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ABSTRACT: Different uses of soil legacy data such as training dataset as well as the selection 
of soil environmental covariables could drive the accuracy of machine learning techniques. Thus, 
this study evaluated the ability of the Random Forest algorithm to predict soil classes from dif-
ferent training datasets and extrapolate such information to a similar area. The following training 
datasets were extracted from legacy data: a) point data composed of 53 soil samples; b) 30 m 
buffer around the soil samples, and soil map polygons excluding: c) 20 m; and d) 30 m from the 
boundaries of polygons. These four datasets were submitted to principal component analysis 
(PCA) to reduce multidimensionality. Each dataset derived a new one. Different combinations of 
predictor variables were tested. A total of 52 models were evaluated by means of error of mod-
els, prediction uncertainty and external validation for overall accuracy and Kappa index. The best 
result was obtained by reducing the number of predictors with the PCA along with information 
from the buffer around the points. Although Random Forest has been considered a robust spatial 
predictor model, it was clear it is sensitive to different strategies of selecting training dataset. 
Effort was necessary to find the best training dataset for achieving a suitable level of accuracy 
of spatial prediction. To identify a specific dataset seems to be better than using a great number 
of variables or a large volume of training data. The efforts made allowed for the accurate acqui-
sition of a mapped area 15.5 times larger than the reference area.
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Introduction

In Brazil there is a need for maps on a detailed 
scale, but few resources are available for soil surveys. 
The traditional way of mapping soils to deliver precious 
maps is very time-consuming and onerous (Kempen et 
al., 2012). Soil legacy could be a source of training data 
in machine-learning techniques (Pelegrino et al., 2016), 
which could formalize soil-landscape relationships, ap-
ply the information to areas under similar environmen-
tal conditions, and enhance the mapping of areas and 
result in savings in both time and cost (Silva et al., 2016). 
This is an important strategy for mapping in Brazil, due 
to the restriction of detailed soil surveys to small areas 
(Mendonça-Santos and Santos, 2007). 

Machine-learning is a computer-based statistical 
set of tools that could be used to determine the relation-
ship between soil type and environmental covariables 
(McBratney et al., 2003; Hastie et al., 2009) that repre-
sent soil forming factors (Jenny, 1941). In this context, 
Random Forest (Breiman, 2001) is one of the most prom-
ising techniques available (Chagas et al., 2016; Rudiyan-
to et al., 2016; Hengl et al., 2015; Heung et al., 2016; 
Heung et al., 2017; Souza et al., 2016). The method for 
using legacy data should be investigated so as to provide 
a suitable source of data for Random Forest either from 
points or polygons.

Considering the influence of soil forming factors in 
the study area, relief is the main driver of soil variability 
(Menezes et al., 2009). Several types of digital terrain 
maps can be generated by the Geographical Informa-

tion System. In this regard, interest has been growing in 
understanding how the characteristics of environmental 
covariates influence the accuracy of digital soil mapping 
(Samuel-Rosa et al., 2015). The choice of effective auxil-
iary maps (best set of variables) should be sought. 

Thus, this study aimed to extract soil information 
from a reference area (Favrot, 1989; Lagacherie et al., 
1995) and extrapolate it to areas with similar soil-land-
scape relationships. The use of the reference area as-
sociated with predictive digital soil mapping approaches 
can be found in studies such as Grinand et al. (2008) 
- classification of trees; McKay et al. (2010) - fuzzy logic; 
Arruda et al. (2016) - artificial neural networks; Silva 
et al. (2016) – Random Forest. The following sequence 
was implemented and evaluated using Random Forest: 
a) comparison between point and polygon as source of 
data to compose training dataset; b) evaluation of the ef-
fects of reducing the number of predictor variables and 
training-data by principal component analysis on the ac-
curacy of the predicted maps. 

Materials and Methods

Study area
The study area is divided into a reference area, 

named Vista Bela Creek watershed, wherefrom the 
legacy data was extracted (175 ha) for model training, 
and a digitally mapped area (2,719 ha), where a new soil 
map was generated (Figure 1). Both areas are located in 
the state of Minas Gerais, Brazil, between latitudes S 
21°37’03” and 21°48’67” and longitudes W 44°28’20” 
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and 44°12’98”, 23K, datum WGS 1984, with an elevation 
range of 924-1342 m. The relief was modeled through in-
tense dissection provided by fluvial erosion, resulting in 
hilly features with convex to tabular summit and convex 
slopes, interspersed by elongated crests. There is a pre-
dominance of gneisses and biotite-schists of Carrancas 
sequence and biotite-gneiss and amphibolite of Serra do 
Turvo sequence. According to the Köppen classification, 
the climate is Cwa, with dry winter and rainy summer. 
The mean annual temperature varies between 18 and 22 
°C, presenting an annual precipitation average of 1,450 
mm (Menezes et al., 2009).

 The main soil types found in the area are Udept, 
Hapludox, Acrudox, and Fluvent (Menezes et al., 2009) 
according to Soil Taxonomy (Soil Survey Staff, 2014). 
Orthent has also been found, occurring as inclusions as-
sociated with rock outcrops, in an intricate landscape 
pattern with Inceptisols, which may hinder its individu-
alization, and consequently, the transferability of knowl-
edge.

The soil legacy data consisted of a soil map on 
a detailed scale (1:10,000) (Menezes et al., 2009). The 
watershed is considered as a reference area (Favrot, 
1989; Voltz et al., 1997), since it comprises all the soil-
landscape relationships occurring in the region that 
can be extrapolated to areas with similar physiographic 
conditions. The soil map was produced on a traditional 
basis: analysis of aerial photography and manual de-
lineation of soil mapping units, along with intensive 
fieldwork (total of 53 soil profiles). This map was used 
as the source of information for training Random For-
est models. 

Environmental covariates: relief maps
A digital elevation model (DEM) with 20 m of reso-

lution was generated from contour lines freely available 
from the Brazilian Institute of Geography and Statistics 
(IBGE), on a 1:50,000 scale and 20 m of equidistance. A 
hydrologic consistent DEM was generated in the ArcGIS 
information system (version 10.1 of ESRI) by the Topo 
to Raster tool. From the DEM, 14 topographic indexes 
were created using the SAGA GIS software program 
(SAGA Development Team version 3.0) and selected due 
to their capacity to express variations of both morpho-
metrical and hydrological characteristics on local and 
landscape scales. The following topographic indexes 
were calculated: catchment slope (CS), convergence in-
dex (CI), plan curvature (Plan C) and profile curvature 
(Prof C) (Zevenbergen and Thorne, 1987), multiresolu-
tion index of ridge top flatness (MRRTF) (Gallant and 
Dowling, 2003), slope, LS-factor (LSF), SAGA wetness 
index (SWI), topographic position index (TPI) (Guisan 
et al., 1999), terrain surface texture (Texture) (Iwahashi 
and Pike, 2007), terrain classification index for lowlands 
(TCI), upslope curvature (USC), valley depth (VD), verti-
cal distance to channel network (VDCN) and slope.

Training datasets
The complete framework, including the choice of 

training dataset up to the spatial prediction of soil types 
of the digitally mapped area, is presented in Figure 2D. 
The randomForest package (version 4.6-12) in the statis-
tical software R program (R Development Core Team, 
version 1.0.44) was used. The choice of mtry is often the 
square root of the number of variables (p); in this case 

Figure 1 – Study areas location: Vista Bela Creek Watershed (soil legacy from reference area) (Menezes et al., 2009) and the digitally mapped 
area to which information was extrapolated in the state of Minas Gerais, Brazil.
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topographic covariates were the data analyzed by PCA. 
Considering that the contribution of the individuals (pix-
els) to the principal components of a given dataset can 
be measured, it was possible to reduce the data to a new 
ensemble more aligned with the variables, according 
to Figure 3C. The red line in Figure 3A indicates the 
individuals’ expected average contribution (EAC). For 
a given component, an observation with a contribution 
greater than this cutoff could be considered as important 
in terms of contributing to the component, reducing the 
subjectivity in explanatory information reduction. Fig-
ure 3B shows the variation contribution of the dataset, 
the closer to the center, the lower the contribution of 
a given observation. Therefore, the contribution of in-
dividuals was calculated for each training dataset de-
scribed above, and the pixels with values below the EAC 
were excluded (Figure 3C).| Applying this procedure, 
four additional training datasets were created, namely 
PCA-Point, PCA Buffer-Point, PCA Pol -20 m, PCA Pol 
-30 m.

it was 4 and the parameter ntree was adjusted to 1,000.
The following approach to using legacy data for training 
Random Forest was applied: 

Point legacy data (Figure 2A) comprised: a) 53 soil 
legacy samples; and b) a circular buffer of 30 m radius 
around each soil sample point, aiming to increase the 
number of points with soil information extracted from 
the raster file to be used by the Random Forest. The buf-
fer increases the size of training dataset, which, in turn, 
could improve the accuracy of Random Forest predic-
tion (Deng and Wu, 2013).

Polygons of soil mapping units (Figure 2B) com-
prised: a) pixels from the interior of the polygons elimi-
nating 20 m from their boundaries; and b) pixels from 
the interior of the polygons eliminating 30 m from their 
boundaries. 

PCA of Polygons and Points training datasets (Fig-
ure 2C): PCA was applied (FactoMineR package, ver-
sion 1.36) by means of the R software environment (R 
Development Core Team, version 1.0.44). Soil type and 

Figure 2 – Flowchart of training data scheme and their interaction with the variables. A) Composition of Point training datasets; B) Development 
of Polygon training datasets; C) Training data reduction for development of PCA training datasets; D) Summary of the proposed methodology; 
OOB = out-of-bag; PCA = Principal Component Analysis; Dim = Dimension; RF = Random Forest.
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Variable reduction 
Different kinds of tests, in order to assess the ef-

fects of variable reduction in spatial prediction (Figure 
2D), were developed: 

1. The Random Forest classifier was initially loaded with 
the entire set of predictors (topographical indexes) for 
each soil information dataset (control).

2. Based on the Random Forest algorithm, the mean de-
crease in accuracy (MDA) was obtained and the vari-
able importance ranked. For each dataset, the top eleven 
(MDA11), nine (MDA9) and five (MDA5) variables were 
selected and a new model was derived. 

3. The whole set of soil data and its correspondent ter-
rain indexes was submitted to PCA. The reduction in 
variables was derived from the expected average contri-
bution of the variables for the dimensions 1-2 of PCA. 
For the given components, the variables with a contribu-
tion lower than this cutoff were excluded (PCA1-2).

4. For each dataset from the dimensions 1-2 of the PCA 
had the top nine attributes selected from a rank (PCA9).

5. For each dataset, from the dimensions 1-2 of the PCA 
the top five attributes (PCA5) were selected from a rank.

It is important to highlight that PCA was performed 
for both reduction of predictor variables and training 
points. Thus, in the aforementioned procedures 3, 4, and 5, 
the Random Forest was loaded with the ensemble of vari-
ables defined for their original training sets (Figure 2D). 

Assessment of the accuracy of predictions within 
the digitally mapped area

The assessment of DSM accuracy was done using 23 
soil profiles (external validation), which was then denomi-

nated as the digitally mapped area (Figure 1). The sampling 
sites were chosen by means of the Regional Random meth-
od on ArcSIE (Soil Inference Engine - ArcGIS extension, 
version 10.3.101). The locations were randomly defined 
within polygons, representing three altitude levels (sam-
pling regions) as shown in Figure 1. Two indexes were cal-
culated: overall accuracy and the Kappa index. The over-
all accuracy is the sum of the main diagonal components 
of the confusion matrix divided by the total of validation 
samples (in the proportion of correct predicted soil types) 

The Kappa index is an agreement measure calcu-
lated by taking into account the total number of sam-
ples, the number of soil types and the correctly classified 
samples (Congalton and Green, 2008). The values may 
range from -1 (suggesting disagreement) to 1 (suggesting 
excellent agreement) (Landis and Koch, 1977).

User’s accuracy and producer’s accuracy were 
also calculated. User’s accuracy shows the probability 
of the predicted class on the map of matching the class 
in the field, while the producer’s accuracy expresses the 
probability of a soil type point being correctly classified 
on the map (Congalton, 1991). An accurate map has in-
dex values closer to one (100 %) (Behrens et al., 2010).

Prediction uncertainty
The prediction uncertainty was evaluated by vote 

count and entropy maps. The ensemble-modeling, like 
Random Forest, has as benefits the possibility of esti-
mating uncertainty by using the vote count surface. In 
this study, each model corresponds to 1,000 interactions. 
By the end of the procedure, each pixel receives 1,000 
votes. Thus, the range of votes varies from 0 % to 100 
%. Pixel values closer to 0 % or 100 % indicate less un-
certainty. The higher the value, the greater the certainty 
of that pixel of corresponding to a given soil type. The 
lower the value, the higher the certainty of a given pixel 
not corresponding to a given soil type. Therefore, the 
values in between this range carry more uncertainty.

Figure 3 – A) Contribution of individuals to dimensions-1-2 of the principal component analysis for the data set; B) The variation of contribution 
of the data set; C) Reduction of data dimension; Dim = Dimension.
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To represent the overall uncertainty, the entropy 
measure (H) was used to describe how the ensemble-
model intends its predictions to apply to a particular soil 
type. It expresses the degree of certainty in a pixel clas-
sification in which the votes are concentrated in a par-
ticular class, rather than spread over a number of classes 
(Zhu, 1997). The H values range from 0 to 1, where the 
higher the H value at a location, the higher the uncer-
tainty of classification.

To better understand the uncertainty in predic-
tions, a landforms map was generated. The DEM was 
selected as input data to the TPI-based landform classi-
fication module on SAGA GIS resulting in ten landform 
classes in the study area. The derived landform classes 
were intersected with the vote-count and entropy maps 
for the interpretation of the uncertainty predictions´ dis-
tribution on the landscape. 

Results and Discussion

Model evaluation
The out-of-bag (OOB) estimate of error has been 

varied with a wide range (from 5 to 77 %) (Table 1). 
This index seems to be mainly driven by the number of 
observations: the margin of error decreases while the 
number of observations increases. Such a difference is 
clear when comparing the models with training datasets 
derived from points and polygons, the last one show-
ing more observations and less error. As regards the 
group of polygons, those that were reduced using PCA 
presented mean OOB values slightly lower than their 
respective original sets. However, when analyzing the 
whole models by means of training data reduction, two 
different groups of OOB estimates of error were found: 
those with less than 53 and those with more than 105 
training data observations, with or without PCA analy-
sis, as seen in Table 1.

Such results indicate that Random Forest models 
were sensitive to variations in training dataset. A larger 
training dataset is often necessary in order to reduce er-
ror (Pal and Mather, 2003), and in this study, such infor-
mation also brought stability to model errors in training 
data above 105 observations. However, it is important 
to highlight that the use of polygons and buffers could 
bring some uncertainty as regards the soil type, mainly 
closer to the boundaries or transition zones (Pelegrino 
et al., 2016; ten Caten et al., 2012; Giasson et al., 2015). 
Thus, the key point here is will the more accurate mod-
els deliver accurate soil maps in the digitally mapped 
area? 

Assessment of the digitally produced map 
(external validation)

Table 1 presents the overall accuracy and kappa 
index derived from external validation within the digi-
tally mapped area, to where the information was extrap-
olated. The Point derived models presented the poorest 
prediction when compared with the Buffer-Point or 

Table 1 – Accuracy measurements of the models developed from 
point and polygon data.

Training 
dataset

Number of
observations

Variable 
selection

Number of 
variables

OOB estimate 
error

Overall 
accuracy*

Kappa 
Index*

----------------------- % ----------------------

Point 53

Control 14 62 57 0.358
MDA(11) 11 57 57 0.345
MDA(9) 9 54 48 0.209
MDA(5) 5 64 43 0.143
PCA1-2 11 60 57 0.345
PCA (9) 9 62 57 0.345
PCA (5) 5 64 39 0.069

PCA-
Point 18

Control 14 77 49 0.110
MDA(11) 11 72 40 0.110
MDA(9) 9 56 40 0.093
MDA(5) 5 55 49 0.159
PCA1-2 11 67 49 0.110
PCA (9) 9 67 39 0.100
PCA (5) 5 50 35 0.004

Buffer-
Point 322

Control 14 15 65 0.476
MDA(11) 11 15 65 0.476
MDA(9) 9 16 70 0.540
MDA(5) 5 17 70 0.550
PCA1-2 11 20 65 0.476
PCA (9) 9 18 65 0.476
PCA (5) 5 29 70 0.546

PCA 
Buffer-
Point

105

Control 14 18 61 0.410
MDA(11) 11 20 61 0.410
MDA(9) 9 18 61 0.410
MDA(5) 5 21 48 0.211
PCA1-2 11 21 65 0.474
PCA (9) 9 18 61 0.409
PCA (5) 5 32 83 0.738

Pol -20 
m 2,314

Control 14 11 57 0.324
MDA(11) 11 9 52 0.260
MDA(9) 9 9 52 0.258
MDA(5) 5 15 57 0.327
PCA1-2 ** ** ** **
PCA (9) 9 15 57 0.337
PCA (5) 5 25 44 0.158

PCA Pol 
-20m 714

Control 14 6 50 0.226
MDA(11) 11 5 57 0.343
MDA(9) 9 5 66 0.474
MDA(5) 5 6 61 0.417
PCA1-2 ** ** ** **
PCA (9) 9 10 53 0.262
PCA (5) 5 19 40 0.118

Pol -30 
m 1,604

Control 14 8 52 0.267
MDA(11) 11 8 52 0.256
MDA(9) 9 9 48 0.191
MDA(5) 5 12 48 0.207
PCA1-2 ** ** ** **
PCA (9) 9 14 57 0.327
PCA (5) 5 21 44 0.172

PCA Pol 
-30 m 524

Control 14 6 52 0.262
MDA(11) 11 6 57 0.343
MDA(9) 9 6 57 0.335
MDA(5) 5 8 52 0.254
PCA1-2 ** ** ** **
PCA (9) 9 10 53 0.279
PCA (5) 5 14 44 0.160

PCA = Principal Component Analysis; OOB = out-of-bag observations; 
*External validation; **For PCA-1-2, there are no values for the polygons 
group because only nine variables (Terrain Indexes) reached the expected 
average contribution; Control = All terrain indexes applied for Random Forest 
spatial prediction; MDA = Variables reduction by means of Mean Decrease in 
Accuracy; PCA-Variables reduction by means of Principal Component Analysis.
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Polygons, with or without PCA analysis. Also, an in-
creasing of the number of data observations does not 
bring significant improvements in accuracy, in disagree-
ment with the OOB estimate error from the model. Poly-
gon derived models presented intermediate Kappa val-
ues, ranging from 0.118 to 0.474, while the Point derived 
models (original and buffer) gave rise to maps with both 
the lowest and highest accuracy values (Kappa index 
from 0.004 to 0.738). The map with the highest absolute 
accuracy came from the PCA Buffer-Point dataset, with 
0.738 for the Kappa index and 83 % for overall accuracy.

As long as digital soil mapping techniques attempt 
to take advantage of a large number of explanatory en-
vironmental covariates (McBratney et al., 2003), with a 
relative small proportion of sampling points, the ability 
of the Random Forest to deal with high dimensional da-
tasets should be tested. Thus, the reduction in dimen-
sionality by means of PCA analysis (Behrens et al., 2010) 
or calibration of data set selection (Kuang and Mouazen, 
2011) would improve the accuracy of spatial prediction, 
since the most important subsets are used (Millard and 
Richardson, 2013). In this study, the use of PCA resulted 
in a slight improvement only in the overall accuracy of 
models. Nevertheless, as already mentioned, the PCA 
Buffer-Point dataset presented the most accurate map 
out of all 52 prediction models, as evaluated by Kappa 
index and overall accuracy. 

It is possible to observe sizeable variations in ac-
curacy even within the same type of training datasets 
(Table 1), whose variations are due to the choice of ter-
rain indexes. In order to better understand the effects 
of terrain indexes or the reduction of variables, Table 2 
presents the difference between the overall accuracy of 
the control (all terrain indexes as an input on Random 
Forest) and the reduced ensembles of each training da-
taset. It is expected that where the most important input 
data are used, accuracy would increase (Strobl et al., 
2009; Millard and Richardson, 2013). In this study, in 
general, variable reduction was not related to increasing 
accuracy. Millard and Richardson (2015) noted high fluc-
tuations in the importance of the variables, even when 
the same training data was used. Thus, another way to 
select the importance of the variables from the Random 

Forest output should be tested, seeking model stability 
and accuracy improvement.

Only two training datasets (PCA Buffer-point; 
PCA Pol-20 m) presented at least one model with rel-
evant increases in overall accuracy (higher than 15 % in 
overall accuracy). No relevant variation or reduction in 
accuracy was found for the others. Thus, the relation-
ship between the predictive capacity of models and ter-
rain indexes cannot be explained only by the number of 
predictor variables used in each model. As an example, 
from the best results obtained for the Buffer-Point data-
set, the reduction in variables resulted in a slight or no 
variation in the accuracy of maps. Moreover, different 
sets of terrain indexes presented the same overall ac-
curacy for the same dataset (Buffer-Point MDA(5), 70 % 
and Buffer-Point PCA(5), 70 %, as seen in Table 1). 

In accordance with the findings of Heung et al. 
(2014), in this study, the reduction in variables did not 
necessarily result in great improvements in accuracy 
with Random Forest. However, the best result obtained 
in our study was achieved in the reduction of variables. 
For the PCA Buffer-Point dataset, by reducing the num-
ber of the variables to the five most important ones iden-
tified by the PCA, there was a 22 % improvement in 
the accuracy of the map, in accordance with Table 2. In 
contrast, for the same training data, using the same pre-
dictor variables set size, although defined by MDA, the 
accuracy of the map was 13 % lower when compared to 
the control model as seen in Table 2. This result is con-
trary to those obtained by Behrens et al. (2010), who re-
ported that the unsupervised PCA approach turned out 
to be the worst technique in terms of selecting optimal 
features for soil classification.

With regard to the reduction of variables, it is im-
portant to note that there is no single method for best 
ranking classifiers from distinct datasets (Novakovic et 
al., 2011). Different ranking methods may result in dif-
ferent classifications, as shown in Figure 4A and B. More-
over, a poorly ranked variable that could be considered 
useless by itself, can afford an expressive performance 
enhancement when combined with others (Guyon and 
Elisseeff, 2003). In this study, e.g., for PCA Buffer-Point 
dataset, the best predictor subset was obtained based on 

Table 2 – Difference in overall accuracy of the reduced ensembles of variables in relation to the control for each training dataset.

Variables
Point PCA-Point Buffer-Point PCA Buffer-Point Pol (-20 m) PCA-Pol (-20 m) Pol (-30 m) PCA-Pol (-30 m)

Ensemble Number
------------------------------------------------------------------------------------------------------------------------------------ % -------------------------------------------------------------------------------------------------------------------------------------

Control 14 57 49 65 61 57 50 52 52
MDA(11) 11 0 -9 0 0 -5 +7 0 +5
PCA-1-2 11 0 0 0 +4 * * * *
MDA(9) 9 -9 -9 +5 0 -5 +16 -4 +5
PCA(9) 9 0 -10 0 0 0 +3 +5 +1
MDA(5) 5 -14 0 +5 -13 0 +11 -4 0
PCA(5) 5 -18 -14 +5 +22 -13 -10 -8 -8
PCA = principal component analysis; *For PCA-1-2, there are no values for the polygons group because only nine variables (Terrain Indexes) reached the expected 
average contribution; MDA = Variables reduction by means of Mean Decrease in Accuracy; PCA = Variables reduction by means of Principal Component Analysis.
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PCA-1-2 ranking, composed of the terrain indexes CS, 
TPI, TCI, LSF and Slope, whose MDA order of impor-
tance were 11th, 6th, 7th, 13th and 14th, respectively. Once 
the accuracy is influenced by the choice of features, the 
use of many rank indices is reasonable in order to assure 
that the most accurate subset will be obtained (Novakov-
ic et al., 2011). Another important aspect of identifying 
the main variables is the time saved in the acquisition 
and preparation of the database and computational ef-
ficiency, if there is interest in applying such models to 
larger and similar areas (Scarpone et al., 2017; Yu et al., 
2016).

Having a large training dataset and a numerous 
ensemble of variables does not necessarily result in ac-
curate predictions, despite the low values in the OOB 
error rate. Figure 5 shows the relationship between the 
overall error rate and the OOB estimate of that error 
rate. A weak correlation between model and external 
validation was found (R2 = 0.1395). Before an extensive 
sequence of tests on different types of Random Forest 
training datasets, Millard and Richardson (2015) pointed 
out that the OOB was not a good indicator of error in 
highly dimensional datasets, and it seems to be driven 
mainly by dataset training size, as already discussed. 
Thus, it is recommended to explore different combina-
tions of predictor variables for a single dataset to load 
the random forest with the whole covariates ensemble, 
which may not necessarily result in the most accurate 
map, as well as to provide an independent validation 
data set in order to avoid any optimistic bias (Hammond 
and Verbyla, 1996).

Prediction uncertainty
Uncertainty analysis was done in the Random For-

est predictions for the two best models obtained (point-
derived and polygon-derived training dataset). The vote 
count surfaces of the soil types are presented in Figure 
6A-H. Higher values correspond to areas most likely to 
harbor a given soil type, and lower values indicate the 
opposite. Both can be considered areas of low uncer-

tainty. Therefore, intermediate values are indicators of 
the areas of greatest uncertainty in prediction.

There have been substantial differences when 
comparing the vote count surfaces from point-derived 
training data and polygon-derived training data. The 
latter seems to oversize the certainty area for the prob-
ability of the presence of Udepts, advancing forward 
areas where Fluvents would be expected. Despite this, 
the producer’s accuracy for this class was 50 %, dem-
onstrating that, in addition to oversizing, spatialization 
was also impaired. For the Oxisols (Acrudox and Haplu-
dox), the general spatialization pattern was considered 
similar to that of the point-derived model. However, the 
dimensionalization may be overestimated since the pro-
ducer’s accuracy (84 % and 100 %) was greater than the 
user’s accuracy (63 % and 50 %) for the soil type map. 
The model derived from the polygons was also less ef-
ficient in discriminating Fluvents compared to the point-
derived one (Figure 6G and H).

Great extensions of uncertainty over areas of Ud-
epts and Hapludox votes surface maps were found for 
the point-model compared to the polygon-model. This 

Figure 4 – Overall variable importance. A) Variable importance based on mean decrease in accuracy; B) Variable importance based on its 
contribution for the dimensions-1-2 of principal component analysis; Dim = dimensions; CS = Catchment slope; CI = Convergence index; PlanC 
= Planform curvature; ProfC = Profile curvature; LSF = LS-Factor; MRRTF = Multiresolution index of ridge top flatness; SWI = Saga Topographic 
Wetness Index; TPI = Topographic Position Index; TCI = Terrain Classification for Low Lands; USC = Upslope Curvature; VD = Valley Depth; 
VDCN = Vertical Distance to Channel Network. 

Figure 5 – Correlation between variations of the Out of Bag (OOB) 
estimate of error rate and the overall rate of external validation.
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effect may come from the least amount of training data 
for the point dataset, which was respectively 8.4 and 2.4 
times greater for polygon derived model. However, both 
soil types presented satisfactory values of both the pro-
ducer’s accuracy and the user’s accuracy (Table 3). In 
this case, the greatest uncertainty was found in Acrudox 
spatial prediction.

The overall uncertainty prediction was represent-
ed by entropy (Figure 7A and B). Polygon and Buffer-
Point presented quite similar results: for the polygon-
derived models the entropy ranged from 0 to 0.99, with 
an average of 0.478 and standard deviation of 0.198; for 

Figure 6 – Vote count surfaces on 1000 decision trees of the Random Forest using Point and Polygon derived training data. A) Udept from Point 
data; B) Udept from Polygon data; C) Hapludox from point data; D) Hapludox from polygon data; E) Acrudox from point data; F) Acrudox from 
polygon data; G) Fluvents from point data; H) Fluvents from polygon data.

the Buffer-Point derived models the entropy also ranged 
from 0 to 0.99, with an average of 0.467 and standard 
deviation of 0.169. Contrary to what was observed by 
Heung et al. (2017), there was no major difference in the 
spatial distribution of the overall uncertainty over the 
study area, considering the different datasets.

Figure 8 shows the relative frequency distribution 
of uncertainty related to landforms. In general, the un-
certainty was low for valley bottom regions, where there 
is a predominance of Fluvents occurring over flatter ar-
eas around the drainage network, having been formed 
by the accumulation of sediments from flood deposits. 
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Table 3 – Producer’s and user’s accuracy for the highest accuracy 
spatial prediction from buffer of point and polygon data.

Dataset Variables
Udept Acrudox Hapludox Fluvent

Producer's accuracy
---------------------------------------- % ----------------------------------------

PCA POL-20 MDA(9) 50 100 84 50
PCA Buffer-Point PCA(5) 80 0 88 100

User's accuracy
---------------------------------------- % ----------------------------------------

PCA POL-20 MDA(9) 78 50 63 25
PCA Buffer-Point PCA(5) 89 0 88 100
PCA POL-20 = Training data derived from polygon -20 m dataset and reduced 
by Principal Component Analysis; PCA Buffer-Point = training data derived from 
Buffer-Point dataset and reduced by Principal Component Analysis; MDA(9) = 
the best nine variables of the Mean Decrease in Accuracy rank; PCA(5) = the 
five variables that most contributed to the Principal Component Analysis.

Such values were also found in flat ridge tops and plains, 
commonly associated with Hapludox. 

 In sites where the slope is greater than 20 %, the 
entropy values ranged from low to intermediate. The 
steeper the slope, the lower the uncertainty. Such sites 
are commonly associated with the incidence of Incepti-
sols. In the region of the study area, this soil type tends 
to be located in a wide range of slope gradient (3 % to 
45 %).

Higher uncertainty was found in footslopes and 
convex ridges. The former is probably related to the 
common associations between Udepts and Hapludox 
in this region, which can generate “confusion” when 
discriminating the domains of each type of soil. Silva et 
al. (2016) reported an analogous condition studying a 

Figure 7 – Uncertainty surface based on Random Forest model using Point and Polygon-derived training data produced at a 20 m spatial 
resolution for the study area. A) Entropy values for Polygon derived training data; B) Entropy values for Point-derived training data.
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nearby area, where in similar landscape positions both 
Inceptisols and Oxisols are found. Inceptisols tend to 
lie in the upper third and sometimes in the inferior 
third of the backslope in association with Oxisols (Curi 
et al., 1994). In relation to the convex ridges, higher 
values of uncertainty may be due to the difficulty in 
telling the domains of Hapludox, Acrudox, and occa-
sionally Udepts apart. Such pattern of soil distribution 
was a common situation in the northeastern portion of 
the study area.

Most of the models presented low accuracy for 
Acrudox (Table 3) along with greater uncertainty, as ob-
served in Figures 7A and B. This is related mainly to two 
factors: a) the low density of the training and validation 
datasets, since such soil type has low geographical ex-
pression in this region when compared with the others. 
This relative imbalance tends to favor the majority class-
es within the training dataset (He and Garcia, 2009). In 
other words, classes overrepresented in the training 
dataset may dominate classification by the model (Mil-
lard and Richardson, 2015). This natural imbalance is 
common when dealing with soil type distribution. In the 
reference area (Vista Bela Creek Watershed), Acrudox 
corresponds to only 12 % of the total area. The same 
was observed during the field work for the digitally 
mapped area, where unlike Hapludox, the Acrudox are 
not found in large contiguous areas, but rather, in transi-
tions between Hapludox areas. Even though the relief 
explained most of the spatial variability of soil types, it 
seems that specifically for Acrudox, it is mainly driven 
by parent material instead of solely relief. Terrain in-
dexes do not efficiently tell the Acrudox and Hapludox 
areas apart, since both occur in similar portions in the 
landscape. Since digital soil mapping techniques are up-
datable (Hengl et al., 2014), the availability of data in the 

Figure 8 – Overall relative frequency distribution of the entropy 
values related to the TPI based landforms classification. Streams 
= canyons and deeply incised streams; Drainages = midslope 
drainages, shallow valleys, upland drainages and headwaters; 
Valleys = U-shape valleys; Slopes = open slopes and upper slopes; 
Ridges = local ridges/hills in valleys, midslope ridges, small hills 
in plains and high ridges.

future related to parent material in the same scale of this 
study could provide improvements in spatial prediction 
accuracy.

Conclusions

By executing the Buffer, the point-derived data 
yielded better results compared to Polygon-derived 
models. Excluding the Buffer and PCA Buffer datasets, 
there were no significant differences between the ac-
curacy of the models. The reduction of variables was 
able, in a general way, to improve the accuracy in the 
predicted maps of soil types, the same as for training 
data selection. The best result was obtained by identify-
ing the principal components of the Buffer dataset, and 
reducing the size of the ensemble of predictors with the 
PCA. Although the uncertainty was relatively similar for 
both Buffer-Point and Polygon derived models, the one 
derived from Polygons seems to have introduced more 
noise into the models, as observed by inconsistencies in 
the spatial prediction of soil types. The natural imbal-
ance in the dataset training related to soil types with 
smaller geographical expression could underrepresent 
its spatial prediction from the Random Forest and in-
crease the uncertainty in certain types, such as Acrudox 
in the region of the study.

Even though the Random Forest has been consid-
ered a robust spatial predictor model in Soil Science, its 
sensitivity to different strategies of selecting training da-
taset is very clear. Effort was necessary to find the best 
training dataset for achieving suitable accuracy of spa-
tial prediction. To identify a specific dataset in this study 
seems to be preferable than a large number of variables 
or a large size of training data. Thus, the efforts here al-
lowed the for the accurate acquisition (83 % for overall 
accuracy and 0.738 for Kappa index) of a mapped area 
(2,719 ha) 15.5 times greater than the reference area 
(175 ha), up to the second hierarchical level according 
to Soil Taxonomy, at low cost by taking advantage of soil 
legacy data.
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