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“O solo é o elo de ligação entre as rochas comuns e a 

atmosfera, e entre os restos mortais da Terra 

e a continuidade da vida”. 

Grenville A.J. Cole, 1913. 



 

 

RESUMO GERAL 

 

Os cenários de mudanças climáticas, relatados em estudos recentes, aliados ao uso e manejo 

inadequado do solo, constituem em um agravante fator para sustentabilidade dos 

agroecossistemas. Esses fatos tendem a acarretar a degradação de recursos naturais como solo, 

água e florestas, limitando o desenvolvimento sustentável dos sistemas produtivos. Dentre os 

agravantes, a erosão hídrica decorrente da possibilidade de elevação do potencial erosivo das 

chuvas e alteração do uso do solo é um fator de relevância em estudos que envolvem mudanças 

de cenários futuros. Assim, é essencial a modelagem de fatores relacionados à erosão hídrica 

do solo, principalmente em regiões do Brasil com grande potencial agrícola e hidrelétrico. 

Objetivou-se então com esse trabalho, avaliar o risco potencial de erosão hídrica sob mudança 

climática na bacia Tocantins-Araguaia, maior bacia hidrográfica inteiramente brasileira, 

baseando-se no fator erosividade da chuva –fator R da Equação Universal das Perdas de Solo 

(USLE – acrônimo em inglês)– simulado para a condição de controle do clima presente próximo 

e para condições futuras a partir de dados diários de precipitação pluviométrica obtidos de um 

conjunto de modelos climáticos em dois cenários de mudanças climáticas - RCP4.5 e RCP8.5. 

Esses cenários são oriundos do quinto Relatório de Avaliação do Painel Intergovernamental 

sobre Mudanças Climáticas (IPCC – sigla em inglês) e se baseiam em forçantes radiativas para 

simulação de variáveis climáticas ao longo do século XXI. Além do fator relacionado ao clima, 

o mapeamento de variáveis relacionadas ao uso e cobertura do solo é de grande importância 

para a análise das mudanças advindas da expansão da atividade agrícola dentro da bacia 

Tocantins-Araguaia e o seu impacto sobre as mudanças climáticas. Nesse contexto, cenários 

futuros de uso e cobertura do solo foram preditos utilizando autômatos celulares e cadeias de 

Markov (CA-Markov) em duas sub-bacias com grande destaque para a atividade agropecuária 

dentro da bacia Tocantins-Araguaia. Partindo-se de uma menor escala de planejamento (sub-

bacia) para a larga escala, foi avaliado o relacionamento entre o risco potencial de erosão hídrica 

e o comportamento do NDVI em uma série histórica na bacia Tocantins-Araguaia. Os 

resultados mostraram como a expansão de áreas de pastagem e agricultura com base em padrões 

próprios de mudança distribuiu-se na escala de sub-bacia. Esse estudo deixou evidente como as 

mudanças futuras do uso e cobertura da terra e as predições de erosão hídrica com base em 

simulações do fator R se interagem em bacias hidrográficas. Os resultados aqui relatados 

ajudam instituições de pesquisa, governo e agricultores a atuarem juntos frente às mudanças 

climáticas. 

Palavras-chave: Erosão hídrica, uso e cobertura da terra, mudança climática, conservação do 

solo e da água 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

GENERAL ABSTRACT 

 

 

The climate change scenarios, reported in recent studies, combined with the improper use and 

management of the soil, are an aggravating factor for the sustainability of agroecosystems. 

These facts tend to lead to the degradation of natural resources such as soil, water and forests, 

limiting the sustainable development of production systems. Among the aggravating factors, 

water erosion resulting from the possibility of increasing the erosive potential of rainfall and 

land use change is a relevant factor in studies involving future scenario changes. Therefore, 

modeling factors related to soil water erosion is essential, mainly in regions of Brazil with great 

agricultural and hydroelectric potential. The objective of this study was to evaluate the potential 

risk of water erosion under climate change in the Tocantins-Araguaia basin, the largest entirely 

Brazilian watershed, based on the rainfall erosivity factor - R factor of the Universal Soil Loss 

Equation (USLE). The R-factor was simulated for the condition of control of the near present 

climate and for future conditions from daily rainfall data obtained from a climate model 

ensemble in two climate change scenarios - RCP 4.5 and RCP 8.5. These scenarios originate 

from the fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 

and are based on radiative forcing to simulate climate variables throughout the 21st century. In 

addition to the climate-related factor, the mapping of variables related to land use and land 

cover is of great importance for the analysis of changes arising from the expansion of 

agricultural activity within the Tocantins-Araguaia basin and its impact on climate change. In 

this context, future land use and land cover scenarios were predicted using cellular automata 

and Markov chain (CA-Markov) in two sub-basins, with the large industries for agriculture and 

cattle-raising prevailing in Tocantins-Araguaia basin. Working from a smaller scale of planning 

(sub-basin) to a large scale, the relationship between the potential risk of water erosion and the 

behavior of the NDVI was evaluated in a historical series in the Tocantins-Araguaia basin. The 

results showed how the expansion of pasture and agriculture areas based on their own patterns 

of change has been distributed in the sub-basin scale. This study revealed how future land use 

and land cover changes and water erosion predictions based on R-factor simulations interact in 

watersheds. The results reported here help research institutions, government, and farmers to act 

together facing climate change. 

 

Keywords: Water erosion, land-use and land-cover, climate change, soil and water 

conservation 
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1 INTRODUÇÃO 

 

A avaliação dos impactos que as mudanças climáticas podem produzir em escala 

regional é determinante para o planejamento de atividades agropecuárias e de proteção 

ambiental a longo prazo. Modelos Climáticos Globais (MCGs) são utilizados para providenciar 

informações sobre mudanças climáticas em diferentes cenários de emissões de gases de efeito 

estufa. São vários os MCGs utilizados ao redor do planeta para a predição climática global e a 

partir desses modelos surge a necessidade de refinamento de escala para o detalhamento 

climático regional, originando dessa forma modelos climáticos regionais aninhados aos MCGs 

(HEWITSON; CRANE, 1996). 

As mudanças climáticas estão intrinsicamente relacionadas com as mudanças na 

cobertura vegetal dos solos de um determinado local (SOUZA et al., 2000; CHU et al, 2019; 

OJO et al., 2021). Essa relação pode ser negativamente afetada pela exposição da superfície do 

solo diante das circunstâncias ocasionadas por eventos extremos do clima e do uso e manejo 

inadequado (SALVADOR; DE BRITO, 2018; SATTLER et al., 2018; TESSEMA et al., 2021). 

Entre os fatores climáticos, o potencial erosivo das chuvas é o agente deflagrador da erosão 

hídrica do solo e a redução da cobertura vegetal de proteção contra o impacto das gotas de 

chuva constitui um agravante.  

A organização e o planejamento de atividades agropecuárias devem levar em 

consideração as projeções de diferentes modelos climáticos. Esses modelos podem ser 

corrigidos e aplicados em escala regional, simulando dessa forma com boa acurácia os eventos 

climáticos (TEUTSCHBEIN; SEIBERT, 2012; MARAUN, 2016; OKKAN; KIRDEMIR, 

2016; TURCO et al., 2017). Ao longo dos anos, o Painel Intergovernamental sobre Mudanças 

Climáticas (IPCC, na sigla em inglês) vem lançando novos relatórios sobre mudanças no clima. 

Acompanhando esses relatórios, os modelos climáticos passaram a permitir um aumento nos 

níveis de confiança das previsões (MOLINA; ABADAL, 2021). Mesmo assim, as incertezas 

ainda carecem de ser exploradas e avaliadas em escala regional.  

As perdas de solo por erosão hídrica durante a expansão agrícola de uma região, 

geralmente ocorrem devido a mudanças no uso da terra e nas propriedades do solo ao longo do 

tempo (VIJITH; HURMAIN; DODGE-WAN, 2018; ABDULKAREEM et al., 2019). Os 

efeitos negativos dessas mudanças podem ser atenuados através da adoção de práticas 

conservacionistas e do planejamento da readequação do uso das terras diante de possíveis 

cenários de mudança no clima. 
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Localizado entre as regiões norte e centro-oeste do Brasil, a bacia do Tocantins-

Araguaia é considerada de grande importância nacional, sendo parte integrante da última 

fronteira agrícola do país. Com o aumento da pressão exercida por atividades antrópicas, é 

crescente a preocupação com o manejo sustentável do solo (DONZELI et al., 2006). Assim, a 

adoção do uso de tecnologias de conservação do solo e da água tende a ser uma alternativa 

promissora, visando conciliar o desenvolvimento agrícola regional e as políticas 

socioambientais diante dos desafios climáticos do século XXI. 

O mapeamento dos fatores de risco da erosão hídrica é uma ferramenta importante 

quando se compara a evolução do uso e ocupação do solo dentro de diferentes cenários de 

mudanças no clima. Com esse objetivo, cabe à pesquisa a primeira etapa rumo ao planejamento 

sustentável do uso dos recursos água e solo frente à iminência de fenômenos de macro e 

mesoescala.   

 

1.1 JUSTIFICATIVA 

 

Os estudos que comparam diferentes simulações climáticas por meio da utilização de 

técnicas estatísticas e modelagem matemática são úteis para o entendimento do comportamento 

climático em diversos cenários. Devido a essa utilidade, a busca por uma melhor acurácia em 

resultados obtidos a partir das simulações de modelos climáticos persiste como objetivo 

principal de pesquisas que preveem condições futuras do clima para alocação de políticas 

públicas e ambientais. Dentre essas, estão as ligadas ao uso e à conservação do solo e da água. 

A bacia Tocantins-Araguaia, por situar-se geograficamente em uma área de expansão 

agrícola e numa zona de transição entre os biomas Amazônia, Cerrado e Caatinga (ecótonos 

Amazônia-Cerrado e Cerrado-Caatinga), possui uma elevada vulnerabilidade ao potencial 

erosivo das chuvas. Apesar do bioma Amazônia ocupar uma pequena área do seu território, a 

bacia sofre grande influência das massas de ar equatoriais originadas no interior da Amazônia. 

Isso interfere na dinâmica dos solos e da vegetação ao longo do tempo, uma vez que as 

mudanças climáticas podem ocasionar retração ou migração de áreas potencialmente 

agricultáveis dentro da bacia. Uma maior demanda hídrica, maior exposição dos solos, 

juntamente com o risco potencial de erosão hídrica são fatores resultantes dos eventos extremos 

das mudanças no clima.  

A modelagem e/ou estimativas futuras de fatores relacionados à erosão hídrica do solo 

justifica-se pela importância dos modelos preditivos e do conhecimento dos cenários de 

mudanças climáticas que possam impactar no desenvolvimento da agricultura e pecuária. 
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A análise do potencial erosivo das chuvas em cenários de mudanças climáticas e as 

mudanças assim condicionadas ao uso e manejo do solo são inovações em estudos do intenso 

dinamismo solo-planta-atmosfera. Isso reflete como o processo de erosão acelerada dos solos é 

multidisciplinar no que tange a sua exploração sustentável em agroecossistemas. 

 

1.2 OBJETIVO 

 

O objetivo da pesquisa foi mapear o risco potencial de erosão hídrica sob mudanças 

climáticas para a bacia Tocantins-Araguaia, baseando-se no fator climático erosividade média 

da chuva (fator R) simulado para a condição de controle do clima presente próximo e para 

condições futuras a partir de dados de precipitação diária obtidos dos modelos climáticos Eta-

BESM, Eta-CanESM2, Eta-HadGEM2-ES e Eta-MIROC5 nos cenários de mudanças 

climáticas RCP 4.5 e RCP 8.5. O mapeamento de variáveis relacionadas ao fator de uso e 

cobertura do solo do modelo Revised Universal Soil Loss Equation (RUSLE) será usado com 

o objetivo principal de comparação das mudanças obtidas nas últimas décadas a partir da 

expansão agropecuária em sub-bacias da bacia Tocantins-Araguaia. Serão realizadas 

simulações futuras de mudança de uso e cobertura do solo e os resultados obtidos serão 

avaliados de acordo às mudanças do potencial de erosão hídrica nos diferentes cenários 

climáticos. Aplicar o modelo RUSLE para se verificar potencias perdas de solo futuras em 

função das alterações climáticas (erosividade) e de uso do solo. 
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2 REFERENCIAL TEÓRICO 

 

2.1 A erosão hídrica dos solos 

O uso e o manejo inadequado do solo têm levado a uma degradação dos recursos 

naturais disponíveis para a sobrevivência do ser humano. O uso incorreto dos recursos água e 

solo em atividades agropecuárias vem contribuindo para o desequilíbrio de todo o processo 

cíclico e dinâmico que envolve o movimento da água na Terra, alterando também os processos 

que envolvem a fertilização natural do solo e o transporte e armazenamento subterrâneo da 

água. 

Nessas circunstâncias, destaca-se que, conforme o uso do solo, a disponibilidade hídrica 

pode ser alterada ao longo do tempo. Dessa forma, tem-se uma influência sobre o regime de 

chuvas em uma determinada região. A expansão agrícola constitui-se no principal fator capaz 

de impulsionar o desmatamento em florestas tropicais, podendo alterar os padrões de chuva em 

escalas local, regional e global (SPRACKLEN et al., 2018). Uma vez que parte da floresta é 

desmatada, superfícies heterogêneas originadas devido a grandes áreas de clareiras podem 

estabelecer uma circulação convectiva de mesoescala (SOUZA et al, 2000). Consequentemente, 

as chuvas podem ser alteradas de acordo com a dependente escala de mudanças no uso da terra 

a partir dos seus padrões heterogêneos, fornecendo respostas ao clima regional (D'ALMEIDA 

et al, 2007).  

A erosão hídrica decorrente do potencial das chuvas é uma das principais causas do 

empobrecimento dos solos devido ao carreamento dos seus nutrientes pela ação do escoamento 

superficial gerado pela ação da chuva sob condições desfavoráveis de tipo de solo, relevo, clima 

e cobertura vegetal disponível. O processo erosivo dá-se através de três eventos consecutivos: 

desprendimento das partículas do solo pelo impacto das gotas de chuva, arraste e deposição 

dessas partículas. A complexidade do movimento do solo pela água sofre influência da 

quantidade, intensidade e duração da chuva, da natureza do solo, da cobertura vegetal e da 

declividade do terreno. São vários fatores que interagem entre si, dando origem à força erosiva 

da água. Alguns desses fatores favorecem o movimento do solo, outros, opõe-se a ele 

(BERTONI; LOMBARDI NETO, 1990) 

Em grande parte do planeta, a erosão hídrica situa-se como principal forma de erosão 

do solo, sendo afetada por muitos fatores naturais e antrópicos (MACHADO; VETTORAZZI, 

2003).  Nos trópicos úmidos, a erosão acelerada possui agravantes mais sérios que em outras 

regiões (WEILL; SPAROVEK, 2008). Dessa forma, em agroecossistemas tropicais, ela é o 

principal processo de degradação da terra, especialmente se o uso do solo for mais intensificado. 
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No Brasil, a expansão da atividade agrícola tem levado à busca da análise de diferentes cenários 

de uso do solo, compondo um inventário da erosão. Nesse, a expansão agrícola dentro de áreas 

de vegetação nativa dos biomas Cerrado e Floresta Amazônica sem a adoção de práticas de 

conservação do solo e da água constitui o pior cenário para o controle da erosão hídrica 

(MERTEN; MINELLA, 2013), considerando ainda a complexidade de fatores que conduzem à 

erosão do solo. 

 2.2 Modelagem da erosão hídrica 

Uma das formas de predizer as perdas de solo por erosão hídrica é através da Equação 

Universal das Perdas de Solo (EUPS ou USLE – Universal Soil Loss Equation), método 

empírico simples proposto por Wischmeier e Smith (1965, 1978) e desenvolvido nos Estados 

Unidos. A estimativa do potencial erosivo das chuvas é baseada no fator erosividade da chuva 

da EUPS, calculado através do uso de índices de erosivade como o EI30. A sua indexação possui 

relação com as características físicas das chuvas como quantidade, intensidade, intensidade 

máxima em 30 min, velocidade terminal, diâmetro de gotas e a energia cinética das gotas de 

chuva (WISCHMEIER; SMITH, 1978).  

A EUPS fornece estimativas de perdas de solo, sendo a equação mais utilizada no 

mundo. Ela prevê a longo prazo a perda média anual de solo (A) associanda à erosão laminar e 

em sulcos através da interação entre seis fatores condicionados ao clima, solo, topografia, 

vegetação e manejo (KINNELL, 2010). 

Basicamente a EUPS é dada pela fórmula: 

    A= R K L S C P                                                                                                      (1)                                                                                                                     

onde A é a perda média de solo anual (Mg ha−1 ano−1) a longo prazo (20  a 30 anos, por 

exemplo), R é o fator erosividade da chuva ( MJ mm ha−1 h−1 ano−1), K é o fator erodibilidade 

do solo (Mg h MJ−1 mm−1), L e S são fatores topográficos comprimento de encosta (m) e declive 

(%) (adimensional),  C é o fator de uso e manejo do solo (adimensional), e P é o fator de prática 

de conservação do solo (adimensional). 

Os fatores intrínsecos ao meio físico que interferem no processo de erosão hídrica (R, 

K, L e S) constituem o Potencial Natural de Erosão do Solo (PNE),  ou Risco Potencial de 

Erosão , o qual corresponde às perdas de solo em áreas continuamente desprovidas de cobertura 

vegetal e sem qualquer intervenção antrópica. É considerada uma metodologia importante para 

se avaliar o risco de degradação de terras, pois se define como o risco inerente de erosão, 

independentemente do uso atual da terra ou cobertura vegetal (CORREA et al., 2016). 

 A equação universal das perdas de solo tendo após algumas modificações com 

utilização de algoritmos computacionais em uma integração com o Sistema de Informação 
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Geográfica (SIG ou GIS - Geographic Information System), e outras, tais como o cálculo do 

fator de cobertura do solo e do fator LS, relacionado à topografia do terreno, deu origem a sua 

forma revisada, a RUSLE (Revised Universal Soil Loss Equation) (RENARD et al., 1997). 

Os parâmetros utilizados para o cálculo da erosivadade da chuva são escassos e difíceis 

de serem obtidos, necessitando de medições em séries contínuas de valores de precipitação por 

um longo período de tempo. Isso torna difícil o cálculo do índice de erosividade em várias 

localidades do Brasil. Dessa forma, modelos de estimativa da erosividade com a utilização de 

banco de dados mais acessíveis, como por exemplo a precipitação média mensal e a anual e a 

utilização de equações de regressão, permitem que localidades que não possuam dados 

pluviográficos tenham representatividade na compreensão do potencial erosivo das chuvas em 

uma região de abragência (MELLO et al., 2007; OLIVEIRA et al., 2012; VIOLA et al., 2014). 

Estudos conduzidos por Panagos et al. (2022), em escala global concluíram um aumento 

da erosividade e da precipitação global em média 26,2 a 28,8%, para o ano de 2050 e 27 a 

34,3% para o ano de 2070. Segundo os mesmos autores 80 a 85% da superfície terrestre global 

terá uma tendência crescente na erosividade das chuvas e consequentemente, as mudanças 

climáticas e o aumento da erosividade das chuvas conduzirão a altas taxas de erosão. 

 

2.3 Mudanças climáticas – cenários e projeções 

Os efeitos potenciais de mudanças climáticas podem ser evidenciados em processos 

erosivos, sendo as variações do índice de erosividade das chuvas o indicador ativo nesses 

processos. Para se estimar os futuros impactos das mudanças climáticas, utiliza-se a análise de 

variáveis climáticas interrelacionadas em modelos climáticos globais (MCGs) e a sua 

combinação com modelos hidrológicos. Devido a sua baixa resolução espacial, inadequada para 

escalas locais e mesoescalas, modelos climáticos regionais (MCRs) têm sido desenvolvidos 

para simulações em estudos hidrológicos localizados (TEUTSCHBEIN; SEIBERT, 2012; 

SORRIBAS et al., 2016; OLIVEIRA et al., 2017). 

Em virtude da necessidade de padronização dos experimentos de modelagem por 

estudos de mudanças climáticas, o quinto Relatório de Avaliação do Intergovernmental Panel 

on Climate Change (IPCC),  Assessment Report Fifth (AR5 - IPCC, 2013), apresentou novos 

cenários de concentração de Gases de Efeito Estufa (GEE)  a serem utilizados, tendo como base 

diferentes forçantes radiativas (W/m²) ao longo do século XXI, e  obtidos através do  CMIP 

(Coupled Models Intercomparison Project) (TAYLOR et al., 2012). Esses cenários servem 

como base para simular modelos para o comportamento espacial e temporal de diferentes 

variáveis climáticas, tais como a precipitação pluviométrica. 
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Através do AR5, estabeleceu-se os Caminhos Representativos de Concentração (RCPs): 

RCP 2.6, RCP 4.5, RCP 6.0 e RC P8.5 (FIGURA 1). Desses destacam-se estudos dos cenários 

RCP 4.5 e RCP 8.5 em relação aos cenários do relatório anterior do IPCC (CHOU et al., 2014 

). Esses valores se relacionam às diferentes forçantes radiativas (W/m²), as quais equivalem 

aproximadamente a um nível de emissão de CO2 em partes por milhão de 490 ppm 

(concentração de pico até 2100), 650 ppm (valor de concentração estabilizado por volta de 

2100), 850 ppm (valor de concentração estabilizado por volta de 2100) e 1.370 ppm (valor de 

alcance até 2100), respectivamente (IPCC, 2013; RIAHI et al., 2017). 

 

Figura 1 - Forçantes radiativas para os diferentes RCPs até o final do século. 

 

 Fonte: IPCC (2013) 

 

Entre os três cenários de mudança climática, o RCP 4.5 é o mais amplamente utilizado. 

Ele apresenta-se intermediário quanto à rigidez no forçamento radiativo em comparação aos 

demais cenários do AR5 – IPCC (2013), não sendo tão conservador como o cenário RCP 2.6 e 

nem tão extremo como o cenário RCP 8.5. Em estudo de projeção climática da erosividade no 

continente europeu ao longo da primeira metade do século XXI,  Panagos et al. (2017) salientam 

que o cenário RCP 4.5 foi considerado moderado e embora haja incertezas no modelo de 

predição, áreas com mudanças substanciais podem se destacar. Atualmente o IPCC está em seu 

sexto ciclo de avaliação (IPCC AR6, 2021) e os resultados usando os modelos brutos CMIP6 

já estão sendo disponibilizados na literatura de mudanças climáticas. Entretanto esse ainda 

carece de informação sobre as melhores técnicas para se combinar os resultados dos modelos 
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climáticos, diferente da dispersão e média multimodelo que eram utilizados no CMIP5 

(HAUSFATHER et al., 2022). Além disso, os cenários climáticos do AR5 ainda permitem uma 

ampla avaliação do clima sobre toda a América do Sul devido a sua regionalização realizada a 

partir de modelos climáticos do CMIP5 (CHOU et al., 2014). Uma contribuição para essas 

predições poderia ser dada através da análise dos efeitos das mudanças climáticas sobre o uso 

e cobertura da terra, o que poderia balancear ou elevar as tendências de erosão do solo. 

 

2.4 Mudanças de uso e cobertura da terra na bacia Tocantins-Araguaia 

No Brasil, o bioma Cerrado na região de expansão da fronteira agrícola, se encontra em 

um ligeiro processo de destamamento. A maior parte das áreas de Cerrado (mais de 50% dos 

seus aproximadamente 2 milhões de km²) já sofreram uma transição de vegetação nativa para 

pastagens e terras agrícolas com produção de valor comercial (KLINK; MACHADO, 2005). A 

conservação do Cerrado tem atraído uma crescente atenção nacional e estrangeira, pois áreas 

não agrícolas remanescentes nesse bioma, principalmente na parte sententrional da sua área de 

abrangência, possuem baixa acessibilidade e poderão ser preferenciáveis mercados futuros de 

crédito de carbono (LAMBIN et al., 2013). 

A bacia Tocantins-Araguaia possui grande relevância por conter grande parte da última 

fronteira  para novos investimentos em agronegócio, conhecida como “MATOPIBA” 

(englobando os estados do Maranhão, Tocantins, Piauí e Bahia), possuindo frontes de  

conversão do uso da terra para a agricultura em contínua expansão em áreas de Cerrado e 

florestas de transição, assim como responsável pela expansão de áreas cultivadas de soja. 

Dentro dessa região de fronteira agrícola, a vulnerabilidade ambiental por unidade de paisagem 

apresenta-se alta na maior parte do estado do Tocantins e, de acordo o seu aspecto físico, o leste 

do seu território, completamente inserido dentro da bacia, possui solos arenosos, altamente 

susceptíveis a processos erosivos, além dos maiores déficits hídricos, que aumentam em direção 

à porção sudeste do estado. Esses fatores juntos tornam a região vulnerável às mudanças 

climáticas (DETZEL et al., 2017). 

Diferentes cenários de mudanças climáticas, interferindo no regime hídrico de uma 

região, podem comprometer a produtividade de culturas a longo prazo, necessitando então de 

soluções efetivas que venham a mitigar os efeitos negativos sobre a produtividade.  A redução 

da precipitação prevista em diferentes cenários, modelos de safra ou modelos climáticos, 

principalmente entre os meses de transição entre a estação seca e a chuvosa, no início do plantio 

consorciado anual no Cerrado, aliada ao desmatamento contínuo, pode ocosionar retornos 
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negativos para a produtividade agrícola até 2050 (PIRES et al., 2016). Dessa maneira, áreas 

passíveis de sofrer erosão poderão ter o seu potencial de risco aumentando.  

As terras produtoras de grãos e pastagens do bioma Cerrado situadas dentro da bacia 

estão em situação de risco diante de eventos futuros relacionados às mudanças climáticas. 

Dentro da região do “MATOPIBA”, uma porcentagem dessas terras já se encontra sob fortes 

sinais de degradação, tendo concentração em áreas de baixa resiliência, com solos arenosos,  

que apresentam estrutura fraca e baixa fertilidade natural (VIEIRA et al., 2021). O controle da 

erosão deve ser efetivo em solos tropicais vulneráveis, para isso há a necessidade de 

planejamento que vise a capacidade de uso da terra diante de tais cenários futuros. 

Os impactos das mudanças de uso e cobertura da terra podem ser avaliados em diferentes 

cenários, os quais quando combinados com as mudanças no clima possibilitam a projeção do 

efeito combinado da erosividade da chuva e do manejo e cobertura do solo (COLMAN et al., 

2019). Partindo-se do pressuposto que essas mudanças de uso e cobertura da terra podem ter 

reflexos em larga escala, a expansão de terras agrícolas situa-se como um condutor do potencial 

aumento global da erosão do solo (BORRELLI et al, 2017). Quando as taxas de erosão são 

avaliadas a partir da sua correlação com as mudanças de uso e cobertura da terra, áreas 

desmatadas e sujeitas às condições de uso da terra podem apresentar-se dominantes em conjunto 

com as maiores perdas de solo em bacias hidrográficas (ABDULKAREEM et al., 2019). 

Em estudos de parcelas experimentais, Oliveira et al. (2015) encontraram coeficientes 

de escoamento superficial podendo aumentar de 1%, quando em vegetação nativa de Cerrado, 

para 20% em solo com vegetação removida. Já as perdas de solo medidas foram de  0,1 a 12,4 

Mg ha-1 ano-1, quando da remoção da vegetação nativa. Extrapolando essas estimativas para 

maiores escalas, torna-se perceptível o quão importante é o planejamento do controle da erosão 

hídrica em áreas de risco do Cerrado. 
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Abstract  

 

Global climate change can potentially threaten agricultural production due to endangered 

natural resources, such as rainfall patterns. Thus, extreme rainfall events can cause greater 

rainfall erosivity, consequently, greater soil erosion. Conversely, a reduction in rainfall amount 

can lead to water scarcity for the agriculture production process. This way, it is a foremost need 

to model climatic conditions under global climate change scenarios, particularly in places where 

rainfall data tends to increase. This work aimed to project rainfall erosivity in the major 

Brazilian watershed, the Tocantins-Araguaia river basin, throughout the 21st century under two 

Intergovernmental Panel for Climate Change Fifth Assessment Report (IPCC AR5) Scenarios, 

the Representative Concentration Pathways, RCP4.5 and RCP8.5 scenarios. This study uses the 

downscaling of four global climate models of the Coupled Model Intercomparison Project 

(CMIP5) by the Eta regional climate model, used by the Brazilian National Institute for Space 

Research. The average rainfall erosivity was calculated based on the Modified Fournier Index 

in three periods of 30-year length throughout the 21st century. Time series of R-factor were 

analyzed at rain gauge station points overlapping regional model grid cells over the basin for 

the 1961-2099 period. Projections indicated lower annual average rainfall erosivity values in 

comparison with historical data. Estimated mean rainfall erosivity values were 10,977.69±526 

MJ mm ha-1 h-1 yr-1 for the RCP4.5 scenario, and 10,379.71±723 MJ mm ha-1 h-1 yr-1 for the 

most pessimistic climate change scenario, RCP8.5. The largest reductions of the mean R-factor 

reached 5,5% for the multi-model ensemble projections for near future, and 15.4% for the 

ensemble projections models for long-term, with the greatest decreasing trends under RCP8.5. 

Reductions greater than 2,000 MJ mm ha-1 h-1 are expected throughout the 21st century 

according to multi-model ensemble projections models under RCP8.5 scenario in most of the 

watershed. Decreasing rainfall erosivity factor in both RCP scenarios was due to a lower rainfall 

depth. However, the value of rainfall erosivity is still considered high and should be taken into 
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account in soil conservation practices. Furthermore, the smaller rainfall amount indicates a 

possible reduction in water availability for crops of longer cycle, and increase in spatial 

variability of less intense rainfall. 

Keywords: water erosion; Amazon and Cerrado biomes; climate change; downscaling; soil and 

water conservation. 
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1. INTRODUCTION 

The assessment of the impacts that climate change can produce on a regional scale can 

support the planning and adaptation in the agricultural sector and long-term environmental 

protection. Global Climate Models (GCM) can provide information on future climate change 

in different greenhouse gas emission scenarios (IPCC, 2013). Essential climatic variables are 

used as input data to hydrological models to assess possible impacts of climate change on basin 

hydrology. However, global models have a coarse spatial resolution, unsuitable for mesoscale 

hydrological simulations. Regional climate models (RCM) have been applied to increase the 

resolution of global climate model estimates. This so-called dynamical downscaling produces 

climate information at the scale appropriate to use in local and regional hydro-climate models 

(Gorguner et al., 2019; Jin et al., 2018; Oliveira et al., 2017; Sorribas et al., 2016; Teutschbein 

and Seibert, 2012; 2013).  

The erosive potential of heavy rainfall is the triggering agent of soil water erosion. 

Inappropriate land use and land management combined with the reduction of vegetation cover, 

which protects against the direct impact of raindrops, tend to increase erosion rates (Morgan, 

2005; Zuazo and Pleguezuelo, 2008), especially in the humid tropics (El-Swaify et al., 1982; 

Labrière et al., 2015; Lal, 1983; Theng, 1991). Extreme climate events have been reported more 

frequently which increases the rainfall erosive potential (Almagro et al., 2017; Nel et al., 2016; 

Vallebona et al., 2015; Zhu et al., 2020). Therefore, a large number of studies on climate change 

have indicated relative changes in rainfall erosivity patterns in several regions, some studies 

have reported an annual trend of increasing rainfall erosivity (Amanambu et al., 2019; Duulatov 

et al., 2019; Gafforov et al., 2020; Mello et al., 2015; Mondal et al., 2016; Shiono et al., 2013), 

while others reported a reduction in rainfall erosivity (Correa et al., 2016; Grillakis et al., 2020). 

These divergent results in reported rainfall erosivity trends are associated to local conditions 

and the evaluated future scenarios (Azari et al., 2021; Grillakis et al., 2020; Panagos et al., 2017; 
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Riquetti et al., 2020); e.g., among the aforementioned studies, Riquetti et al. (2020) reported a 

strong reduction in the mean annual precipitation and rainfall erosivity throughout the 21st 

century for the Amazon Forest region. 

Potential effects of climate change can be evidenced by variations in rainfall erosivity 

index, the indicator of active erosion processes. Diodato et al. (2017) monitored and reported 

that erosive events in a long series of annual rainfall erosivity values may indicate the frequency 

of extreme precipitation events of short duration in wet periods, which are likely to increase 

erosion. Furthermore, Ballabio et al. (2017) emphasized that analyses of the spatial and 

temporal variability of rainfall erosivity based on high temporal resolution precipitation data 

allows the development of indicators for studies that record intra-annual variation in different 

locations. 

The soil erosion rates are affected by changing rainfall patterns over much of the tropical 

regions, which are the most susceptible to high levels of soil erosion (Borrelli et al., 2017). In 

this regard, Riquetti et al. (2020) reported an increasing of future rainfall for the central-south 

region of South America (crossing Paraguay, northern Argentina, and southern and 

southeastern Brazil), and another strong reduction for the Brazilian semi-arid region (northeast 

region), and Amazon region (north region). Souza et al. (2019) highlighted that the region of 

the State of Tocantins (region of current study) is situated in an important climate transition 

area (between the Amazon and the semi-arid region). Thus, detailed studies to assess the impact 

of the climate changes on rainfall erosivity are required. 

Rainfall erosivity (R-factor), an index proposed by Wischmeier and Smith (1958), is 

calculated based on kinetic energy of raindrops through the rainfall intensity, as part of the 

Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) and its revised version 

(RUSLE) (Renard et al., 1997). Parameter used to estimate rainfall erosivity, considering higher 

temporal resolution (<<hourly), are scarce and difficult to access in most of the developing 
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tropical countries, i.e. shortage of available continuous long-term records of rainfall data across 

tropical regions. The calculation of rainfall erosivity in several locations of Brazil has been 

hampered by the lack of complete pluviographic data or the short-recorded period to calculate 

the R-factor. As a further optional methodology for estimating the rainfall erosivity, rainfall 

intensity indices have been based on annual and monthly rainfall depth, such as the Fournier 

and modified Fournier indices (Arnoldus, 1980; Fournier, 1956). Therefore, the application of 

models of rainfall erosivity estimation based on monthly and annual mean rainfall, and 

regression equations, can help understand the potential erosion by rainfall in regions where no 

detailed precipitation series data are available (Back et al., 2019; Cardoso et al., 2022; dos 

Santos Silva et al., 2020; Duulatov et al., 2019; Gafforov et al., 2020; Mello et al., 2007; 

Oliveira et al., 2012; Viola et al., 2014). An alternative method for rainfall erosivity estimation 

for locations with coarse resolution rainfall data has been evaluated (Angulo-Martínez and 

Beguería, 2009; Cardoso et al., 2022; Li et al., 2020; Ma et al., 2014; Men et al., 2008; Oğuz, 

2019; Zhang et al., 2002). Oğuz (2019) reported that the modified Fournier index was the 

closest estimate to rainfall erosivity in Turkey. Rainfall erosivity for African continent was best 

estimated performing the modified Fournier index using data from satellite-derived rainfall 

(Vrieling et al., 2010). Although modified Fournier index showed unsuitable for NE Spain 

(Angulo-Martínez and Beguería, 2009), for Brazilian conditions the modified Fournier index 

showed to be a suitable method for estimate rainfall erosivity (Cardoso et al., 2022). This index 

has been used for Brazilian conditions with good correlation with rainfall erosivity (Almeida, 

2009; Almeida et al., 2012; Aquino et al., 2012; Cantalice et al., 2009; Martins et al., 2010; 

Oliveira et al., 2012; Oliveira Junior, 1996; Silva et al., 1997).  

In this context, the objective of the study was to evaluate the spatial and temporal rainfall 

erosivity (R-factor) changes in the Tocantins-Araguaia basin, in Brazil, under future climate 

change conditions. This study uses daily rainfall dataset from regional climate model outputs 



31 

 

derived from the downscaling of the global climate models: BESM, CanESM2, MIROC5, and 

HadGEM2-ES, and the greenhouse gas concentration scenarios RCP4.5 and RCP8.5. The 

future changes are shown in three time-slices of 30 years: 2011-2040, 2041-2070, and 2071-

2099, and compared against the historical period between 1961 and 1990. The evaluation of the 

climate models’ historical rainfall over the basin was conducted using the rain gauge 

observations as reference. 

2. MATERIALS AND METHODS 

2.1 Study area 

The Tocantins-Araguaia basin is located in the central part of Brazil and it drains water 

from an area of 767,164 km² toward the northern coast (Fig. 1). The Tocantins River is the main 

river of the basin, and the Araguaia River is the large tributary river to the west. The basin is 

formed by a large drainage network, in which the Tocantins and Araguaia rivers allow 

navigation in large extension. The Tocantins-Araguaia basin is considered the second largest 

one in Brazil, in terms of water availability. The Amazon biome predominates in the 

northwestern part of the basin, while Cerrado Biome occupies the rest of the basin. The Cerrado 

biome of the basin is inserted in the so-called MATOPIBA area (acronym for the names of the 

states of Maranhão, Tocantins, Piaui, and Bahia), which is one of the largest agro-industrial 

expansion zones in the world, and, therefore, it is strategic to the economic development of the 

Brazilian economy (Pires et al., 2016). However, anthropogenic activities have raised concerns 

about environmental management in the region (Donzeli et al., 2006). Geographically located 

in the transition region between the Cerrado and the Amazon biomes, the basin has high rainfall 

erosive potential (Trindade et al., 2016).  
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Fig. 1 – The Tocantins-Araguaia basin and the Amazonia (green) and Cerrado (yellow) biomes.  

The climate in the region is classified as tropical (Aw), with rainy summer and dry 

winter (Alvares et al., 2013). The rainy season is between October and April when more than 

90% of the total annual precipitation falls. Conversely, dry season ranges from May to 

September. The precipitation regime is characterized by increased rainfall as the latitude 

decrease toward the equator. The average total annual precipitation is 1,869 mm in the basin. 

The annual maximum of 2,565 mm occurs near the Tocantins river mouth, located in the area 

predominately of Amazon biome. 

The Intertropical Convergence Zone (ITCZ) and the South Atlantic Convergence Zone 

(SACZ) are the two major large-scale meteorological features that strongly influence the basin 

rainfall. In addition, small-scale weather systems such as convective storms can also contribute 

to the rainfall. The equatorial air masses that reach the basin produce high rainfall erosivity in 
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the Amazon-Cerrado transition area. This high rainfall erosivity result in monthly rainfall 

erosivity rates that exceed the critical value of 500 MJ mm ha-1 h-1 during the wet season (Viola 

et al., 2014). Therefore, detailed research and improved models can contribute to provide 

information for environmental sustainability and mitigation measures and to reduce the 

negative consequences (economic and social) of soil misuse and environmental resources 

consumption in the basin. 

2.2 Climate data and scenarios  

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 

2013) considered Greenhouse Gas emission scenarios based on different levels of radiative 

forcing throughout the 21st century. These scenarios were referred to as Representative 

Concentration Pathways. The projections of climate change under these scenarios were 

provided by global climate models which followed the protocol of the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (Taylor et al., 2012).  

Global climate models adopt horizontal resolutions that range around 200 km. Climate 

change projections using these global models are considered coarse for studies in basin scale, 

especially for studies that extreme values and topographic precipitation are relevant. 

Downscaling global model output using regional climate models is an approach that provides 

higher horizontal resolution output based on the dynamics of the climate system. For South 

America, the highest horizontal resolution (20-km), using the largest number of global climate 

models (4 global models), the largest number of RCP scenarios (2 scenarios), and for the longest 

period (from 1961-2099), available at the time of this work were provided by the Eta Model 

from the Brazilian National Institute for Space Research (Chou et al., 2014a, b). Therefore, this 

largest dataset is used for this study. The Eta Model is suitable to simulate South America 

climate due to the reduced errors in the presence of the steep Andes Cordillera (Mesinger et al., 

2012; Mesinger et al., 2016). Development of the Eta Model and the validation in multi-decadal 
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runs have carried out in several works (Pesquero et al., 2010; Chou et al., 2012; Marengo et al., 

2012). 

The four global climate models, whose resolutions range from about 200 km and 300 

km, were downscaled to 20-km resolution. These global climate models are: the Brazilian Earth 

System Model (BESM) (Nobre et al., 2013); the Canadian Earth System Model, 2nd generation 

(CanESM2) (Arora et al., 2011); the Hadley Centre Global Environmental Model, version 2 

(HadGEM2-ES) (Collins et al., 2011); and the Model for Interdisciplinary Research on Climate, 

version 5 (MIROC5) (Watanabe et al., 2010). From now on, these downscaling outputs will be 

referred to as Eta-BESM, Eta-CanESM2, Eta-HadGEM2-ES, Eta-MIROC5, and the respective 

multi-model ensemble will be also taken into consideration.  

Monthly and annual rainfall data sets between 1961 and 1990 were considered as the 

baseline period of present climate simulations. The projections of the future climate were 

assessed in three time slices of 30 years in the periods: 2011-2040, 2041-2070, and 2071-2099. 

These periods are considered centered in the 2020s, 2050s, and 2080s.  

Two greenhouse gas scenarios were considered: the moderate concentration scenario 

(RCP4.5), and the uppermost extreme concentration scenario (RCP8.5). The RCP4.5 consists 

of a scenario of stabilization of the total radiative forcing at 4.5 W/m² before 2100 (Thomson 

et al., 2011), whereas the RCP8.5 scenario leads to the radiative forcing of 8.5 W/m2 at the end 

of the 21st century (Riahi et al., 2011). 

 Evaluation of the baseline period show that the downscaling runs reproduce major 

features in South America Climate, such as the seasonal temperature and precipitation 

variability, wind climatology (Antico et al., 2021; Chou et al., 2014a). The climatic extreme 

indices from the downscaling outputs have been evaluated against station observations 

(Dereczynski et al., 2020). The positive trend of temperature extreme indices were well 
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reproduced by the model. However, precipitation extreme indices in the basin area have mixed 

trend signs, but in general, the downscaling reproduce the trends in the 99th percentile of daily 

precipitation rate and in the 5-day accumulated precipitation. Conversely, for the consecutive 

dry day’s index, the negative trends observed from the gauges were not reproduced by the 

downscaling outputs.   

Bias correction was applied to the downscaling of precipitation produced by the Eta 

model. The method of bias correction was based on the Quantile-Quantile transformation 

(Bárdossy and Pegram, 2011). 

2.3 Observed rainfall data 

Gauge stations with continuous data periods overlapping the CMIP5 historical 

experiment period (1961–2005) were identified through the Hidroweb portal of the Brazilian 

National Water and Sanitation Agency (ANA) to evaluate the climate models’ baseline period 

within the Tocantins-Araguaia basin. There were 108 rain gauge stations in the basin (Fig. 1), 

of which 18 stations had continuous series of daily data for the 1975-1994 period, and 90 

stations had continuous series of daily data for the 1985-2005 period (records were selected 

according to the minimum period required to calculate the R-factor). For evaluation of the mean 

annual rainfall erosivity, the RCM grid cells closest to the observational rain gauges were 

extracted and evaluated at point-wise measurements. The gauge records provided a curated set 

of long-term, historical daily rainfall data. The lack of ground-based stations, with a common 

data period, unveiled gaps of rainfall measurements in specific 169 regions within the basin, 

therefore those two different historical series (periods) were selected. All the rain gauge stations 

were scattered over the drawn Thiessen polygons, according to the methodology also carried 

out by Almagro et al. (2017) and Mello et al. (2015), i.e. polygons generated based on the main 

weather stations (Fig. 1), –main weather stations are those with rainfall intensity information to 

calculate rainfall erosivity according to Equations 1 to 3. Precipitation data sets have been used 
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to validate climate models, and rain gauge datasets remain the most accurate source of rainfall 

information, regardless of the small-sized rain gauge network over tropical South America 

(Tapiador et al., 2017). Monthly rainfall datasets were used to determine annual rainfall 

erosivity for each rain gauge station. Thus, rainfall erosivity estimated from the downscaling 

outputs were compared against the rainfall erosivity determined from the observations. 

2.4 Rainfall erosivity factor calculations 

The rainfall erosivity (R-factor) is the most relevant factor when analyzing the impacts 

of soil water erosion since it is conditioned to the rainfall intensity. The volume and speed of 

the runoff caused by rainfall depends on its intensity, duration, and frequency. Rainfall intensity 

is the main variable considered in the calculation of rainfall erosivity. The R-factor is defined 

as a function of the daily precipitation values, being EI30 - total storm energy (E) times the 

maximum continuous 30-min intensity during the individual storm event (I30). In order to 

analyze rainfall erosivity measures in the main weather stations (Fig. 1), each erosive rain event 

was divided into different segments of similar intensities and the rain kinetic energy was 

calculating as proposed by Wischmeier and Smith (1978) and modified by Foster et al. (1981) 

through the following equation: 

𝑒 = 0.1191 + 0.0873 log 𝑖             (1) 

where: e is the unit rainfall kinetic energy expressed in MJ ha-1 mm-1, and i is the rainfall 

intensity (mm h-1) within the time segment. The kinetic energy accumulated from each rth 

segment of the rainfall is given by Er = er. υr (MJ ha-1), where υr is the rainfall depth (mm) 

during a period. Thus, the rainfall erosivity index of each erosive storm is given by:  

𝐸𝐼30 = ( ∑ 𝐸𝑟
𝑛
𝑟=1 )  ×  𝐼30             (2) 

The average annual rainfall erosivity (MJ mm ha−1 h−1 year−1) is obtained from 

averaging the annual sums of individual EI30 erosivity indices (Eq. 3): 
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𝑅 =
1

𝑛
∑ [∑ (𝐸𝐼30)𝑘

𝑚𝑗

𝑘=1 ]
𝑗

𝑛
𝑗=1              (3) 

where n is the number of years of data, mj is the number of erosive rainfall events in the year j 

and (EI30)k is the rainfall erosivity index of the kth event in a given year j. In order to obtain an 

estimate of the average annual erosivity index, at least a 20-year record of rainfall data is 

required (Renard et al., 1997). Pluviometric data records are usually used to obtain the R-factor 

from their relation with the aforementioned erosivity index (da Silva, 2004; Oliveira et al., 2013; 

Renard and Freimund, 1994). In Brazil, the low availability of hourly and sub-hourly rainfall 

pluviographic records for observed historical periods in remote and disadvantaged regions is 

particularly problematic. 

Although the rainfall erosivity (Eq. 2) was derived empirically as a model to represent 

“… the combined effects of (a) the decreasing infiltration rate during a rain, (b) the 

geometrically increasing erosion effect of surface flow, and (c) the protection against raindrop 

splash which is afforded by the film of flowing water" (Wischmeir and Smith, 1958), it can also 

underestimate soil losses for long low-intensity rains. Fournier (1960) proposed an index to be 

correlated to sediment loads in rivers to predict soil losses based on the mean monthly rainfall 

amounts, however it underestimated rain erosivity (Arnoldus, 1980). Consequently, a Modified 

Fournier Index (MFI) was proposed (Eq. 4), considering the rainfall amounts of all months in 

the year (Arnoldus, 1980) to better predict the erosive power of rains throughout the year. 

This modified Fournier index has achieved the best results in the calculating of the R-

factor in Brazil (Cardoso et al., 2022). Some of the models developed in previous studies from 

storm event pluviographic records in Brazil were used to compute the R-factor (Table 1). 

MFI =
𝑝𝑖

2

𝑃
                                                                                                       (4)  

EI30 monthly  =  αMFI𝛽   or   EI30 monthly  =  θ +  αMFI𝛽                                                 (5) 
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where MFI is the Modified Fournier Index considering modifications performed by Apaydin et 

al. (2006), pi is the monthly precipitation amounts of each individual year and P is the total 

average annual rainfall. In this calculation procedure, the MFI includes the year-to-year 

variations as well as the within-year variations (Apaydin et al., 2006). The EI30annual was 

calculated by Eq. 6: 

EI30 annual = ∑ ( EI30 monthly  )𝑖

12

𝑖=1
                                                                                        (6) 

Table 1 - Equations available in the Tocantins-Araguaia basin for determining the rainfall 

erosivity index (EI30) as a function of the Modified Fournier Index (MFI). 

Station LAT LONG Equation State Reference 

      

Canarana 13°33'00"S 52°10'12"W EI30= 317.3978×MFI0.48465; 

R2
 = 0.86 

Mato Grosso (Almeida et al., 

2012) 

Cuiabá 15°37'18"S 56°06'30"W EI30= 244.47×MFI0.508; R2 = 

0.67 

Mato Grosso (Almeida, 2009) 

Vera 12°17'24"S 55°17'24"W EI30= 399.5387×MFI0.4587; 

R2 = 0.84 

Mato Grosso (Almeida et al., 

2012) 

Poxoréu 15°50'48"S 54°23'48"W EI30=272.8656×MFI0.41916; 

R2 = 0.66 

Mato Grosso (Almeida et al., 

2012) 

Rondonópolis 16°26'60"S 54°34'00"W EI30=167.16×MFI0.567; R2 = 

0.77 

Mato Grosso (Almeida, 2009) 

Coxim 18°30'43.7"S 54°44'10"W EI30=138.33×MFI0.7431; R2 

= 0.91 

Mato Grosso 

do Sul 

(Oliveira et al., 2012) 

Conceição do 

 Araguaia 

8°15'36"S 49°16'12"W EI30 = 321.5 + 36.20×MFI; 

R2 = 0.79 

Pará (Oliveira Junior, 

1996) 

Goiânia 16°40'48"S 49°15'00"W EI30 = 216.15 + 30.69×MFI; 

R2 = 0.78 

Goiás (Silva et al., 1997) 

Matupá 10°03'36"S 54°55'48"W EI30 = 115.72×MFI0.746; R2 

= 0.99 

Mato Grosso (Almeida, 2009) 
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2.5 Annual erosivity density 

In order to assess the patterns of rainfall erosivity in its spatial dynamics, the erosivity 

density was used. The erosivity density is the ratio of R-factor to precipitation (Kinnell, 2010), 

and it measures the erosivity per rainfall unit (mm), being expressed as MJ ha−1 h−1. In this 

study, the average annual Erosivity Density (ED) was used, and for each climate model grid 

point, the ED of a particular year i was determined by: 

 𝐸𝐷𝑖 =  
𝑅𝑖

𝑃𝑖
                                                                               (7) 

The average annual Erosivity Density was calculated for each time-slice of climate 

model scenarios, and for the baseline period. Smaller values of ED indicated the R-factor was 

mainly influenced by the rainfall amount, while high values of ED suggested the occurrence of 

high-intensity rainfall (Panagos et al., 2016). 

2.6 Tests for trend detection 

2.6.1 Mann-Kendall statistical test  

The Mann-Kendall statistical test (Kendall, 1975; Mann, 1945) was used to detect a 

trend in the rainfall erosivity time series throughout the twenty-first century under the two 

emission scenarios. This non-parametric statistical test is widely used for detecting trends in 

hydroclimatic time series (Huang et al., 2013; Mello et al., 2015; Oğuz, 2019; Verstraeten et 

al., 2006; Vu et al., 2015; Yang and Lu, 2015), and is recommended for general use by the 

World Meteorological Organization. For the total number of data in the time series indicated 

by n, we computed the statistical variable S as follows:  

𝑆 = ∑ ∑ sign(𝑥𝑗 − 𝑥𝑘)𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1                                                                             (8) 
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where: xj is the value of the jth year, n denotes the number of years, and sign (x) is the signal 

function, as follows: 

sign(𝑥) = {
1,
0,
-1,

    if x >  0
    if x =  0
    if x <  0

                                                                                     (9) 

For a sample size (n) greater than 10, a normal approximation for the Mann-Kendall test 

can be used (Adamowski and Bougadis, 2003; Helsel and Frans, 2006). The mean of S is E [S] 

= 0 and the variance σ2 was calculated as follows: 

𝜎2 = {𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)
𝑝
𝑗=1 } 18⁄                  (10) 

where: considering that series can have groups with equal observations, P is the number of 

groups with equal observations; and tj is the number of observations equal in group j. Thus, the 

standardized statistical test ZMK can be calculated as follows: 

𝑍 = {

𝑆−1

𝜎
,

0   ,
𝑆+1

𝜎
,

    if    S > 0
    if     S = 0
    if     S < 0

                                                                                            (11) 

A positive (negative) value of S indicates an upward (downward) trend. The trend is not 

significant if |ZMK| is smaller than the standard normal variation Zα/2, where α is significant at 

5% level. The presence of serial correlation in the time series data may affect trend detection in 

the non-parametric trend test, then a prewhitening procedure before testing for trends is 

required. However, the effect of serial correlation on the rejection rate of the null hypothesis is 

insignificant for large time-series size (n ≥ 50) and the slope of the trend is high (≥0.01), and is 

better to use the MK test on the original data (Bayazit and Önöz, 2007; Nkiaka et al., 2017; 

Önöz and Bayazit, 2012; Yue and Wang, 2002). 

2.6.2 Theil-Sen estimator 
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The Mann-Kendall test provides the detection of statistical significance of the trend, 

however, it does not provide an estimate of its magnitude. The magnitude of rainfall erosivity 

is predicted by Sen’s slope estimator test (Sen, 1968). Thus, the non-parametric statistical 

estimator was obtained through the Theil-Sen median slope operator as follows: 

𝜷 = median (
𝑌𝑖−𝑌𝑗

𝑖−𝑗
)                       ∀𝑗 < 𝑖                                                               (12) 

for 1 <j <i <n, where: β is the Sen’s slope (linear change rate), resistant to outliers, Yi and Yj 

denote the variable in years i and j, and n is the number of data. For n years in the time series, 

β is the median of N = n (n - 1)/2 slope estimates. The 𝛽 sign indicates the direction of change 

and its value represents the steepness of change.  

Like many other hydrometeorological studies (Almeida et al., 2017; Vu et al., 2018; 

Zuo et al., 2016), Sen’s slope has been used to quantify the true slopes in trend of target variable. 

Sen’s slope estimator was applied to identify the slope for rainfall erosivity over the basin, and 

it was analyzed spatially. 

Analyses of Boxplot with Student’s t-test of the relative errors (Bennett et al., 2013) and 

the Levene test included a step to evaluate the suitability of the Eta model precipitation in 

simulating the variability of the R-factor and the mean values in the basin. This evaluation was 

carried out by calculating the model precipitation errors in the historical period. 

Considering the suitability of the downscaling of the Eta model and the spatialization of 

the R-factor in the basin, we evaluated the alterations concerning the baseline period (1961-

1990) for the short- (2020s), medium- (2050s), and long- (2080s) term periods. For this purpose, 

average, maximum value, minimum value, standard deviation, and skewness coefficient were 

used as statistical metrics. The statistical analyses and calculations of the results were carried 

out in the R (3.5.1) statistical environment ( R Core Development Team, 2018). 
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3. RESULTS  

3.1 The rainfall erosivity  

3.1.1 Evaluation 

Figure 2 depicts the relative errors of the simulated annual average rainfall erosivity 

derived from downscaling baseline in comparison with estimated rainfall erosivity derived from 

rain gauge stations, during the baseline period. All downscaling simulations exhibited small 

relative errors. The Eta-HadGEM2-ES simulation resulted in the smallest median relative error, 

but it was not significantly different from the Eta-CanESM2 and Eta-MIROC5 simulations, 

according to the t-test. 

The Eta-BESM downscaling showed the greatest dispersion in the relative difference 

between observations and simulations, as shown by the widest boxplot interquartile range (Fig. 

2). In addition, about 75% of this downscaling showed smaller relative errors and close to zero, 

as well as the frequency mostly below the median value. The same error pattern was noticed in 

the Eta-CanESM2 and Eta-MIROC5 downscalings, but the error distribution was more 

symmetric around the Eta-MIROC5 model mean value. In general, all four RCM downscalings 

showed similar results. Nevertheless, the median values of the Eta-HadGEM2-ES model were 

closer to observations. Around 25% of the relative errors were distributed very close to zero in 

the third boxplot quartile to this model downscaling (Fig. 2). Based on the Levene test, the 

variance of the R-factor was not statistically different for all climate simulations and 

observations for the baseline period. 
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Fig. 2 – Boxplots of the relative errors between the simulated historical average rainfall 

erosivity derived from downscaling baseline and the rainfall erosivity derived from rain gauge 

stations. (*) indicates p <0.05; ns indicates a non-significant difference.  

3.1.2 Projections 

The projections of rainfall erosivity showed a substantial decrease from the baseline in 

the Tocantins-Araguaia basin as illustrated by Figure 3. This was observed through the 

simulated annual average rainfall erosivity in the entire Tocantins-Araguaia basin as calculated 

from the downscaling models’ output of the historical period (1961-1990), and the future 

periods. The R-factor values show a spatial gradient reduction in the north-south directions with 

respect to the baseline climate. The smallest decrease occurred in the extreme north of the basin 

for the three future time slices.  



44 

 

 

Fig. 3 – Annual average rainfall erosivity in the watershed for short-, medium-, and long- term 

periods using the multi-model ensemble, under RCP4.5 and RCP8.5 climate scenarios, as well 

as historical values. 

The Modified Fourier Index used in the equations of the R-factor showed that the 

reduced rainfall indices are determinant on the intensity of rainfall erosivity in South America. 

As in future trends, the projections only indicated the changes in total precipitation amounts, 

therefore the analysis of the erosivity density is important to understand the variations, both in 

the amount and in the intensity of precipitation. 

The projected changes in the hydrological processes of the Tocantins-Araguaia 

watershed indicate longer dry seasons, as well as more frequent and shorter dry spells during 
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the rainy season. This has also been discussed by Neto et al. (2016) as an effect of climate 

change that could threaten agroecosystems due to reduced water availability.  

The areas of greatest potential of rainfall erosivity are located in the extreme north and 

northwest of the basin (Fig. 3), which is a region of territorial tension due to many protected 

natural areas. The projected average values of the R-factor (for all four downscalings) resulted 

in decreased values under RCP4.5 and RCP8.5 scenarios in the near-term (2011–2040), 

medium-term (2041–2070) and long-term (2071–2099) periods as compared to the baseline 

period within the study area (Table 2). Furthermore, the overall yearly R-factor variability was 

larger in near-, mid-, and long-term future time-slices, considering the mean four downscaling 

projection. The projected R-factor of all downscaling output, between the range of minimum 

and maximum values, decrease under both RCP scenarios. The greatest reduction was noticed 

for the minimum value (Table 3). On multi-model ensemble of the models, the projected mean 

reduction was 15.41% at the end of the century under the most pessimistic scenario (Table 3). 

Conversely, the maximum values showed an average increment of 4.46% and 5.03%, in RCP4.5 

and RCP8.5 scenarios, respectively (Table 3).  

Table 2 - Mean and Standard deviation of rainfall erosivity over baseline and projected periods. 

 Baseline Future scenario 

  RCP4.5 RCP8.5 

 (MJ mm ha-1 h-1 yr-1 ) 

1961-1990 11507.61 (112.71) - - 

2011-2040 - 10895.20 (349.71) 10834.09 (878.64) 

2041-2070 - 11094.04 (340.10) 10563.89 (462.28) 

2071-2099 - 10943.84 (560.83) 9741.14 (744.77) 
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Table 3 - Percentage change and dispersion measures of projected mean rainfall erosivity in the watershed for short-, medium-, and long-term 

periods using four RCM downscalings and under two RCP scenarios, as compared to baseline values 
  RCP 4.5 

 

RCP 8.5 

Model acronym Period min mean max sd* Cs
* min mean max sd Cs 

  

Eta-BESM 

2020s -18.08 -3.40 12.15 5.38 0.48 

 

-2.30 3.72 22.55 3.35 1.36 

2050s -14.07 -1.13 10.18 5.53 0.11 -17.23 -3.79 9.63 3.77 -0.09 

2080s -8.90 0.99 19.41 4.69 0.09 -32.77 -11.86 13.39 6.19 -0.32 

 

Eta-CanESM2 

2020s -15.15 -5.40 7.00 3.33 0.27 

 

-15.31 -6.57 6.48 3.42 0.24 

2050s -17.53 -6.43 12.85 4.28 0.87 -26.84 -12.75 12.64 5.31 0.61 

2080s -18.86 -8.54 12.36 4.44 0.90 -41.67 -25.28 3.00 6.27 0.32 

 

Eta-HadGEM2-ES 

2020s -26.79 -10.61 1.60 5.11 -0.41 

 

-33.09 -14.14 -0.21 5.85 -0.80 

2050s -15.67 -3.53 4.33 3.41 -0.44 -27.73 -11.23 4.13 4.39 -0.78 

2080s -19.70 -6.33 4.25 3.89 -0.27 -33.35 -16.07 5.47 4.81 -0.11 

 

Eta-MIROC5 

2020s -15.58 -6.01 6.34 3.61 0.04 

 

-23.54 -10.21 0.81 4.97 -0.42 

2050s -22.74 -7.36 1.75 4.53 -0.57 -19.66 -8.41 5.73 4.31 -0.15 

2080s -22.59 -9.55 3.73 4.32 0.05 -27.75 -11.64 8.34 5.39 -0.18 

 

Ensemble 

2020s -14.09 -5.47 2.10 3.34 -0.13 

 

-12.80 -5.91 1.03 2.30 -0.20 

2050s -13.70 -3.70 5.88 3.41 -0.24 -18.28 -8.17 6.73 3.45 0.29 

2080s -14.56 -4.95 5.41 3.31 -0.17 -29.76 -15.41 7.34 4.80 0.06 

 *  sd. standard deviation, Cs. skewness coefficient 
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Significantly high rainfall erosivity values were computed for the Midwest region of the 

State of Tocantins, ranging from the Cantão region, into the ecotone between the Cerrado and 

the Amazon biomes, and towards the center of the State. Considering the separate analyses of 

each climate model, there were decreases of the R-factor for all periods in both emission 

scenarios in relation to the baseline period (Table 3). Regarding RCP4.5 (Table 3), the larger 

average decreases were 10.61% for short-term Eta-HadGEM2-ES; 7.36% for mid-term Eta-

MIROC5, and 9.55% for long-term Eta-MIROC5. Meanwhile, concerning RCP8.5 scenario 

(Table 3), the larger average decreases were 14.14% for short-term Eta-HadGEM2-ES; 12.75% 

for mid-term Eta-CanESM2, and 25.28% for long-term Eta-CanESM2. Measures of dispersion 

and asymmetry of the predicted changes in R-factor, for the analyzed term periods and scenarios 

were realistic since the models were adjusted and validated for the baseline.  

The monthly values of rainfall erosivity showed projections of decreased R-factor 

during the rainy season (Fig. 4), when compared to the baseline. Overall, the smallest decrease 

was observed in the northern portion of the basin during the wet period. The R-factor showed 

the greatest decreases in the three time-slices based on the RCP8.5 scenario (Fig. 5). There was 

a pronounced increase in the long-term for the dry season at downscaling under RCP8.5 

scenario (Fig. 4). Meanwhile, decreased rainfall erosivity was estimated in the long-term for 

the rainy season using the RCP8.5 scenario at the multi-model ensemble in latitudes to the north 

of 5ºS. It was estimated slightly decreasing rainfall erosivity between February and April, 

whereas it was estimated a clear rainfall erosivity concentration in March for these lower 

latitudes. This concentration also was verified in March using long-term simulations under 

RPC4.5 scenario. 
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Fig. 4 - Average monthly rainfall erosivity based on the multi-model ensemble projections for 

the baseline period and future timeslices under RCP4.5 and RCP8.5 scenarios. The vertical axis 

shows the rainfall erosivity averaged by latitude, and the horizontal axis shows the month of 

year. 
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Fig. 5 - Average percentage change as compared to historical values in the rainfall erosivity in 

the watershed for short-, medium-, and long- term periods under RCP4.5 and RCP8.5 scenarios. 

 

Based on the monthly analysis in the three-time slices, the multi-model ensemble 

projections exhibited greater sensitivity to changes in rainfall erosivity in the months of highest 

rainfall indexes. In fact, dry spell during the rainy season may well contribute to reduced rainfall 

erosivity towards the end of the century. All climate downscalings used in this study agreed 

consistently upon this regional change (Fig. 4), in which the number of sites less rainfall may 

contribute significantly to the projection of longer dry seasons, and more frequent short dry 

spell periods during rainy seasons. 
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3.2 Annual erosivity density 

The average annual distributions of rainfall erosivity density over Tocantins-Araguaia 

basin for the baseline period and scenario-based projections express the rainfall patterns 

according to the different simulations of the climate models. Areas with high values of erosivity 

density indicated that the precipitation is marked by highly erosive events, which distribution 

is mainly concentrated from southwest to east of the basin (Fig. 6). This annual erosivity density 

presented values that will indeed exceed 9 MJ ha−1 h−1 for most of the projections, being 

characterized as high to very high ED values according to the classification given by Dash et 

al. (2019) for tropical regions. 

 

Fig. 6 - Average annual erosivity density in the watershed for short-, medium-, and long- term 

periods estimated by the multi-model ensemble, under RCP4.5 and RCP8.5 scenarios, as 

compared to historical values. 
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From a long-term perspective, a considerable increase for annual erosivity density under 

the climate change scenario RCP8.5 is expected, according to multi-model ensemble. This 

finding contrasts to the projected decrease in R-factor values; viz. an increase in the annual ED 

indicates the future presence of high-intensity precipitation events of short duration. This, 

however, would have little impact to the amount of highly erosive rainfalls throughout the basin. 

The higher the values of ED, the lesser influence of annual depth precipitation on the annual 

rainfall erosivity. Thus, the importance of a good statistical fit to calculate the regression model 

coefficients of this study is commensurate with using reliable data to project future erosive 

rainfall events via the R-factor. 

Long-term increase in average ED in the basin indicated that the decrease amount of 

precipitation would be more pronounced than the R-factor decrease according to projections. 

This sensitivity difference among changes in R-factor and rainfall values will become less 

obvious in the mid-northern portion of the basin where highest values of R-factor were 

projected. Hence, for the lowest rates of future rainfall erosivity, rainstorms must remain 

predominant. 

3.3 Temporal trends of annual rainfall erosivity  

The MK test and the Theil-Sen estimator (Fig. 7) were used to compute spatial patterns 

of temporal trends for annual rainfall erosivity and their respective magnitudes. The value of 

the Z statistics identifies trends in the annual rainfall erosivity, being Z < -1.96 indicative of a 

significant negative trend; -1.96 < Z < 0 indicative of a negative trend; 0 < Z < 1.96 indicative 

of positive trend; and Z > 1.96 indicative of a significant positive trend.   

Figure 7 shows the trend of simulated annual rainfall erosivity in the watershed 

throughout the 21st century. Station points show significant or non-significant trends and their 

respective Sen’s slope. The results showed that most of the station points presented a tendency 
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of decreasing annual rainfall erosivity throughout the 21st century in both, RCP4.5 and RCP8.5 

scenarios, at a 95% confidence level. The highest decreasing trend was shown in the worst 

climate change scenario (RCP8.5), reaching values of the annual decrease of magnitude greater 

than 20 MJ mm ha-1 h-1 per year (>2,000 MJ mm ha-1 h-1 per century), in almost all the extension 

of the watershed according to multi-model ensemble downscaling climate projections. 

Rainfall erosivity trends with the higher decrement at a significant level laid along the 

Upper and Middle Araguaia river. This was due to reduced rainfall indexes upstream of the 

basin, leading to decreasing patterns. Furthermore, the process may lead to less rill erosion 

development in areas susceptible to erosion and consequently of environmental vulnerability. 

Implementation of soil and water conservational practices are recommended to prevent 

decreased hydrologic regimes in the future that could challenge agroecosystems downstream. 

 

Fig. 7 - Sen’s slope (expressed in units year-1) and Z-statistics using the MK test at 5% 

significance level for the average of the multi-model ensemble in the RCP4.5 and RCP8.5 

scenarios. The black downward triangles indicate significant decreasing trend, red upward 

triangles indicate significant increasing trend, and black circles indicate non-significant trend. 
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Table 4 shows a summary of the average seasonal Mann-Kendall trend and Sen’s slope. 

Trend estimations of reduced R-factor during wet season were significant at an α=0.01, for all 

downscaling projections using RCP8.5. Meanwhile, for dry season, it was observed a 

significant trend (α=0.01), for three of the models using RCP8.5. Regarding RCP4.5 scenario, 

negative trends were estimated for rainy season according to Eta-CanESM2 and Eta-MIROC5 

projections at a 0.01 significance level. For the dry season, it could be said reduced R-factor is 

expected at a 0.05 significance level for most of the downscaling projections using both 

scenarios; therefore, care should be taken for future climatic water deficit in this watershed. 

Furthermore, all projections using the worst climate change scenario (RCP8.5) pointed towards 

reductions during rainy season higher than 14 MJ mm ha-1 h-1 per year (1,400 MJ mm ha-1 h-1 

per century).  

 

 

 

 

 

 

 

 



54 

 

Table 4 - Summary of past and projected R-factor trends for total annual and in the rainy and dry seasons in the Tocantins-Araguaia basin (1961-

2099). Mann-Kendall trend test p-values < 0.05 are indicated in bold print.

 Z-test p-value Kendall’s tau Sen’s Slope 

Model acronym 
Annual 

Rainy 

season 

Dry 

season 
Annual 

Rainy 

season 

Dry 

season 
Annual 

Rainy 

season 

Dry 

season 
Annual 

Rainy 

season 

Dry 

season 

 RCP 4.5 emissions scenario 

Eta-BESM -1.107 -0.783 -2.349 0.268 0.434 0.019 -0.063 -0.045 -0.135 -2.803 -2.156 -0.817 

Eta-CanESM2 -4.010 -4.112 -1.471 0.000 0.000 0.141 -0.230 -0.236 -0.084 -12.159 -11.451 -0.603 

Eta-HadGEM2-ES -1.548 -1.399 -2.691 0.122 0.162 0.007 -0.089 -0.080 -0.154 -5.069 -4.076 -0.921 

Eta-MIROC5 -4.236 -4.126 -3.314 0.000 0.000 0.001 -0.243 -0.236 -0.190 -13.612 -13.002 -1.052 

 RCP 8.5 emissions scenario 

Eta-BESM -4.494 -4.297 -3.026 0.000 0.000 0.002 -0.257 -0.246 -0.173 -14.802 -14.034 -1.140 

Eta-CanESM2 -8.205 -8.249 -3.795 0.000 0.000 0.000 -0.470 -0.472 -0.217 -30.000 -28.947 -1.534 

Eta-HadGEM2-ES -4.764 -4.753 -0.969 0.000 0.000 0.333 -0.273 -0.272 -0.056 -15.132 -14.450 -0.408 

Eta-MIROC5 -4.858 -4.472 -5.368 0.000 0.000 0.000 -0.278 -0.256 -0.307 -16.346 -14.594 -1.632 
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4. DISCUSSION 

Future scenarios revealed that for the Tocantins-Araguaia basin, a reduction in rainfall 

erosivity is expected throughout the 21st century. This reduction in rainfall erosivity will occur 

due to the decrease in the amount of precipitation in the region, however extreme events will 

continue to occur (high value of the annual Erosivity Density). Thus, the reduction in rainfall 

erosivity will be much more influenced by the reduction in the amount of rainfall than by its 

intensity. Marengo et al. (2022) reported that MATOPIBA has already been changing towards 

a drier and warmer climate since 1980, being stronger over the State of Tocantins. For the future 

trend, the Global Circulation Models projected an accumulated reduction in precipitation in the 

Amazon region, reaching -40% (Riquetti et al., 2020). 

Decrease in average amount of precipitation in the Tocantins-Araguaia Basin is closely 

related to the large-scale deforestation of the Amazon rainforest (Chou et al., 2014a; Lawrence 

and Vandecar, 2015) due to the influence of the high moisture flows in this region, which 

regulates the climate across the rest of Brazil (Marengo et al., 2022). Unlike other tropical 

regions in Southeast Asia or Central Africa, the Amazonia responds strongly to global warming, 

and its effects are exacerbated by deforestation, i.e., a decline in rainfall frequency, and an 

expected shift in seasonality will occur as warmer daytime temperatures become common 

(Lawrence and Vandecar, 2015). Conversely, other tropical watersheds in Malaysia have shown 

an increasing trend in annual rainfall erosivity, as reported by Nasidi et al. (2021). In addition, 

an increase and decrease in rainfall erosivity are expected in areas of the Lower Niger Basin in 

West Africa (Amanambu et al., 2019), and the Huai Luang watershed in Thailand (Pheerawat 

and Udmale, 2017), respectively, mainly driven by the amount of precipitation in these tropical 

regions. 

Climate change is expected to cause several negative impacts on agriculture (Jägermeyr 

et al., 2021), such as reduced annual precipitation (de Jong et al. 2018; Lyra et al., 2018; Pousa 
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et al., 2019), more frequent short-duration, but intense rainfall events, and regionalized water 

scarcity. In a regional scale, the reduction of erosive rainfall may be a positive factor in terms 

of soil erosion control; nevertheless, better water management practices should be adopted to 

support the expansion of agricultural production in this watershed. Adaptation measures to 

mitigate the effects of climate change need to be taken into action by all stakeholders. Seasonal 

hazardous climate events will become more frequent, i.e. water scarcity and wildfire 

vulnerability (dry season), and flash flooding (wet season). Thus, an interdisciplinary scientific 

approach is required to identify the challenges ahead and assure sustainable adaptation 

strategies to the ongoing, and never ending, climate change conditions. Changing rain patterns 

and trends in rainfall erosivity in the Tocantins-Araguaia basin are of greater concern, mainly 

in agricultural areas due to socio-economic and environmental impacts, in Southern Pará and 

Northern Tocantins (Bico do Papagaio region). In the Bico do Papagaio region, where rainy 

season extends to autumn, the expected seasonal increase in rainfall erosivity according to some 

models can lead to rural vulnerability under rising climate risk. Trends in rainfall erosivity due 

to climate change attract the interest of policy-makers and the great public, particularly when 

dealing with the poverty net and rural population distribution. Furthermore, it has already been 

addressed how climate change is pressuring the wide and fragile protected areas in the Amazon 

biome (Nobre et al., 2016). 

The projections of reduced rainfall erosivity result in the positive outcome of less soil 

losses in the areas already endangered due to anthropogenic activities such as the expansion of 

crop and livestock and replacing native vegetation in the Brazilian Savannah (Cerrado) and 

Brazilian rainforest (Amazon) biomes. The reduced soil losses may translate in less load of soil 

nutrients and sediments into downstream water bodies. Therefore, the expansion of 

agroecosystems under soil conservation practices can ensure that reduced rainfall erosivity 

values support sustainable land management within the watershed. Our findings of potential 
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changes in rainfall erosivity in the Tocantins-Araguaia basin, as a result of future declining and 

variable rainfall, are in accordance with other research groups. Palomino-Lemus et al. (2018, 

2017) reported a marked decrease in the amounts of rainfall, using climate change projections 

towards the end of the 21st century in Central and Southeastern Brazil. The block of the passage 

of frontal systems (a region where the Tocantins-Araguaia basin borders the La Plata Basin) 

will be submitted to negative anomalies in precipitation under RCP4.5 scenario (Mourão et al., 

2016), being conditioned by a weakening of the SACZ. Likewise, reduced precipitation on the 

Eastern equatorial Amazon is expected as a result of warmer sea surface temperatures in the 

Atlantic ITCZ (Fu et al., 2001), i.e. reduced low-level moisture convergence is associated with 

decreased convection over the region. Additionally, other mechanisms are known to control the 

water vapor transport through the Amazon, being strongly affected by the reduction of the 

Amazon rainforest cover, viz. anthropogenic deforestation reduces local evapotranspiration and 

consequently impacts negatively on tropospheric water vapor, convection and climate (Agudelo 

et al., 2019; Sherwood et al., 2010). Besides the effects of human activities on the land, weather 

anomalies will continue to govern precipitation events –intensity, duration and frequency– 

(Borges et al., 2018; de Carvalho et al., 2013), as well as rainfall erosivity (dos Santos Silva et 

al., 2020). According to Ho et al. (2016), the average annual rainfall for ensemble mean of 

climate models decreases at the end of the 21st century under the RCP4.5 scenario in the 

watershed. On the interannual analysis, it is also expected an increase in the dry season period 

with the greatest reduction in rainfall in October, which can delay the sowing period in the 

region. The space-time variations of rainfall of the Tocantins-Araguaia hydrographic region are 

most susceptible to the meteorological anomaly in the Pacific (El Niño Southern Oscillation - 

ENSO) and Atlantic (Atlantic dipole) oceans (Loureiro et al., 2015). Those phenomena are 

associated with a decreasing trend in rainfall into the watershed, through heterogeneous and 

irregular spatial behavior. The climate aggressiveness during high-intensity pluviometric events 
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can be explained by the concentration of maximum rainfall at the northern of the watershed, 

which supports the occurrence of high rainfall erosivity events.  

The monitoring of pronounced dry periods is important for agriculture in the region 

(Anderson et al., 2016). Moreover, longer droughts may favor wildfires which impact 

negatively on soil physical quality, as soil may become more vulnerable to erosion processes 

(DeLong et al., 2018). Thus, it is of foremost importance to advance the understanding of 

climate-soil-temporal systems for agricultural sustainability while preparing for future climatic 

conditions (Mäkinen et al., 2017). Other authors have discussed further consequences of climate 

change, and its impacts on the hydrological cycle. Reduction in average rainfall has also been 

projected for Northeastern Brazil; drier conditions will impact negatively on hydroelectric 

production and might require expansion on irrigated agricultural areas (de Jong et al., 2018). 

Almagro et al. (2017) also reported decreased rainfall in areas between the northeast and north 

of Brazil. This stretch pointed out as the last Brazilian agricultural frontier, encompasses parts 

of the states of Maranhão, Tocantins, Piauí, and Bahia. A strong tendency to implement high 

productivity agricultural systems has been observed within this region. Thus, anthropogenic 

activities, such as modifications on land use and soil coverage in the Amazon and Cerrado 

biomes, have brought ecological pressure upon the area (Spera et al., 2016). To the east of the 

Tocantins-Araguaia basin, an important agricultural expansion area (Western Bahia) is 

expected to generate socioeconomical conflicts in the region due to intense irrigation growth, 

while a significant decrease in rainfall (up to 12%) is expected (Pousa et al., 2019). Such large 

climate variability, with an increase in the drought period and the occurrence of extreme 

precipitation events, can adversely affect the driest areas susceptible to erosion processes.  

The estimated impacts of climate change on rainfall erosivity are relevant for the 

assessment of hydrological ecosystem services at different spatial and temporal scales. Climate 

changes and anthropogenic pressures, such as expansion of urban areas, and agricultural 
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activities are already impacting hydrological services in various regions of Brazilian biomes; 

perhaps, even beyond natural ecosystem resilience, e.g., water supply (Sone et al., 2019; 

Taffarello et al., 2017), or natural occurring sediment and nutrient transport to support vital 

aquatic ecosystems (Casagrande et al., 2021; Maia et al., 2018; Sone et al., 2019). For large 

river basins, it needs to be emphasized the complexity of using hydrological modeling as a 

decision-making tool based on heterogeneous data (resolution, time continuity, defective 

equipment, among others), and assessment models with different levels of uncertainty 

(calibration, validation, number of water-related processes) (Johnston and Smakhtin, 2014; 

Tafarello et al., 2017; van de Sand et al., 2014).  

Ultimately, results suggest potential or expected trends of reduced annual R-factor 

towards the end of the 21st century, under climate change scenarios and regional conditions. 

Nonetheless, rainfall erosivity should not be treated as an isolated variable. Research 

institutions, government, and farmers should act together facing climate change. Therefore, 

public policies, at the local or regional level, should address today problems to achieve 

sustainable agro-alimentary systems. Likewise, projections of reduced rainfall erosion 

potential, in the Tocantins-Araguaia basin, reinforces the need to analyze other environmental 

factors that may lead to diverse future challenges, e.g. water scarcity. 

5. CONCLUSIONS 

Through the Mann-Kendall test and the analysis of the Theil-Sen estimator, we can 

confirm the general trend of decreasing rainfall erosivity values in the Tocantins-Araguaia river 

basin for both RCP scenarios. The RCP8.5 scenario projected the worse drought conditions, 

according to the Eta-CanESM2 and Eta-MIROC5 dowsncaling outputs. In most of the 

watershed, projected annual rainfall erosivity reduced more than 20 MJ mm ha-1 h-1 per year, 

which corresponds to over 2,000 MJ mm ha-1 h-1 throughout the 21st century. 
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The monthly values of the R-factor, during all three timeslices of the century, were 

concentrated in the rainy season, with the projections under RCP8.5 scenario being the most 

sensitive to the reduction of rainfall erosivity. The dry season decreased in all years of the 

century under the RCP8.5 scenario in most of the projections. 

Projected precipitation towards the end of the century may lead to less erosive rains, in 

contrast to the trend of greater erosion caused by the change in land use (Cardoso, 2021). 

Nevertheless, the expansion of agricultural activity in this watershed should include best 

management practices for soil and water conservation. Further research studies are required to 

ensure agroecosystems sustainability under climatic change conditions and ever-growing 

stressed agricultural environments. 
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ABSTRACT 

Understanding the land use/land cover (LULC) changes in tropical watersheds is major 

challenge ahead due to the enormous pressures of increased livestock and agricultural activities. 

The objective of this study was to analyze the LULC changes in two-midstream sub-basins of 

the Tocantins-Araguaia River basin for a period of 1997–2015 and to predict the LULC changes 

in short- and mid-term future scenarios (2030 and 2050). We used the Cellular Automata and 

Markov Chain (CA-Markov) model to predict the LULC changes in the Formoso and Sono 

sub-basins, and analyze their change patterns, based on biophysical and socio-economic LULC 

change drivers. The results show that agriculture and pasture areas would expand more largely 

in the Formoso River basin, while the native vegetation in the Sono River basin remains more 

stable in future scenarios. These results provide a reference base for further research about the 

response to the changing land use and land cover, helping for planning the future effects, and 

addressing political and social concerns that lead to sustainable development in the study areas. 

Keywords: LULC, CA-Markov model, agricultural expansion, tropical watersheds, 

MapBiomas. 
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1  INTRODUCTION 

Land is an important resource for the preservation of ecosystems and the promotion of 

agricultural activity throughout the world. Preserving this resource has been a challenge in the 

face of the pressures caused by climate change and the growing global demand for food and 

agriculture (FAO, 2018). The dynamics that involve changes in land use / cover and climatic 

variability can to some degree influence changes in hydrological responses in river basins, 

depending on the different agro-ecological environments present (Berihun et al., 2019).  

Human activities have a strong influence on changes in land cover, constituting 

anthropogenic factors capable of promoting changes in vegetation on a local and regional scale 

over time (Pan et al., 2018), such as the conversion of natural vegetation to agricultural areas 

through deforestation and landscape fragmentation (S. N. de Oliveira, de Carvalho Júnior, 

Gomes, Guimarães, & McManus, 2017). Planted pastures and the introduction of extensive and 

mechanized cultivation lead to rates of removal of natural vegetation, enabling climatic 

variations through the response of precipitation and temperature over the landscape (Salazar, 

Baldi, Hirota, Syktus, & McAlpine, 2015). 

The interaction dynamics between climate change and land use affect hydrological 

streamflow patterns at a local scale into a watershed (Sayasane, Kawasaki, Shrestha, & 

Takamatsu, 2016). In the tropical wooded areas, land cover change with forest fragmentation 

can alter the precipitation patterns (Debortoli et al., 2017; D. V. Spracklen, Baker, Garcia-

Carreras, & Marsham, 2018; D. V. Spracklen, Arnold, & Taylor, 2012), exposing trees from 

edges of fragmented forest to sensitivity of precipitation change caused by displacement of the 

Intertropical Convergence Zone (ITCZ) (Albiero-Júnior et al., 2019). Furthermore, the fast-

changing land use and cover rise the variability of rainfall, which makes soils more vulnerable 

to degradation due to a decrease of canopy and increase the direct impact of raindrops on the 

ground, and as a result of that, the surface runoff produced enters streams and rivers, loading 
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sediments from the soil erosion process. Tropical watersheds take an important place in relation 

to land use and land cover (LULC) changes, which correlate with the highest erosion losses due 

to the dominant cleared lands (Abdulkareem, Pradhan, Sulaiman, & Jamil, 2019), and the 

conversion of natural to agroecosystems can lead to transport and decomposition of soil organic 

carbon (SOC), depleting the SOC stock and increasing emission of greenhouse gases (GHGs) 

(Lal, 2019). Slash and burn farming and erosive processes are critics in the savanna –forest 

boundary in Brazil–, while forest species invest much more in leaf area and stem biomass, 

savanna species in the Brazilian Cerrado tend to distribute more biomass for roots and less for 

aerial structures (Hoffmann, 2005; Hoffmann & Franco, 2003; Paganeli, Dexter, & Batalha, 

2020).  

The biogeophysical and biogeochemical processes of the LULC change affect the 

climate in a local, regional, and global scale changing the chemical composition of the 

atmosphere and the physical parameters that determine the energy balance at the land surface 

(Deng, Zhao, & Yan, 2013). Those processes are vastly related to the increase of crop area and 

afforestation in tropical South America, not to mention that large areas of the Amazon rainforest 

are being clean-cut and burnt to agriculture (Mahmood & Pielke, 2017). In addition, it is 

estimated that around 39% of the Cerrado pastures are also currently degraded due to the low 

investment in soil conservation practices, coupled with rainfall patterns change (Pereira, 

Ferreira, Pinto, & Baumgarten, 2018). 

The impacts of climate change on hydrological hazards have been assessed according 

to the influence of LULC change in tropical catchments (Fenta Mekonnen, Duan, Rientjes, & 

Disse, 2018; Näschen et al., 2019; Setyorini, Khare, & Pingale, 2017; Yira, Diekkrüger, Steup, 

& Bossa, 2016). Tocantins-Araguaia River Basin (TARB) is located in the central north of 

Brazil consisted of a large drainage network in which stand out the two major rivers Tocantins 
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and Araguaia. This watershed has a high vulnerability to LULC changes, and most of its 

environment is sensitive to climate change. 

For this study, we aimed to analyze the LULC changes in two important sub-basins of 

the TARB, the Formoso and Sono sub-basins. Therefore, the two study areas are chosen to 

show the short- and medium-range impacts of agricultural and stock-raising development in the 

last agricultural frontier in Brazil. The two sub-basins are in contrast to their areas with natural 

vegetation cover, being one of them with prominence in ecosystems conservation and the other 

with large pasturelands and high land ownership concentration. These watersheds have large 

agroindustrial complexes, and the preservation of their natural resources is of great importance 

for the sustainable management of the soil. Cellular Automata-Markov (CA-Markov) model, 

by its efficiency and flexibility, was used to capture the trend and the spatial structure of the 

LULC categories in the study areas. The research work covers the development of LULC 

change analysis according to foremost the need to properly understand what impacts the 

farming activities will bring in short- and medium-future scenarios. 
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2  MATERIALS AND METHODS 

2.1 Study area  

The study area includes the Formoso and Sono sub-basins of the TARB and are located 

between 8°45'38" to 13°16'0"S latitude and 45°41'38" to 49°57'4"W longitude (Figure 1). The 

Formoso River basin (FRB), with a drainage area of 21,108 km², is located in the central TARB 

and has prominent livestock and agriculture, incorporating large irrigated agricultural projects 

(Figure 1a). The remaining natural vegetation cover in FRB mainly consists of savanna 

formations, riparian and gallery forests, and semi-deciduous seasonal alluvial forests 

(SEPLAN, 2012). On the Formoso sub-basin, Plinthosols, Ferralsols, Gleysols, and Acrisols 

are predominating soils. In general, the sub-basin soils are poorly drained, with drainage 

impediment and occasional floods during the rainy season. 

 

Figure 1 - Map of the Formoso (a) and Sono (b) sub-basins and their locations in the Tocantins-

Araguaia River Basin (TARB). 
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The Sono River basin (SRB) (Figure 1b) has a drainage area of 45,728 km² and its main 

stream flows the east-northerly direction until it flows into the Tocantins River. With regards 

to relief, the Sono sub-basin has an undulating, even gently undulating landscape. The soils 

have a sandy texture with predominance of Arenosols, Plinthosols, Leptosols, Ferralsols and 

Acrisols. The vegetation is of the semi-deciduous and campo cerrado (savanna woodland) type. 

2.2 Data Set 

This analysis focused on two-midstream sub-basins in the Tocantins-Araguaia basin 

(Figure 1). The Cerrado biome occupies the area of the two sub-basins, with the Formoso Basin 

reaching the Cerrado-Amazon ecotone to the north. We considered land cover data provided by 

MapBiomas project (http://mapbiomas.org/), a highly credible source of classified and 

georeferenced land-use data based on LANDSAT that is available for the whole of Brazil at a 

30-m resolution. MapBiomas was created by the System for Estimating Emissions of 

Greenhouse Gases of Brazilian Climate Observatory. The MapBiomas classification is 

generated from annual land cover and land use maps from an automatic classification routine 

applied to satellite images with high accuracy for the entire Cerrado biome 

(http://mapbiomas.org/pages/accuracy-analysis). MapBiomas 5.0 collection data classification 

was adapted to this study to allocate the most important classes in both watersheds. Since 

MapBiomas 5.0 collection 1997, 2006 and 2015 datasets have different number of classes, the 

land use classes for all three imageries were resampled and reclassified into seven broader and 

nuanced categories. Therefore, LULC categories for this study include: (1) forest, (2) savanna, 

(3) grassland, (4) pasture, (5) agriculture, (6) other lands, and (7) water. The MapBiomas 

classification legend was adjusted for this study. The original 30 × 30 m resolution data were 

aggregated to 100 × 100 m resolution to overlay the lower raster data resolution into the LULC 

modeling and allow CA-Markov modeling procedures. The LULC transition suitability was 

produced through biophysical and socio-economic variables (soil type, soil organic carbon 

http://mapbiomas.org/pages/accuracy-analysis
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(SOC) stock, altitude, slope from DEM, rivers, streams, and other geographical data) (Table 1). 

These variables establish the best inherent suitability of each pixel for each LULC type in a 

time period in both sub-basins. 

Table 1- Data source and description. 

Data type 
Scale and 

resolution 
Data source 

DEM 30 m × 30 m 
Shuttle Radar Topography Mission (SRTM) produced by 

Consortium for Spatial Information (CGIAR-CSI) 

Land use 30 m × 30 m 
MapBiomas Collection 5.0 - Brazilian Annual Land Use 

and Land Cover Mapping Project (https://mapbiomas.org/) 

Soil 1:1,500,000 
Brazilian Agricultural Research Corporation (Embrapa 

Soils) - Brazilian Soil Classification System 

  

Brazilian Agricultural Research Corporation (Embrapa 

Soils) - Brazilian Soil Organic Carbon Stock  map (0-

30cm) 

River 

network 
 

National Water and Sanitation Agency (ANA) database 

https://metadados.ana.gov.br/geonetwork/srv/pt/main.home  

   

  

Roads - Ministry of Infrastructure 

(https://www.gov.br/infraestrutura/pt-br/assuntos/dados-

de-transportes/bit/bitmodosmapas#maprodo) 

Other 

geographical 

data 

 
Cities and towns - Brazilian Institute of Geography and 

Statistics (IBGE) (www.ibge.gov.br) 

  
Rural settlements - National Institute for Colonization and 

Agrarian Reform (INCRA) (www.incra.gov.br) 

  
Nature Conservation Units - Ministry of the Environment 

(MMA) (www.mma.gov.br) 

  
Indigenous Lands - National Indian Foundation (FUNAI) 

(http://www.funai.gov.br/index.php/shape) 

  
Permanent Preservation Area (PPA) and Legal Reserves 

(LR) (http://www.car.gov.br/#/) 

   

 

 

https://mapbiomas.org/
https://metadados.ana.gov.br/geonetwork/srv/pt/main.home
https://www.gov.br/infraestrutura/pt-br/assuntos/dados-de-transportes/bit/bitmodosmapas%23maprodo
https://www.gov.br/infraestrutura/pt-br/assuntos/dados-de-transportes/bit/bitmodosmapas%23maprodo
file:///C:/Users/Acer/AppData/Local/Temp/www.ibge.gov.br
file:///C:/Users/Acer/AppData/Local/Temp/www.incra.gov.br
file:///C:/Users/Acer/AppData/Local/Temp/www.mma.gov.br
http://www.funai.gov.br/index.php/shape
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2.3 Markov Chain model 

This model is a stochastic process fulfilling the Markov property, and is able to predict 

vegetation change (Balzter, 2000), based on the probability of transition, Pij, between state i and 

j. Markov chain model is used to quantify transition probabilities of multiple land use/land 

cover in a finite number of states. Based on the conditional probability, the prediction of land 

use changes is explained by the following equation: 

𝑆(𝑡,𝑡+1) = 𝑃𝑖𝑗 × 𝑆(𝑡)                         (1) 

where S(t), S(t +1) are the land use status at the time of t or t +1; Pij is the transition probability 

matrix in a state which is calculated as follows: 

𝑃𝑖𝑗 = [

𝑃11 𝑃12

𝑃21 𝑃22

⋯ 𝑃1𝑛

⋯ 𝑃2𝑛

⋮ ⋮
𝑃𝑛1 𝑃𝑛2

⋱ ⋮
⋯ 𝑃𝑛𝑛

]      (0 ≤  𝑃𝑖𝑗  ≤  1 and ∑ 𝑃𝑖𝑗
𝑁
𝑗=1 = 1, (𝑖, 𝑗 =  1, 2, . . . , 𝑛)). 

2.4 CA model 

Cellular Automata (CA) represent a type of model that focus on local interactions of 

cells with the cellular neighborhood. The CA model consists of a regular lattice with square 

cells, and global patterns generated by local actions that can change in time according to well-

defined rules and subjected to the current state of a cell and its neighboring cells (Crooks, 2017). 

The CA model expression can be defined by: 

𝑆(𝑡,𝑡+1) = 𝑓(𝑆(𝑡), 𝑁)                                (2) 

where S is the finite, discrete cellular states set, N is the cellular field, t is the time instant, t +1 

is the future time instant, and f is the transition rule of cellular states in local space. CA’s 

transition rules use a 5 × 5 neighborhood to simulate LULC class in the future, and the cell size 

was set at 100 m × 100 m.  
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2.5 CA-Markov chain model 

The Markov chain is able to control the temporal changes of LULC through the 

transition probabilities, while CA model controls the spatial changing, and it depends on either 

spatial characteristics or transition probabilities (Etemadi, Smoak, & Karami, 2018). Therefore, 

CA-Markov is an integrated model, which proves valuable to predict and simulate land use and 

land cover change over time (Kamusoko, Aniya, Adi, & Manjoro, 2009; Zhilong, Xue, Yili, & 

Jungang, 2017). The CA-Markov is modeled in software IDRISI, the Selva version (Eastman, 

2012), through integrated functions of cellular automaton filter and transition area matrix of 

Markov processes, and is a widely-used tool for LULC simulation (Hyandye & Martz, 2017). 

The stage of spatial specification of land use changes is performed based on a collection of 

transition suitability maps for each land-use/land-cover category to produce the input for the 

CA model. In particular, each LULC transition suitability map comprises a collection of 

physical and socio-economic parameter maps (factors and constraints) using the Multiple-

Criteria Evaluation (MCE) method (Eastman, 2012; Singh, Mustak, Srivastava, Szabó, & Islam, 

2015). The suitability of each factor (e.g. elevation, slope gradient and road distances) is scored 

using MCE method in order to create factor suitability map with each pixel value standardized 

using fuzzy membership functions into 0–255 in byte, 0 representing unsuitable and 255 

representing highly suitable area for a LULC class. The factors were weighted using Saaty’s 

Analytical Hierarchy Process (AHP) in order to compound each LULC transition suitability 

map. The constraints (e.g. protected areas and water bodies) were standardized into a Boolean 

value (0 and 1), with 0 representing areas restricted for suitability analysis and 1 representing 

areas of potential suitability. 

Land use/cover maps from 1997 and 2006 were used for model calibration and then the 

models were used to predict a land use/cover map for 2015. As a next step, the LULC map for 

2030 and 2050 was simulated using models based on the 2006 and 2015 LULC maps. Since 



90 

 

CA-Markov model requires model calibration and validation, the model performance in 

predicting the LULC was assessed using Kappa coefficients in the VALIDATE module of the 

IDRISI software. Three statistics kappa were used: traditional kappa (Kstandard), Kappa for no 

ability (Kno) and Kappa for location (Klocation). Kappa for no ability (Kno) provides overall 

accuracy of the simulation, and represents an alternative to the standard Kappa, while Klocation 

and Kquantity coefficients provide the level of agreement concerning the location and quantity 

between the reality map and simulated maps (R. G. Pontius, 2000; R. Gil Pontius, 2002). When 

the Kappa parameter values are above 0.80, the maps are in almost perfect agreement, and the 

CA-Markov model predictions can be regarded as fair and accurate (Viera & Garrett, 2005). 

When 0.75 ≤ Kappa < 1, the maps are in perfect agreement; if 0.5 ≤ Kappa ≤ 0.75, it has a 

medium level of agreement; and if Kappa ≤ 0.5, it has a rare agreement. 

3  RESULTS 

3.1. Land use changes 

Based on the LULC maps in 2006 and 2015, each type of land use were used to project 

future changes from current patterns. The land use/cover transition probabilities and transition 

area matrix for the 1997–2006 and 2006–2015 periods (Figure 2), calculated based on each 

watershed, are shown in Tables 2 and 3. The observed LULC map of 2015 was then compared 

with the simulated LULC to evaluate the model performance.  

According to transition probability matrix (Table 2), grasslands areas were more 

probable to undergoing no change in Sono River Sub-basin. In the Formoso River Sub-basin, 

the most stable LULC class included the pasturelands, with probability of no change greater 

than 70% (Table 3). On analyzing the transition probability matrix for the Sono River Sub-

basin, it can be observed as the basin remains more protected in relation to the Formoso River 
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Sub-basin. In the Sono River Sub-basin, among the native vegetation classes, savanna and 

grasslands, registered the highest stability probabilities. 

Table 2 - Land use/land cover changes transition probability matrix (P) in Sono River Sub-basin 

for the 1997-2006 calibration period. 

 2006       

1997 FO SV GL PA AG OL WT 

FO 0.624 0.332 0.003 0.038 0.001 0.000 0.002 

SV 0.088 0.721 0.119 0.058 0.013 0.001 0.001 

GL 0.001 0.182 0.780 0.013 0.022 0.002 0.000 

PA 0.029 0.260 0.027 0.551 0.130 0.003 0.000 

AG 0.004 0.036 0.139 0.053 0.739 0.028 0.000 

OL 0.002 0.046 0.052 0.101 0.719 0.079 0.000 

WT 0.310 0.148 0.020 0.001 0.000 0.001 0.521 

FO = Forest, SV = Savanna, GL = Grassland, Pasture = PA, Agriculture = AG, OL = Other lands, WT 

= Water 

Table 3 - Land use/land cover changes transition probability matrix (P) in Formoso River Sub-

basin for the 1997-2006 calibration period. 

 2006       

1997 FO SV GL PA AG OL WT 

FO 0.630 0.300 0.002 0.055 0.000 0.000 0.013 

SV 0.065 0.643 0.019 0.269 0.002 0.000 0.003 

GL 0.003 0.287 0.516 0.158 0.028 0.000 0.009 

PA 0.010 0.243 0.017 0.712 0.014 0.002 0.002 

AG 0.007 0.114 0.022 0.490 0.365 0.000 0.003 

OL 0.003 0.054 0.016 0.473 0.008 0.437 0.010 

WT 0.144 0.165 0.028 0.037 0.007 0.000 0.619 

FO = Forest, SV = Savanna, GL = Grassland, Pasture = PA, Agriculture = AG, OL = Other lands, WT 

= Water 
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Figure 2 - Land use maps in calibration (1997-2006) and validation periods (2006-2015). 

 

3.2 Validation of the CA-Markov chain model 

Land use maps simulated in this study showed great match among the land use classes 

to Formoso and Sono River sub-basins. Changes in land use/land cover were simulated 

accurately over the given time period (Table 4). CA-Markov simulations using the 1996-2007 

calibration data set had an overall Kappa above 0.8 for both watersheds, having achieved an 

adequate level of accuracy. The projected land use map for 2015 was compared with the actual 

land use to verify the validity in terms of quantity and location. The measures of quantity 

disagreement and allocation disagreement were useful to summarize the LULC categories. The 

simulated scenario for 2015 presented very similarly to the actual land use map, based on visual 

comparison (Figure 3). 
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Table 4. Summary of Kappa indices for model validation 

Sub-basins 

Kappa indices 

Kstandard Kno Klocation 

Formoso 0.8238 0.8587 0.8398 

Sono 0.8693 0.8947 0.8889 

 

 

 

Figure 3 - Observed (right) and Simulated (left) Land use/land cover maps of the Formoso (a,b), 

and Sono (c,d) sub-basins for the year 2015. 
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The CA-Markov model is employed to predict future LULC in Formoso and Sono River 

sub-basins. Future LULC maps for 2030 and 2050 are predicted using the CA-Markov model 

based on the year 2015. The prediction of distribution of the LULC classes in 2030 and 2050 

(Figure 4a, and 4b) shows a large expansion in agriculture and pasture in Formoso River Sub-

Basin. It also shows increases in the same classes in Sono River Sub-Basin. The validation 

results indicate that the CA–Markov model simulations provide to be reliable for predicting 

future land use/land cover changes. These findings support the results found in different studies 

(Cunha, Santos, Silva, Bacani, & Pott, 2021; Gashaw, Tulu, Argaw, & Worqlul, 2017; Gidey, 

Dikinya, Sebego, Segosebe, & Zenebe, 2017). 

 

Figure 4 - Projected land use/land cover maps of the Formoso (a), and Sono (b) sub-basins for 

2030 and 2050. 

 



95 

 

3.3 Change detection analysis 

The LULC change analysis in this study has been divided into the following periods: 

1997-2006, 2006-2015, and 1997-2015; as well as the future periods 2015-2030 and 2015-2050. 

Figure 5 shows the gains and losses in LULC categories for the both Formoso and Sono sub-

basins respectively in the aforementioned periods. 

The Formoso River Sub-basin shows the highest net gains of pasture land use category 

in savanna formation cover lands. From 1997 to 2015, the pasture land has gained 5.8% of area, 

while the savanna land has been lost 6.5% of area in the same period. For the remaining periods, 

the same behavior was noticed, with net increase above 1.9% of area in the Formoso River Sub-

Basin for each nine-year LULC change period. In the Sono River Sub-basin, pasture land has 

the lowest amount of net gains in area, but cultivated lands have a considerable scale net gain, 

while observing, with regard to the expansion of agriculture in 1997-2015 period, the high 

increase in agriculture priority areas in Pedro Afonso and Mateiros municipalities. According 

to our predictions, pasture net gain is likely detected based on losses of grassland and savanna 

lands in SRB in the near and medium future, but in a larger area of savanna category in FRB. 
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Figure 5 - Gains and losses in % of area of LULC by category in different time periods in 

Formoso River Sub-basin and Sono River Sub-basin. FO = Forest, SV = Savanna, GL = 

Grassland, Pasture = PA, Agriculture = AG, OL = Other lands, WT = Water. 

4   DISCUSSION 

The areas of different sub-basins show gains of pasture and agriculture in future 

predictions, with higher increase in pasture lands in the Formoso River Sub-basin and higher 

increase in agricultural lands in the Sono River Sub-basin in the future scenarios for 2030 and 

2050. The conversion of others LULC types to agricultural lands in SRB is concentrated in the 

far east and northwest of the sub-basin. In SRB basin, the most prominent has been conversion 

of Cerrado areas to irrigated agriculture, highlighting soybean crops in the Pedro Afonso 

municipality. In addition to the high land suitability for crops in the Sono River basin, there is 

also a greater concern regarding the maintenance of protected areas. Since 1997, there has been 

an increase in protected areas located in the basin, in hard contrasting with the farming activities 
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on their border. The indigenous lands have a significant occupation in the SRB, in order to 

constitute a constraint areas facing increasing pressure of agriculture lands expansion. As to the 

cases in which land degradation prevails over environmental conservation areas, the Formoso 

River Sub-basin revealed itself as sub-basin with high problems remain concerned about the 

intensive agricultural activity over the years. Situated on the banks of the Formoso River, 

irrigated agriculture prevails in the floodplain areas (Morais, Nolêto Júnior, & Martins, 2017), 

comprising areas of low agricultural use, which still can offer risk to surface waters 

contamination by the growth of pesticide and fertilizer use (Guarda et al., 2020). Agriculture 

contributes significantly to the total collected in the State of Tocantins, standing out for the 

agricultural production in the Formoso do Araguaia and Lagoa da Confusão municipalities in 

the Formoso River Sub-basin (Tocantins, 2007).  

The Formoso River Sub-basin presents areas characterized by high to very high natural 

vulnerability of water resources in the middle and low course (T. A. Oliveira, Viola, Mello, 

Giongo, & Coelho, 2015), aggravating the environmental impacts of land use change in this 

watershed. In order to expand the agriculture in Tocantins State, the Rio Formoso project was 

one of the first attempts to consolidate floodplains in watershed as large irrigated areas by the 

end of the '70s (Ajara, Figueiredo, Bezerra, & Barbosa, 1991). This project marked an important 

step of agricultural frontier pressure in the region, and how this is changing over time, is 

extremely critical to assessing the current land-use intensification. 

Deforestation in Brazilian center-western Cerrado remains a recurrent issue and a 

serious concern. Nevertheless, the land-use intensification is coinciding with expansion of 

agricultural lands in agricultural frontier areas, which signalizes the necessity of the 

implementation of policies aimed at curbing the conversion of areas of native vegetation to 

agricultural lands (Barretto, Berndes, Sparovek, & Wirsenius, 2013). The analysis of the land 

use dynamism and the supporting information for sustainable planning are important to 
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understand which physical and political factors influence the conservation and degradation of 

native vegetation (Sawakuchi, Ballester, & Ferreira, 2013). In this regard, government control 

policies can lead to changes that directly affect land-use change, through specific land uses or 

better technologies that decrease production costs of commodities in expansionist agriculture 

and livestock, influencing forest conversion (Miccolis, Andrade, & Pacheco, 2014). It also 

includes the long-term implementation of a conservationist agriculture it is able to reduce the 

deforestation rates and enhance agricultural supply. 

The advancement of agriculture in the Brazilian tropical savanna is expected based on 

the simulation and prediction of future scenarios in integrated models. This change is critical 

mainly in ecotones in transition to Cerrado, with agropastoral expansion having negative 

impacts on this native vegetation (Cunha et al., 2021). This biome has been impacted in the two 

sub-basins under study. Over recent decades, the Cerrado biome has lost area from agricultural 

and cattle ranching land expansion (Brannstrom et al., 2008; Grecchi, Gwyn, Bénié, Formaggio, 

& Fahl, 2014; Silva, Fariñas, Felfili, & Klink, 2006). This causes the Cerrado to be an 

increasingly threatened biome, with particular focus on tropical wetlands, which some areas are 

located in the Formoso River Sub-basin. The prominent land use in the Formoso River Sub-

basin is agriculture, in on counterpoint to the prominent land use in Sono River Sub-basin, 

where the agriculture is prevailed together with large environmental conservation areas 

(Tocantins, 2011). 

Options for managing such future land use changes and the related risk-mitigation 

measures in order to guarantee sustainable development and protect the environment are 

essential in short medium-term planning. Land use policy needs to take place in an organized 

and systematic manner, reaching the key areas of the national farming action plan, as 

exemplified e.g. by the sub-basins of Tocantins-Araguaia basin examined in this study. 
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Furthermore, the simulated maps of LULC serve as an instrument for forward planning the 

future effects of land use changes. 

5   CONCLUSIONS 

The land use/cover predictions showed a great performance using the CA-Markov 

modelling. According the transition probability matrix, the Sono River basin remains more 

protected, considering the predictions performed to the Formoso River basin. In the Sono River 

basin, the dominant native vegetation classes have high stability probabilities. The short- and 

medium-term LULC simulations show large expansion in agriculture and pasture in Formoso 

River basin. The land-use changes also have increased the farming lands in Sono River basin. 

The effects of land use changes on these two watersheds can introduce a strong impact of water 

erosion process, depending on soil management and environmental conservation conditions in 

the study areas. Understanding these effects can improve future land use planning and guarantee 

sustainable development in the short and medium term. 
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Abstract 

Changes in vegetation growth dynamics can be controlled by climate and human activity. In 

this case, soil erosion by water is a major threat to agricultural productivity, leading to a 

decrease in the vegetation cover response during the rainy season. A potential erosion risk-

mapping model has been applied in this study aiming at evaluating the relationship with 

growing-season NDVI. We analyzed potential risk of soil erosion and NDVI change in the 

Tocantins-Araguaia River Basin from 1985 to 2005, using Revised Universal Soil Loss 

Equation (RUSLE) factors that describe most susceptible to soil erosion, and long-term 

seasonality trends in the GIMMS third generation (NDVI3g) record (1985–2005). The results 

show that potential erosion risk values above a level considered high are predominant in the 

study area. The highest decreasing growing-season NDVI values are presented northward in 

the watershed, followed by an increasing potential erosion risk values. Moderate negative 

correlations (max. r = -0.59) between NDVI and potential erosion risk were observed in the 

north and southwestward of the watershed. This study may help the governors and other 

stakeholders understand the importance of vegetation structure to make right management 

decisions and avoid land degradation. 

Keywords: Growing-Season NDVI, Climate change, Soil erosion potential, RUSLE, 

Watershed. 
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1 INTRODUCTION 

Recent change of vegetation growth and its influence on the response of environmental 

factors are indicators of changes in the environment affecting agricultural activity and the 

dynamism of a natural ecosystem. Therefore, it is important to understand the controlling 

factors of variation in vegetation cover, as well as to evaluate the interaction between climatic 

variables and vegetation cover (ZHANG et al., 2019). 

Changes in vegetation cover are mainly the result of land use and land cover changes 

due to human activities (AROWOLO; DENG, 2018; KLEIN GOLDEWIJK; RAMANKUTTY, 

2004; SONG et al., 2018). Against this background, soil erosion by water is one of the main 

threats to productivity in agricultural lands and the assessment of the potential for soil erosion 

by water is essential to measure the cost-effectiveness of soil conservation policies 

(PLAMBECK, 2020). 

The relationship between land use change and climate change has been strongly 

discussed in studies with analyzes for recent centuries (DALE, 1997; NICHOLSON, 2001; 

OSTBERG et al., 2015). Changes in land cover caused by climate are particularly worrying in 

tropical regions, due to interactions with land use change at a local scale, and such changes are 

significant according to their temporality (LAMBIN; GEIST; LEPERS, 2003; LLOPART et 

al., 2018; SCHIELEIN; BÖRNER, 2018). In order to analyze the dynamism of changes in 

vegetation cover and the influence of the climate factor, remote sensing data such as the 

Normalized Difference Vegetation Index (NDVI) have been widely used (GU et al., 2018; 

JACQUIN; SHEEREN; LACOMBE, 2010; ZEWDIE; CSAPLOVICS; INOSTROZA, 2017). 

The NDVI can reflect the growth of surface vegetation during the rainy season, proving to be a 

sensitive indicator of land use and land cover change. 
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For this study, we aimed to analyze the relative importance between potential risk of 

soil erosion (Epot) and the growing-season NDVI in Tocantins-Araguaia basin. Therefore, the 

results can indicate the significant correlations between vegetation and climatic factors in the 

agricultural and stock-raising development areas into the watershed. 

2 MATERIALS AND METHODS 

2.1 Study area 

Figure 1 - The Tocantins-Araguaia basin and the Amazonia and Cerrado biomes. 

 

 

The Tocantins-Araguaia River Basin (TARB) is located in the central part of Brazil and 

it drains water from an area of 767,164 km² toward the northern coast (Fig. 1). The Tocantins 

River is the main river of the basin, and the Araguaia River is the large tributary river to the 

west. The watershed has a large drainage network, in which the Tocantins and Araguaia rivers 

allow a large extension navigation. The Amazon Biome predominates in the northwestern part 
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of the basin, while Cerrado Biome occupies the rest of the basin. The Cerrado Biome of the 

basin is inserted in the so-called MATOPIBA area (acronym for the names of the States of 

Maranhão, Tocantins, Piaui, and Bahia), which is one of the largest agro-industrial expansion 

zones in the world.  

2.2 Data sources and pre-processing 

2.2.1 GIMMS NDVI3g Dataset 

The remote sensing dataset used to represent the vegetation change in this study is based 

on Global Inventory Modeling and Mapping Studies (GIMMS) 15-day composite NDVI3g v0 

dataset (third generation from AVHRR sensors onboard the NOAA satellite series) with spatial 

resolution of 8 km × 8 km, which were acquired from Google Earth Engine (GEE). The 

NDVI3g v0 dataset has the longest time record and high quality. The maximum value composite 

method was used to generate the monthly NDVI (PIAO et al., 2011). The growing-season 

NDVI was calculated by the average monthly NDVI from October to April per year for the 

period 1985-2005. The GIMMS normalized difference vegetation index has been corrected for 

calibration, viewing geometry, stratospheric aerosols associated with volcanic eruptions 

(PINZON; TUCKER, 2014), and the NDVI3g v0 has been showed marked seasonality trends 

over large parts of the vegetated lands in the world for the period 1982–2013 (YE et al., 2021).  

2.2.2 Potential risk of soil erosion dataset 

In order to represent the soil erodibility (K-factor) in the watershed, we used a high-

resolution (250 m cell size) spatially map across Brazil produced by Godoi et al. (2021). This 

factor was computed using the USLE nomograph with some essential soil properties, such as 

organic matter content, soil texture, soil structure, and permeability. The topographic factor was 

obtained using the SRTM digital elevation model (SRTM DEM) with a 30-m resolution data 

refinement over the entire Brazilian territory produced by SRTM/Topodata Project of National 
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Institute for Space Research (acronym in Portuguese: INPE) (DE MORISSON VALERIANO; 

DE FÁTIMA ROSSETTI, 2012). The rainfall erosivity factor, provided at 1km x 1km 

resolution, was calculated based on the overlapping baseline period of downscaling of four 

global climate multi-model ensemble of the Coupled Model Intercomparison Project (CMIP5) 

by the Eta regional climate model, named as Eta-BESM, Eta-CanESM2, Eta-HadGEM, and 

Eta-MIROC5, available in https://projeta.cptec.inpe.br and CORDEX-ESGF (DOS SANTOS 

et al., 2022). 

2.3 Methods 

2.3.1 Revised Universal Soil Loss Equation (RUSLE) and Potential risk of soil erosion 

The USLE model was developed by Wischmeier and Smith (1978), and it’s used to 

estimate the soil erosion in a plot of land with homogeneous characteristics. RUSLE, the revised 

version of USLE (RENARD et al., 1997) not only provides an estimation of soil loss at the plot 

scale, but also it is used to estimate the magnitude of soil erosion by water in watershed scale, 

spatializing water erosion, and delimiting high risk areas of water erosion in agricultural and 

forested watersheds. It is represented by the Eq. (1): 

A = R K L S C P                                                                                                             (1) 

 

A: Soil loss (Mg ha-1); 

R: Rainfall erosivity factor (MJ mm ha-1 h-1); 

K: Soil erodibility factor (Mg h MJ-1 mm-1); 

L: Slope length factor (dimensionless); 

S: Slope steepness factor (dimensionless); 

C: Cover management factor (dimensionless); 

P: Support practices factor (dimensionless). 
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Potential soil erosion risk (Epot) is the natural land susceptibility of erosion, irrespective 

of current land use or land cover. It is calculated from the physical parameters of the RUSLE – 

rainfall erosivity (R), soil erodibility (K), slope length (L) and steepness (S). 

Epot = R K LS                            [Mg ha-1 year-1]                                                                     (2) 

The separation of physical data from management data in the USLE is useful to indicate 

the potential improvement in soil erosion through changing management (SAMPSON, 1986). 

The methodology followed for the development of rainfall erosivity factor values has 

been described before by dos Santos et al. (2022). The methodology used to estimate the 

topographic factor was based on the Desmet and Govers (1996) algorithm in the LS factor field-

based modules of SAGA GIS. 

2.3.2 Sen’s slope and correlation analysis of the growing-season NDVI anomaly and potential 

soil erosion risk 

We investigated the probable effects of record length on potential soil erosion risk and 

NDVI trends in Tocantins-Araguaia River Basin. The change over the period can be calculated 

by Sen’s slope (SEN, 1968). Sen's estimator was used to determine the sign and magnitude of 

trend, i.e. change per unit time in Epot and growing-season NDVI time series. In other words, 

the slope coefficient determines the rate of increase or decrease in the trend and direction of 

change. This method is widely used to trend detection (BARVELS; FENSHOLT, 2021; 

HUANG; KONG, 2016; LIU et al., 2019; MUELLER; PFISTER, 2011; OĞUZ, 2019). 

In addition, this study used linear correlation analysis to verify the relationship between 

the potential soil erosion risk and the growing-season NDVI. The Pearson correlation 

coefficient (r) between those two variables was calculated to assess the impact on vegetation 

dynamics of rainfall erosivity on soil and its interaction with the other factors concerned the 
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inherent risk of erosion. All images were resampled to overlay the lowest resolution of raster 

dataset provided. 

3 Results  

In assessing the potential risk of soil erosion, it can be seen from Figure 2a that values 

above a level considered high are predominant in the Tocantins-Araguaia basin. In the 

Tocantins River sub-basin, soil losses values above 600 Mg ha-1 year-1 were observed in a large 

area. The greatest trends of Epot increase in the watershed were verified in its northwest portion 

(Fig. 2b), in natural areas of contact between the Cerrado and Amazon Biomes of great natural 

relevance. 

Figure 2 - Average Annual potential risk of soil erosion (a) and Theil–Sen’s slope for the annual 

data series during the period 1985–2005 (b). 

Classification of potential soil erosion risk based on Correa and Pinto (2012). 

 

In the Tocantins-Araguaia basin scale, as shown in Figure 3a, the average annual values 

of growth-season NDVI showed the predominance of values above 0.6 in most of the 



115 

 

watershed, considering the period analyzed in the study. The average annual value of NDVI in 

the west of the watershed was very low, evidencing the characteristic predominance of soil 

exposed to sparse vegetation in the Sono River sub-basin, an important tributary of the 

Tocantins River on the right bank. The spatial distribution of the growing season NDVI in the 

TARB from 1985 to 2005 exhibited the largest decreases, almost exclusively concentrated in 

the north of the watershed with decreasing trend of mean NDVI at a rate above 0.001/yr (Fig 

3b). 

Figure 3 - Average growing-season NDVI (a) and Theil–Sen’s slope for the NDVI trend during 

the period 1985–2005 (b). 

 

 

Analyzing Figure 4, we can verify the presence of alternating periods of reduction and 

increase in the growing-season NDVI values (Fig 4a) and the potential risk of soil erosion (Fig 

4b) in the watershed. The period of greatest NDVI reduction in the time series between 1990 

and 1991 was followed by the most drastic increase in the potential risk of soil erosion in the 

watershed. In contrast, the large decrease in Epot between 1989 and 1992 was followed by a 
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strong upward trend in NDVI. In this feedback process characteristic of the variables under 

analysis, the large increase in Epot between 1992 and 1995 forced a downward trend in the NVI 

until the end of the time series under study. The underlying premise of the analysis directs the 

degree of influence of the erosive potential of rainfall on the Epot according to significant 

changes in land use. The average values of the highest potential risk of soil erosion over the 

Tocantins sub-basin exceed at high to extremely high levels the average in the time series of 

the watershed. 

Figure 4 - Mean growing-season NDVI time-series (a) and the mean potential risk of soil 

erosion time-series (b) in Tocantins-Araguaia basin. 

 

 

The inter-relationship between growing-season NDVI and the potential risk of soil 

erosion is represented in Figure 5 through the spatial distribution of the correlation coefficient 

(r) between Epot and NDVI during the years 1985-2005. Moderate negative correlations (max. 

r = -0.59) between NDVI and Epot were found in the north and southwestward of the watershed, 

agricultural frontier regions in Brazil. In contrast, other parts of the study region the decreasing 

trend in NDVI combined with a decreasing trend in Epot allowed the lowest positive values of 

r.  
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Figure 5 - Spatial patterns of correlation coefficients between growing-season NDVI and annual 

potential risk of soil erosion (Epot) over Tocantins-Araguaia basin during the period 

of 1985–2005. 

 

 

 

4 DISCUSSION 

The Brazilian territory has expressive areas with high to very high susceptibility to water 

erosion; therefore, the natural erosion potential of soils in the study area is worrying, as it is 

highly influenced by high levels of rainfall erosivity, as presented by da Silva, Alcarde and 

Hitomi (2011) and Oliveira, Wendland and Nearing (2013). Land degradation in Cerrado 

pastures tends to exacerbate this concern even further, as the expansion of agricultural and 

pasture lands without a political direction for sustainable management in the states where the 

basin covers, can intensify deforestation and even lead to the abandonment of lands. Study 

performed by Pereira et al. (2018) a positive correlation was found between the negative slope 
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of the NDVI and the Human Development Index (HDI), which directs the axis of poverty and 

degradation further north of the Cerrado, where the MATOPIBA agricultural frontier region is 

located. 

The most likely reason for the decreasing NDVI trend is the land degradation by the 

human activities, particularly as consequence of deforestation and overuse of pasture land in 

the northward of watershed. The northernmost region of the watershed includes lands of 

Amazon Biome, which has been impacted by forest degradation (MATRICARDI et al., 2020), 

combined with the intensification of the dry season and an increase in deforestation in the 

eastern Amazon (GATTI et al., 2021). It was clearly seen that the increasing of potential risk 

of soil erosion in these areas represent a strong influence of the land use change through 

deforestation. The loss in vegetation cover could either exacerbate the trend in rainfall erosivity 

indices, accelerating the soil erosion risk in agricultural frontier lands in Tocantins-Araguaia 

River Basin.  

The assessment of soil erosion risk by water in heterogeneous soil conservation policies 

is important instrument for implementing control measures according to cost-effectiveness, 

however, in order to have an effective decision-making, other evaluations must be taken into 

account in large scale, e.g. establishing tolerance thresholds for soil loss and modelling 

sediment delivery (BISWAS et al., 2015; BATISTA et al., 2017; BORRELLI et al., 2018; 

PLAMBECK, 2020; ZHU et al., 2019). Despite the strong negative correlation between Epot 

and growing-season NDVI in agricultural lands, it represents the influence of climate change 

on the erosive potential of rainfall as a preponderant factor for the risk of soil erosion. In order 

to evaluate an interference of human activities on growing-season NDVI, other variables, viz. 

other vegetation indices that best describe the vegetation cover dynamics, to identify potential 

areas of land degradation at a regional scale (YENGOH et al., 2014; ZHONGMING et al., 

2010). 
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This study informs the importance to analyzing the causes of land degradation based on 

evaluation of potential soil erosion risk and green vegetation cover change. It can be used as a 

direction to future land management strategies to be taken into account by policy-makers and 

stakeholders. 

5 CONCLUSIONS 

Moderate relationship was recorded between growing-season NDVI and climate 

erosivity change represented in the year-on-year change of the potential soil erosion risk. The 

highest decreasing NDVI values are observed northward in the watershed, followed by an 

increasing Epot in this region. Maximum negative correlations (r = –0.59) between growing-

season NDVI and Epot are featured on north and southwestward of the watershed, where the 

agriculture and cattle-raising activities expansion is under development in Brazil. The 

assessment of soil erosion risk by water is important to soil conservation policies, and its 

relationship with NDVI could show that land degradation in fact is dependent on climate change 

and/or alterations due to human activity. 
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