical element contents 

resulting from the USEPA 3051a method, using only the pXRF sensor and machine learning 
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algorithms, even using a large and heterogeneous dataset (wide range of soils, with different 

classes, parent materials, sampling depths, land uses, management practices and sampling 

sites). 
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