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“O ser humano vivencia a si mesmo, seus pensamentos como algo 
separado do resto do universo - numa espécie de ilusão de ótica de sua 
consciência. E essa ilusão é uma espécie de prisão que nos restringe a nossos 
desejos pessoais, conceitos e ao afeto por pessoas mais próximas. Nossa 
principal tarefa é a de nos livrarmos dessa prisão, ampliando o nosso círculo de 
compaixão, para que ele abranja todos os seres vivos e toda a natureza em sua 
beleza. Ninguém conseguirá alcançar completamente esse objetivo, mas lutar 
pela sua realização já é por si só parte de nossa liberação e o alicerce de nossa 
segurança interior.” 

 
Albert Einstein



 

 

ABSTRACT 
 

In 2003, the government of Minas Gerais, Brazil, devised a vegetation 
monitoring system that provides important information to the government 
agencies such as land-cover maps, deforestation rates, volume estimates and 
carbon stocks. Nevertheless, the main factors behind deforestation in the region 
are still unidentified as well as in each scale these factors operate. The main goal 
of this study was to explore the spatial variability of the driving forces behind 
deforestation at three different scales using Ordinary Least Square (OLS) and 
Geographically Weighted Regression (GWR) techniques. Scales correspond to 
three aggregation levels: the municipalities (Aggregation level 1), the micro-
regions (Aggregation level 2) and the watersheds (Aggregation level 3).  The 
datasets was provided by the state’s monitoring system and public agencies. The 
results reveal that the driving forces of deforestation are agricultural area, 
charcoal production, and monoculture forest area at Aggregation level 1 while 
charcoal production and monoculture forest area dominate at Aggregation levels 
2 and 3. The GWR results present significant improvement compared to the 
OLS results. Additionally, the GWR technique provide useful insights for the 
government decision-makers about the spatial relationships between dominant 
driving forces and deforested areas at multiple scales. This study also confirms 
the influence of the modifiable areal unit problem (MAUP) in OLS and GWR 
models. 
 
Keywords: Driving forces. Deforestation. Geographically weighted regression. 
Ordinary least square. Modifiable areal unit problem. 

 

 

 

 



 

 

RESUMO 

 
Em 2003, o governo de Minas Gerais desenvolveu um sistema de 

monitoramento da vegetação, fornecendo informações importantes para os 
órgãos governamentais, tais como mapas de uso do solo, taxas de 
desmatamento, estimativas de volume e estoque de carbono. Contudo, as 
principais causas do desmatamento na região ainda não foram identificadas 
assim como as escalas que essas causas atuam. O principal objetivo do estudo 
foi explorar a variabilidade espacial das forças direcionadoras do desmatamento 
em três diferentes escalas através das técnicas dos Mínimos Quadrados 
Ordinários (OLS) e da Regressão Geográfica Ponderada (GWR). No estudo, 
escala corresponde a três níveis de agregação: os municípios (Agregação de 
nível 1), as micro-regiões (Agregação de nível 2) e as bacias hidrográficas 
(Agregação de nível 3). A base de dados foi fornecida pelo sistema estadual de 
monitoramento e agências públicas. Os resultados revelam que as forças 
direcionadoras do desmatamento são a área agrícola, produção de carvão e 
reflorestamento na Agregação de nível 1, enquanto a produção de carvão vegetal 
e reflorestamento dominam os níveis de agregação 2 e 3. Os resultados GWR 
apresentam uma melhora significativa em comparação com os resultados OLS. 
Além disso, a técnica GWR fornece informações úteis para os órgãos 
governamentais sobre as relações espaciais entre as forças direcionadoras de 
desmatamento e as áreas desmatadas em várias escalas. Este estudo também 
confirma a influência do problema da unidade de área modificável (MAUP) em 
modelos OLS e GWR. 
 
Palavras-chave: Forças direcionadoras. Desmatamento. Mínimos quadrados 
ordinários. Regressão geográfica ponderada. Problema da unidade de área 
modificável. 

 
 
 



 

 

LIST OF FIGURES 

 
Figure 1  Proximate and Underlying driving forces........................................ 21 
Figure 2  Kernel function ................................................................................ 33 
Figure 3  GWR with fixed and adaptive kernels respectively......................... 34 
Figure 4  Schematic overview of the methodology......................................... 40 
Figure 5  Location of the state of Minas Gerais, Brazil and its three major 

biomes.............................................................................................. 41 
Figure 6  Land-cover map of the state of Minas Gerais for the year 2007...... 42 
Figure 7  Macro-administrative regions in the state of Minas Gerais ............. 43 
Figure 8  Deforested areas from 2003 to 2007 per municipalities .................. 44 
Figure 7  Levels of analysis: a) Level 1; b) Level 2; c) Level 3 ..................... 47 
Figure 8 a) Municipalities selected at Aggregation level 1; b) Micro 

regions selected at Aggregation level 2; c) Watersheds selected at 
Aggregation level 3.......................................................................... 49 

Figure 9 Scatterplot of transformed and non-transformed variables. a) non-
transformed variables at Aggregation level 1; b) transformed 
variables at Aggregation level 1; c) non-transformed variables at 
Aggregation level 2; d) transformed variables at Aggregation level 
2; e) non-transformed variables at Aggregation level 3................... 55 

Figure 10 Frequency histogram for transformed and non-transformed 
variables. a) transformed variable at Aggregation level 1; b) non-
transformed variable at Aggregation level 1; c) transformed 
variable at Aggregation level 2; d) non-transformed variable at 
Aggregation level 2; e) transformed variable at Aggregation   
level 3............................................................................................... 57 

Figure 11 Parameter estimates for GWR model at Aggregation level 1 with 
significance level. a) Intercept; b) Shortest distance to roads; c) 
Charcoal production; d) Monoculture forest area. ........................... 64 

Figure 12 Parameter estimates for GWR model at Aggregation level 2 with 
significance level. a) Intercept; b) Charcoal production; c) 
Monoculture forest area ................................................................... 66 

Figure 13 Parameter estimates for GWR model at Aggregation level 3 with 
significance level. a) Intercept; b) Charcoal production; c) 
Monoculture forest area ................................................................... 68 

Figure 14 Spatial distribution of local R square. a) Aggregation level 1; b) 
Aggregation level 2; c) Aggregation level 3.................................... 71 

Figure 15 Spatial distribution of OLS residuals. a) Aggregation level 1; b) 
Aggregation level 2; c) Aggregation level 3.................................... 74 

Figure 16 Spatial distribution of GWR residuals. a) Aggregation level 1; b) 
Aggregation level 2; c) Aggregation level 3.................................... 76 



 

 

LIST OF TABLES 

 

Table 1 List of dependent variable and primary independent or explanatory 
variables.............................................................................................46 

Table 2 Summary statistics for transformed and non-transformed dependent 
variables for each aggregation level ..................................................56 

Table 3 Correlation matrix between independent variables at Aggregation 
level 1 ................................................................................................58 

Table 4  Correlation matrix between independent variables at Aggregation 
level 2 ................................................................................................58 

Table 5 Correlation matrix between independent variables at Aggregation 
level 3 ................................................................................................59 

Table 6 Explanatory or independent variables selected in each aggregation 
level for the OLS and GWR models..................................................59 

Table 6 OLS model results for each aggregation level...................................60 
Table 7 GWR model results for each aggregation level.................................61 
Table 8 Parameter estimates for OLS regression model with significance 

level of 95% at Aggregation level 1 ..................................................62 
Table 9 Parameter estimates for OLS regression model with significance 

level of 95% at Aggregation level 2 ..................................................62 
Table 10 Parameter estimates for OLS regression model with significance 

level of 95% at Aggregation level 3 ..................................................62 
Table 11 Moran’s I values for OLS model residuals for each aggregation 

level ...................................................................................................73 
Table 12 Moran’s I values for GWR model residuals for each aggregation 

level ...................................................................................................76 
 
 
 



 

 

SUMMARY 
 

1  INTRODUCTION .................................................................................13 
2  BACKGROUND ....................................................................................18 
2.1  Land-Use and Land-Cover Change (LUCC) ......................................18 
2.2  Driving forces of deforestation .............................................................20 
2.3  Scale ........................................................................................................23 
2.4  The Modifiable Areal Unit Problem (MAUP).....................................25 
2.5  Vegetation monitoring system ..............................................................27 
2.6  LUCC modeling .....................................................................................29 
2.7  Ordinary Least Square .........................................................................30 
2.8  Geographically Weighted Regression ..................................................32 
2.9  Coefficient of determination and Sigma ..............................................36 
2.10  Akaike Information Criteria (AIC) .....................................................37 
2.11  Spatial Autocorrelation (Moran’s I) ....................................................38 
4  METHODOLOGY ................................................................................40 
4.1  Study area...............................................................................................40 
4.2  Datasets...................................................................................................45 
4.3  The aggregation procedure ...................................................................47 
4.4  Exploratory analysis..............................................................................51 
4.5  Ordinary Least Square and Geographically Weighted Regression ..51 
5  RESULTS AND DISCUSSION ............................................................54 
5.1 Selected variables...................................................................................54 
5.2  OLS and GWR fitted models................................................................60 
5.3  OLS parameter estimates......................................................................61 
5.4  Visualizing GWR results .......................................................................62 
6  SPATIAL AUTOCORRELATION .....................................................73 
7  CONCLUSIONS AND CONSIDERATIONS .....................................78 
 REFERENCES ......................................................................................81 
 

 
 
 



13 

 

1 INTRODUCTION 

 

Land-Use and Land-Cover Change (LUCC) studies have been providing 

information about environmental impacts caused by human activities as in the 

processes of agricultural expansion, urbanization and deforestation. LUCC is 

also the name given to an important initiative of the International Geosphere-

Biosphere Programme (IGBP) and International Human Dimensions Programme 

on Global Environmental Change (IHDP) intended to propagate the emergence 

of the “land-change science” and to demonstrate its role within the Earth System 

(LAMBIN; GEIST; RINDFUSS, 2006). In the context of these programmes, 

land-cover is defined as the set of different features, such as natural vegetation, 

soils, crops and anthropogenic structures that cover the land surface, whereas 

land-use refers to activities carried out by humans while exploiting land-cover 

features (FRESCO, 1994). 

Deforestation is an important component of LUCC, with rates averaging 

around 13 million hectares per year between 1990 and 2005 (FOOD AND 

AGRICULTURE ORGANIZATION OF THE UNITED NATIONS - FAO, 

2008), being predominantly concentrated in tropical countries. In spite of this 

alarming pace, the process of deforestation is still poorly understood except for 

the well documented environmental impacts like reduced soil productivity, 

biodiversity loss, and hydrological degradation (FEARNSIDE, 2005), which are 

likely to deteriorate human life quality in the future. To reverse this tendency, 

policy makers and environmental managers must be supported by knowledge on 

the main driving forces behind deforestation and focus their decisions 

accordingly. Recently, such knowledge has been also considered fundamental to 

an emerging and promising global effort: the UN-REDD Programme (The 

United Nations Collaborative Programme on Reducing Emissions from 

Deforestation and Forest Degradation in Developing Countries). 
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A number of studies have explored the relationship between land-use 

change and its driving forces (ASPINALL, 2004; BROW; PIJANOWSKY; 

DUH, 2000; MERTENS; LAMBIN, 1997; MINETOS; POLYZOS, 2010; 

SCHNEIDER; PONTIUS, 2001; TOLE, 1998) based on empirical approaches 

such as Ordinary Least Square (OLS) models, and Geographically Weighted 

Regression (GWR) models. Due to the complexity of structural mechanistic 

models and due to the difficulties in quantifying the involved factors, most 

studies use empirical models to analyze these relationships (SLUITER, 2005). 

In empirical modeling, the global regression is a mathematical model 

that describes the relationships between dependent and independent variables 

through a linear function. For instance, OLS is a method for fitting linear models 

by minimizing the sum of predicted squared errors. In case of deforestation 

modeling, the dependent variable typically represents the deforested areas while 

the independent variables represent the driving forces of deforestation. 

OLS has been widely used in studies related to deforestation process 

(GEOGHEGHAN et al., 2001; MENA; BILSBORROW; MCCLAIN, 2006) due 

to its facility of fit the model parameters. However, there is some evidence that 

the OLS models have some limitations and are not appropriate to deal with 

spatial data in reason of the non-stationarity problem and the spatial dependence 

(GAO; LI, 2011; WINDLE et al., 2009). 

The non-stationarity problem occurs when a process or phenomenon is 

not constant over space and the spatial dependence states that near things are 

more related than distant things. Both issues are common when dealing with 

LUCC modeling. As deforestation varies in time and space, models must 

consider this variability to generate reliable results. Aiming at solving the 

problem of non-stationarity and spatial dependence, a new spatial regression 

called Geographically Weighted Regression (GWR) (BRUNDSON; 

FOTHERINGHAM; CHARLTON, 1998; FOTHERINGHAM; BRUNDSON; 
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CHARLTON, 1998) has been developed, improving the estimators from the 

OLS models. 

GWR is a linear model that allows the analyst to assess the spatial 

variability of the data across a study area, adjusting the model for each location. 

Many researchers have reported the superiority of GWR models compared to 

OLS models (GAO; LI, 2011; WINDLE et al., 2009; ZHAO; YANG; ZHOU, 

2010) in many purposes and study areas. The major advantage of GWR 

compared to OLS models is the capability of GWR to map the coefficients for 

each location, capturing spatially explicit relationships between variables. 

In Brazil, investigations concerning the causes of deforestation are 

concentrated in the Amazon region due to the ecological importance of its 

biome. Several studies indicated that the main causes of deforestation are related 

to the expansion of infrastructure (LAURANCE, 2001; LAURANCE et al., 

2002), expansion of cattle ranching (MARGULIS, 2004), proximity to markets 

(PFAFF, 1999), population density (LAURANCE et al., 2002), and climate 

conditions (CHOMITZ; THOMAS, 2003). 

In 2003, the government of Minas Gerais, Brazil, devised a vegetation 

monitoring system that provides information to the government agencies such as 

land-cover maps, deforestation rates, volume estimates and carbon stocks. 

Nevertheless, the main factors behind deforestation in the region are still 

unidentified. Compared to other Brazilian states within the Mata Atlântica 

biome, Minas Gerais presents one of the highest rates of deforestation 

(FUNDAÇÃO SOS MATA ATLÂNTICA; INSTITUTO NACIONAL DE 

PESQUISAS ESPACIAIS - INPE, 2010). Besides the Mata Atlântica, the 

Cerrado biome has been severely degraded in Minas Gerais, where deforestation 

rates are higher than in the Amazon biome. According to the state’s monitoring 

system, the deforested area was 152,635 ha between 2003 and 2005, and 

109,754 ha between 2005 and 2007 (CARVALHO; SCOLFORO, 2008; 
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SCOLFORO; CARVALHO, 2006). Thus, the conservation of remaining forests 

in Minas Gerais depends on government actions such as the creation of protected 

areas and effective surveillance of illegal logging. For this reason, accurate 

mapping, monitoring and LUCC modeling are important tools to guide 

government planning. 

LUCC modeling is a useful tool to identify and quantify the sources of 

land-use and land-cover changes in a simple manner represented by a 

mathematical function, formalizing our knowledge on understanding land 

degradation and its consequences and specifically with the deforestation process, 

there are few studies that have used the GWR technique to explore the local 

variations of driving forces.  

One important issue when working with empirical approaches on LUCC 

modeling is the scale of observation. Since the driving forces of deforestation 

operate at different scales, they cannot be captured at one single scale 

(MOREIRA et al., 2009) and vary from local to global scales.  

Considering the data aggregation one component of scale, it allows an 

analyst to explore the results at different scales and is also used to reduce data 

volume and processing time. However, the aggregation can be a problem if loss 

of information occurs, compromising the final results. The aggregation problem 

and the scale problem are components of the modifiable areal unit problem 

(MAUP) (OPENSHAW; TAYLOR, 1979). Fotheringham and Wong (1991) 

studied the effects of MAUP in multivariate statistics. As a result, the parameters 

estimates were unpredictable at different scales and zoning systems. Moreover, 

the authors suggested that one way of assessing the MAUP is to report results at 

different levels of aggregations and with different zoning systems at the same 

scale.  

To the best of our knowledge, there are no studies that had explored the 

driving forces behind deforestation in the state of Minas Gerais, nor attempts to 
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analyze them at different scales. Thus, there is a lack of knowledge about the 

most important factors related to deforestation process, how these factors change 

from place to place, and how sensitive these factors are to different scales. 

 

OBJECTIVES 

 

The main goal of this study was to explore the driving forces behind 

deforestation in the state of Minas Gerais, in Brazil at three different scales 

corresponding to three aggregation levels: the municipalities (Aggregation level 

1), the micro-regions (Aggregation level 2), and the watersheds (Aggregation 

level 3). The work was motivated by the following questions: (a) Among the set 

of variables considered in this study, what are the ones that most influence the 

deforestation in the state of Minas Gerais at each spatial scale? (b) What is the 

best technique to model the driving forces behind deforestation? (c) How does 

the relationship between deforested areas and the independent variables vary 

spatially within each scale?  

The present study has contributed to LUCC modeling in the state of 

Minas Gerais by mapping the main driving forces behind deforestation. 

Furthermore, the study assessed at which scale each driving force operates. 

The text is organized as follows. First, the study area and methodology 

used to explore the spatial variability of deforestation driving forces are 

described in the next section. Then, results and interpretations are presented with 

pertinent discussions. The final section brings conclusions and considerations 

for future studies. 
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2 BACKGROUND 

 

2.1 Land-Use and Land-Cover Change (LUCC) 

 

Currently, concerns about land-use and land-cover changes are often 

presented in the global research agenda on environmental issues (LAMBIN; 

GEIST; RINDFUSS, 2006) due to the influence of these processes on climate 

change. Mechanisms for the reduction of greenhouse gases emissions such as 

UN-REDD Programme (The United Nations Collaborative Programme on 

Reducing Emissions from Deforestation and Forest Degradation in Developing 

Countries) create a financial value for carbon stored in forests, encouraging 

countries to reduce deforestation and consequently the national level of the 

emission of greenhouse gases. 

Another effort to deal with climate change is called Land-Use and Land-

Cover Change (LUCC). LUCC is a project of the International Geosphere-

Biosphere Programme (IGBP) and International Human Dimensions Programme 

on Global Environmental Change (IHDP) attempting to propagate the 

emergence of the “land-change science” and demonstrating the roles of the land 

change within the Earth System (LAMBIN; GEIST; RINDFUSS, 2006). LUCC 

studies provide information about environmental impacts caused by humans as 

in the process of agricultural expansion, urbanization or deforestation. 

Prior to considering the LUCC implementation it is necessary to 

recognize the differences between land-cover and land-use terms. In this context, 

land-cover is defined as the layer set of different types of features, such as 

natural vegetation, soils, crops and human structures that cover the land surface. 

Land-use refers to the purposes for which humans exploit the land cover 

(FRESCO, 1994). 
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According to FAO (2008), between 1990 and 2005 the rate of 

deforestation on the planet averaged about 13 million hectares a year, being 

predominantly concentrated in tropical countries. The causes of the deforestation 

process are still poorly understood while its consequences are severe for the 

environment, resulting in losses of soil productivity and biodiversity, 

hydrological degradation (FEARNSIDE, 2005) that also has a detrimental 

impact on human life. 

LUCC modeling can be found in literature, presenting different 

objectives and techniques (MANSON, 2005; SOARES et al., 2002; 

VELDKAMP; FRESCO, 1996; VERBURG; VELDKAMP; ESPALDON, 

2002). In general, the studies try to establish a connection between the main 

causes of deforestation and deforestation rates, describing the relationship 

(BROWN; PIJANOWSKY; DUH, 2000), mapping future areas of risk 

(MERTENS; LAMBIN, 1997), or projecting LUCC in conjunction with its 

consequences (LIU et al., 2009; TRISURAT; ALKEMADE; VERBURG, 2010). 

Indeed, the first step towards understanding LUCC is to identify and 

quantify the sources of changes or the main causes that control them. The 

examination and understanding of the main causes or “driving forces” behind 

deforestation guide government programs in assisting deforestation inspection 

teams. Nevertheless, the examination of driving forces is not a straightforward 

task due to the complexity of the factors involved (GEIST; LAMBIN, 2002), to 

interactions in time and space (VELDKAMP; FRESCO, 1996) and to a variety 

of scenarios of land use and land cover change in a complex system.  

Sluiter (2005) mentioned that three different approaches can be 

distinguished for the selection and quantification of the main causes of 

deforestation. The structural approach defines rules based on process 

information, theories and physical laws. The empirical approach uses statistical 

methods to define transition rules and finally, the expert knowledge approach is 
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based on human experience. Of the three approaches, the empirical approach is 

most widely used to quantify the relationships between variables due to the 

complexity of structural mechanistic models and due to the difficulty of 

quantifying the factors involved. Empirical models of LUCC usually use remote 

sensing data and explanatory variables calculated in a GIS (Geographic 

Information System) (IRWIN; GEOGHEGAN, 2001). As stated by the authors, 

these models fit the spatial process and the land use change outcome reasonably 

well. Nonetheless, they are less successful at explaining the human behavior. 

 

2.2 Driving forces of deforestation 

 

According to Geist and Lambin (2002), the driving forces behind the 

deforestation process can be classified into proximate causes and underlying 

driving forces (Figure 1). The proximate causes can be divided into three main 

groups: a) infrastructure, b) agricultural expansion and c) wood extraction and 

the underlying driving forces can be divided into five large groups: a) 

demographic factors, b) economic factors, c) technological factors, d) policy and 

institutional factors and e) cultural factors. 
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Figure 1 Proximate and Underlying driving forces 
Source: Geist and Lambin (2002) 

 

While some authors describe causes of deforestations as proximate and 

underlying driving forces (GEIST; LAMBIN, 2002; VERBURG et al., 2004) 

other authors classify them into direct and indirect causes (JAIMES et al., 2010). 

This study employs the terminology proposed by Geist and Lambin (2002). 

According to Tole (1998), the key causes of deforestation in tropical 

countries include proximate and underlying driving forces such as expanding 

infrastructure, trade, debt, investment in human capital base, and resource-based 

economic expansion. Lambin et al. (2001) argued that neither population nor 

poverty alone constitutes the sole underlying causes of land-cover changes but 

that global forces are the main determinants of land-use changes, attenuating the 

local factors. 

In Brazil, predominantly in the Amazon region, the proximate causes 

play a major role in LUCC. Infrastructure expansion such as building highways 

and roads has had a significant impact for decades and is still a problem for 

natural vegetation (KIRBY et al., 2006; LAURANCE et al., 2002). Exploring 

the intra-regional differences of land use in Brazilian Amazon, Aguiar, Câmara 
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and Escada (2007) determined the main factors of deforestation, pasture, 

temporary and permanent agriculture using global regression and spatial 

regression models. The authors evaluated 50 explanatory variables divided into 

7 categories such as access to markets, economy, agricultural structure, 

demography, technology, environmental and policy. The authors concluded that 

the human occupation in the Amazon region was heterogeneous in time and 

space and each region studied presents a specific spatial pattern of deforestation. 

Also, the authors revealed that the heterogeneous occupation patterns of the 

Amazon can only be explained when combining several factors such as 

favorable environmental conditions and access to local and national markets.  

In general, various instances of research confirm that the main causes of 

deforestation are related to the expansion of infrastructure (LAURANCE, 2001; 

LAURANCE et al., 2002), and cattle ranching (MARGULIS, 2004), proximity 

to markets (PFAFF, 1999), population density (LAURANCE et al., 2002) and 

climate conditions (CHOMITS; THOMAS, 2003). 

In the state of Minas Gerais, the deforestation process has started with 

mining for valuable minerals such as gold, iron and others. Compared to the 

Amazon region, the deforestation process in Minas Gerais is not accomplished 

by the expansion of infrastructure or climate conditions. The study developed by 

Carvalho, Scolforo and Cavalcanti (2009) showed the trend of land use 

conversion in the state. The authors investigated a large number of field samples 

of deforested areas from 2005 to 2007 and concluded that the main conversion 

of land use is a consequence of cattle ranching, agricultural activities, and 

monoculture forest areas. These results can be of value for governmental 

actions, but should not be viewed as reflecting historical aspects of conversion 

of land use in the state since the data collection only lasted for 2 years. 

Moreover, specific investigations in each region of the state will contribute to 

quantify the main driving forces behind deforestation. 
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2.3 Scale 

 

It has been recognized that the scale of observation is a major concept in 

many sciences concerned with human activities and physical process occurring 

at the Earth’s surface (MARCEAU, 1999). Scale is an important assumption that 

must be considered when developing LUCC models, especially when dealing 

with the driving forces of deforestation. The driving forces consisting of 

proximate and underlying causes interact in a complex system and cannot be 

captured in one single scale (MOREIRA et al., 2009) since driving forces vary 

significantly from local to global scales. Aiming at considering all driving forces 

in LUCC modeling, authors have been used multi-scale analysis (EVANS; 

KELLEY, 2004; VERBURG; CHEN, 2000). However, the relationships 

obtained at a certain scale of analysis may not be replicated when using other 

scales or in other study areas (VERBURG; CHEN, 2000). 

Scale refers to spatial and temporal dimensions of an object or process, 

distinguished by a level of organization or hierarchy (TURNER; GARDNER; 

O’NEILL, 2001). It can also be defined as a continuum through which entities, 

patterns, and process can be observed and linked (MARCEAU, 1999). 

According to Kok (2001) scale is defined as a level of observation while level is 

defined as a level of organization. In this study, scale refers to a level of 

organization. 

There are several reasons to employ scale into spatial analysis and into 

deforestation process. First, identifying the driving forces behind deforestation 

process requires an understanding of how people make land-use decisions and 

how the factors interact in specific contexts at the local, regional or global scale 

(VERBURG et al., 2006). For instance, proximate causes interact with the 

deforestation process in a local scale instead underlying causes which interact in 

a global scale. Second, many environmental problems, such as global warming, 



24 

 

deforestation and water management cannot be handled at one single scale of 

observation (MARCEAU, 1999) due to the heterogeneity and complexity of 

surface (VERBURG et al., 1999). 

In this context, several studies incorporated scale dependencies into 

LUCC models (JANTZ; GOETZ, 2005; KOK, 2001; MOREIRA et al., 2009; 

SOLER; ESCADA; VERBURG, 2009). In an urban land-use change model, 

Jantz and Goetz (2005) tested sensitivity analysis of a cellular automata model 

varying cells resolution. It was detected that the scale influences the 

measurement and quantitative description of land-use patterns and impacts on 

the behavior of model parameters that describe the land-use change processes. 

Using logistic regression, Soler, Escada and Verburg (2009) revealed 

that the driving forces of deforestation in the Amazonian colonization frontier 

vary according to the territorial extension analyzed, confirming the hypothesis 

that different extents yield different relationships between LUCC patterns and 

theirs factors. Gao and Li (2011) detected spatially non-stationary and scale 

dependence relationships between landscape fragmentation and related factors 

through GWR modeling, indicating clear different patterns of parameters 

estimates in different scales. Koutsias, Martínez-Fernández and Allgower (2010) 

studied how factors related to wildfires vary from place to place. At the end, the 

authors highlighted the importance of investigation of cross-scale issues as well 

as further exploring how the relationships between wildfires and factors vary 

across different scales and data resolutions. 

The choice of optimal scale is influenced by the type of data available 

and the main purpose of the research. In some cases, the census data provided by 

public agencies are the unique source of data for LUCC modeling even the 

advance of remote sensing techniques. However, census data can misrepresent 

some important information. Discrepancies between remote sensing data and 
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census data for LUCC were highlighted by Pelorosso, Leone and Boccia (2009) 

in the Italian central Apennines. 

Moreover, substantial variability in spatial data increases the difficulty 

of choosing the appropriate scale for analysis (MERTENS; LAMBIN, 1997; 

SERNEELS; LAMBIN, 2001) and can complicate the level of aggregation.  

 

2.4 The Modifiable Areal Unit Problem (MAUP) 

 

Data aggregation allows an analyst to explore the results at different 

scales and to reduce the time and volume of processing. However, the 

aggregation can be a problem if losses of information occur, damaging the final 

results.  

The aggregation problem is one of the components of modifiable areal 

unit problem (MAUP) (OPENSHAW; TAYLOR, 1979). The MAUP occurs 

when the spatial zoning system used to analyze geographic data is modifiable, 

resulting in complications of some statistical analysis. Another component of 

MAUP is called scale problem and it is defined as the variation in results that 

may be obtained when the same areal data are combined into sets of increasingly 

larger areal units (OPENSHAW; TAYLOR, 1979). 

Specifically, the aggregation problem refers to the variation in results 

produced by the use of alternative combinations of areal units at similar scales 

(OPENSHAW; TAYLOR, 1979). According to Openshaw and Taylor (1979), if 

the areal units are arbitrary and modifiable then the value of any work based 

upon them may not possess any validity independent of the units which are 

being studied. 

Fotheringham and Wong (1991) studied the effects of MAUP in 

multivariate statistics. As a result, the parameters estimates were unpredictable 

at different scales and zoning systems. Moreover, the authors suggested that one 
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way of assessing the MAUP is to report results at different levels of 

aggregations and with different zoning systems at the same scale.  

Recently, with the development of remote sensing and GIS, MAUP may 

influence the results in the spatial analysis. Marceau, Howarth and Gratton 

(1994a, 1994b) were the first to recognize this relationship between the MAUP 

and remotely sensed imagery. The authors identified that changing the 

measurement scale and the aggregation levels affected the values of descriptive 

statistics were greatly affected. Hence, people should be aware of the MAUP 

issue in spatial analysis and attempt to address it when possible (DARK; 

BRAM, 2007). 

Jelinksi and Wu (1996) focused on the importance of the MAUP in the 

results of landscape analysis based on NDVI (Normalized Difference Vegetation 

Index) images. The scale problem was explored through different aggregation of 

pixels in NDVI images and the aggregation problem was explored through two 

systematic procedures (i.e. considering the same number of pixels). All 

arrangements were evaluated using a spatial correlation index (Moran’s I and 

Geary’s c). One of the suggestions for dealing with MAUP is to conduct a 

sensitivity analysis which enables researches to assess which variables are 

sensitive to the variations in scale and aggregation. However, it should be noted 

that sensitivity analysis stipulates for a small number of variables, scales and 

levels of aggregation. 

A multi-scale analysis of land-cover changes was done by Evans and 

Keley (2004). An agent-based modeling was developed to explore the scale 

dependence by changing the spatial resolutions of the input data. Different scales 

were obtained as a result of data aggregation, producing a series of datasets at 

seven spatial resolutions. The impact of the aggregation problem in the agent-

based model performance resulted in the loss of agents due to errors of omission, 

homogenization of land-cover changes, reduction of precision and smoothing of 
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topography. Thus, the results showed the scale-dependence of the model 

outcomes as well as some problems in aggregating data.  

 

2.5 Vegetation monitoring system 

 

Remote sensing techniques are important tools for obtaining land-cover 

and land-use change data from inaccessible areas on large scales in a short 

period of time. Currently, different data and techniques of remote sensing are 

available and allow several research teams to develop a vegetation monitoring 

system (BLAIR; RABINE; HOFTON, 1999; DEFREIES et al., 2007; 

MINCHELLA et al., 2009; SÁNCHEZ-AZOFEITA; HARRISS; SKOLE, 

2001). 

In Brazil there are three operating systems for change detection in the 

land cover - PRODES, DETER and DETEX - developed in areas located in the 

Amazon region by the National Institute for Space Research (INPE). These 

systems are complementary in their purposes. 

Since 1998, the PRODES project - Estimate of Amazon gross 

deforestation – has been measuring the annual rate of deforestation (clearcutting) 

for increments greater than 6.25 hectares (CÂMARA; VALERIANO; SOARES, 

2006). The program uses TM (Landsat), CCD (CBERS) and DMC (DMC) 

images, whose spatial resolution is approximately 30 meters, but whose 

temporal resolution is rather low. The results provided by PRODES consider 

only the areas that are in the final process of deforestation.  

In contrast, the DETER project - Deforestation Detection in Real Time - 

provides monthly alerts of deforestation in areas larger than 25 hectares (INPE, 

2008). The program uses MODIS (TERRA) and WFI (CBERS) sensors, whose 

spatial resolution is 250 meters. Finally, the DETEX project - Detecting 

Selective Logging - allows monitoring selected logging in the forest, through 
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high-resolution images (20 meters) providing information at the first stages of 

deforestation. 

Land-use and land-cover changes in the Amazon region are very often 

omitted from processing Landsat images due to the presence of clouds above the 

tree cover. Thus, the estimations of deforestation in some regions may result 

from a linear extrapolation, miscalculating important deforestation rates and 

neglecting critical areas. 

In the state of Minas Gerais, the State Forestry Institute (IEF) in 

conjunction with the Secretary of Environment and Sustainable Development 

(SEMAD) and the Federal University of Lavras (UFLA) has been developing a 

vegetation monitoring system of the native flora and reforestation since 2003 

(SCOLFORO; CARVALHO, 2006). The program aims to provide important 

information for the state government policies every two years. The information 

includes land-cover maps, deforestation rates, volume estimates, and carbon 

stocks. 

The methodology of change detection was developed by Carvalho 

(2001) and it was based on NDVI (Normalized Difference Vegetation Index) 

image differences generated from Landsat images. The NDVI image difference 

with positive values indicated areas where vegetation had decreased while 

negative values indicate areas where vegetation had increased. An algorithm was 

applied to minimize possible noises and emphasize the change detections.  

According to the monitoring system, from 2003 to 2005 the deforestation rate 

was 152,635 ha and from 2005 to 2007 was 109,754 ha (CARVALHO; 

SCOLFORO, 2008; SCOLFORO; CARVALHO, 2006). 

However, the information generated by the monitoring system in the 

state lacks detailed data on the patterns from land-use and land-cover changes as 

well as an overview of the critical areas and the driving forces behind 
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deforestation. Thus, spatial modeling techniques are useful tools to analyze 

LUCC in the state. 

A model is defined as a simplified mathematical representation of 

certain phenomena in the real world that involves independent and dependent 

variables. In case of LUCC modeling, the dependent variables represent 

typically the land-use and land-cover while the independent variables represent 

the factors that are involved in this process. 

 

2.6 LUCC modeling 

 

Many researchers have modeled the land-use and land-cover changes 

using different methods such as agent-based models (AMB) (EVANS; 

KELLEY, 2004; MANSON, 2005), cellular automata (CA) (ENTWISLE et al., 

2008; MÉNARD; MARCEAU, 2007; SOARES et al., 2002), artificial neural 

networks (MAS et al., 2004), logistic models (ASPINALL, 2004; 

ECHEVERRIA et al., 2008; SCHNEIDER; PONTIUS, 2001; SERNEELS; 

LAMBIN, 2001), and econometric models (PFAFF, 1999). 

An agent-based model (ABM) also called as multi-agent-system (MAS) 

is a class of computational system that aims to resolve complex problems 

through interaction of multi agents. The multi agents have the capability to learn 

about the land-use and land-cover process, move on the landscape and make 

decisions based on their preferences. Cellular automata (CA) in its turn are also 

a technique in a spatially explicit model, but it is static on landscape. The 

mechanism of CA is composed of five main components: a matrix space, a 

neighborhood configuration, a time step resolution, an ensemble of cell states 

and a set of transition rules. Basically, each state of cells depends on their 

previous state and on a set of transition rules according to configuration of 

neighborhoods. More details can be found in Mathey et al. (2008). 
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Logistic regression is one of generalized linear models (GLM) and it is 

used when the dependent variables is binary (0 or 1) and the independent 

variables are continuum or categorical. In LUCC modeling, the results provided 

by logistic regressions demonstrate the probability of as area’s deforestation 

based on relationships between deforestation and its driving forces. 

The optimal choice of the methods for LUCC modeling varies from case 

to case depending on the main goal of the study. However, available data may 

constrain and limit the application of the appropriate methodology. Thus, data 

availability impacts the choice of the suitable method for LUCC modeling. 

In Brazil, the investigations of the deforestation process are concentrated 

in the Amazon region (AGUIAR; CÂMARA; ESCADA, 2007; KIRBY et al., 

2006; LAURANCE et al., 2002; SOARES et al., 2002) and the methods vary 

from global regression to dynamic modeling.  

In general, the techniques for LUCC modeling have two purposes: a) to 

explain the mechanism and process of change in use and land cover, and b) to 

project future changes (MILLINGTON; PERRY; ROMERO-CALCERRADA, 

2007). For this study, the LUCC modeling will be focused only on explaining 

the mechanisms of deforestation, especially on identifying the main factors 

causing deforestation using two different regression techniques: Ordinary Least 

Square and Geographically Weighted Regression. 

 

2.7 Ordinary Least Square 

 

The linear models are mathematical functions that describe relationships 

between dependent variable and independent variables through a linear function. 

In the case of LUCC modeling, deforestation is the dependent variable and 

driving forces are independent variables. Ordinary Least Square (OLS) is a 

method of fitting linear models and it is obtained by minimizing the sum of 
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squared errors predicted while taking into account such assumptions as the 

linearity of the relationship between variables, independence of the errors, 

homoscedasticity of the errors and normality of the error distribution. OLS can 

be represented as: 

 

                                          (1) 

 

where: 

Y: dependent variable observed; 

: independent variable; 

β: parameters estimated; 

: error. 

 

It is evident that the parameters in the OLS equation are assumed to be 

spatially stationarity. Global estimation cannot capture local variations in 

relationships between deforested areas and the driving forces. However, it is 

known that the deforestation process varies in time and space and models must 

take into consideration this variability to generate reliable results.  

Many researchers reported the spatial stationarity problem of OLS 

estimations (GAO; LI, 2011; WINDLE et al., 2009), that reduces the efficiency 

of the regression and misrepresents model results. Wang, Ni and Tenhunen 

(2005) reported the performance of OLS model in obtaining a net primary 

production (NPP) for different forest ecosystems in China. The authors 

compared the performance of the OLS model against the lag spatial and GWR 

models. The results indicated that the OLS technique was less successful to 

estimate NPP due to the stationarity of its parameters estimated. 

To overcome this problem, geographically weighted regression (GWR) 

technique (BRUNDSON; FOTHERINGHAM; CHARLTON, 1998; 
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FOTHERINGHAM; BRUNDSON; CHARLTON, 1998) was developed to 

improve the global estimations, addressing spatial non-stationarity and spatial 

dependence.       

 

2.8 Geographically Weighted Regression  

 

Geographically Weighted Regression (GWR) is a linear model that 

allows the analyst to assess the spatial variability of the data across the study 

area. Specially, the GWR is used when spatial non-stationarity relationships 

between variables prevail (FOTHERINGHAM; BRUNDSON; CHARLTON, 

2002). In contrast to the global regression or OLS model, GWR model can be 

expressed as follows: 

 

 (2) 

 

where: 

Y: dependent variable observed; 

(u,v): the coordinate location of the observation; 

: independent variable; 

β: parameters estimated; 

: error. 

 

The component  indicates that the parameters will have a different 

influence on each location, based on geographical weightening. The estimator 

for the GWR model is conditioned on each local  and takes the form of: 

 

                                           (3) 
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 is a diagonal matrix of weights relative to the position of  

in the study area;  is the geographically weighted variance-

covariance matrix (the estimation requires its inverse to be obtained), and  is 

the vector of the values of the dependent variable. 

The weights ( ) are given by the weight matrix and the 

observations which are spatially closer to the location where the local 

parameters are estimated will have greater influence than the others observations 

which are more distant. If all weights are equal to 1 then this corresponds to the 

global regression, because all variables in each location have the same weight in 

the regression.  

 

                                                             (4) 

 

The weights themselves are computed from a fixed or adaptive Gaussian 

kernel function (Figure 2).  

 
Figure 2 Kernel function 
Source: Fotheringham, Brundson and Charlton (2002) 
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The selection of the kernel type controls the bandwidth and 

consequently it affects the GWR results. Figure 3 shows the difference between 

fixed and adaptive bandwidths in spatial kernels functions. Fixed kernel function 

can result in some standard errors in regions where exist few spatial data as 

opposed to the adaptive kernel function, which has larger bandwidths where data 

are sparse and smaller bandwidths where data are plentiful. 

 

 
 

Figure 3 GWR with fixed and adaptive kernels respectively 
Source: Fotheringham, Brundson and Charlton (2002) 

 

The concern of GWR model calibration is how to select an appropriate 

bandwidth or decay function. The bandwidth selection can be done by means of 

a cross-validation (CV) approach or through an Akaike Information Criterion 

(AIC). The AIC approach is more flexibile when GWR is used in exploratory 

context and the CV is preferable when GWR is used for predicting (HARRIS; 

FOTHERINGHAM; JUGGINS, 2010). More details about both methods can be 

found in Fotheringham, Brundson and Charlton (2002). 

GWR has been used in diverse ecological research projects such as 

vegetation distribution (AUSTIN, 2007; FOODY, 2003; GAO; LI, 2011; 

MILLER; FRANKLIN; ASPINALL, 2007; ZHAO; YANG; ZHOU, 2010), 

afforestation (CLEMENT et al., 2009), marine science (WINDLE et al., 2009), 

water quality (BIERMAN et al., 2011; TU; XIA, 2008), fire occurrence 

(KOUTSIAS; MARTÍNES-FERNÁNDEZ; ALLGOWER, 2010; TULBURE et 

al., 2010), deforestation (JAIMES et al., 2010; WITMER, 2005) as well as in 
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social research (CAHILL; MULLIGAN, 2007; FARROW et al., 2005; 

GILBERT; CHAKRABORTY, 2011; OGNEVA-HIMMELBERGER; 

PEARSALL; RAKSHIT, 2009). 

Clement et al. (2009) studied the factors such as social, geographical 

distance, physical and institutional variables in relation to afforestation in 

Northern Vietnam. The authors used remotely sensed and statistical data and the 

GWR technique to explore local variations in the relationship between the land 

afforested and its proximate factors. The results showed differences in the 

estimation of the afforestation between the remotely sensed and statistical data 

provided by the government. Moreover, the proximate causes of afforestation 

included the proximity of wood-processing industry, the distance from highways 

and land location from households. Zhao, Yang and Zhou (2010) applied the 

GWR technique to assess the spatial variability of the effect of climate 

conditions and site conditions on vegetation distribution. The results showed 

great improvement in knowledge about the vegetation distribution compared to 

those yielded by the OLS technique.  

There are few studies of the deforestation process that have used the 

GWR technique to explore the local variations of driving forces. One of these 

studies was undertaken by Jaimes et al. (2010) who explored some potential 

variables associated with forest cover losses in the state of Mexico. When 

comparing the results of GWR to those of OLS models, the authors reported 

improvement on interpretation of the driving forces behind deforestation through 

the mapping of the parameter estimates obtained from GWR models. Another 

study led by Witmer (2005) characterized the relations between human activity 

and deforestation. The author explored the GWR results in conjunction with 

spatially population projections, speculating that in the coming decades, 

deforestation would be more intense in tropical regions of Africa. 
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The broad scope of the researches using GWR instead of OLS is due to 

the GWR’s ability to handle with non-stationarity and spatial dependence of data 

(GAO; LI, 2011). Therefore, the GWR technique can be applied in studies that 

use spatial data and seek to map the relationships among variables. Miller, 

Franklin and Aspinall (2007) emphasized the importance of incorporating the 

spatial-dependence in predictive vegetation models. The authors analyzed four 

different statistical methods such as autoregressive models, geostatistics, 

geographically weighted regression, and parameter estimation models and at the 

end, they summarized the advantages and disadvantages of each technique.  

 

2.9 Coefficient of determination and Sigma 

 

One of the results provided by OLS and GWR models is the coefficient 

of determination (R²), which expresses the proportion of variation in the 

dependent variables that explains the independent variable. Its values range from 

0 to 1, with higher values being preferable. Unfortunately, when extra variables 

are added to the model the coefficient of determination increases significantly, 

giving a wrong impression of the fitted model. 

Aiming to correct this problem, the adjusted coefficient of determination 

(  compensate the number of variables in the model and normalize the 

numerator and denominator on the basis of their degree of freedom, giving better 

parameter for models comparisons that it is also smaller than R² value. Model 

performance with higher R² adj presents the better goodness-of-fit. 

Another result provided by OLS and GWR models is called Sigma and 

it represents the square root of the normalized residual sum of squares, where the 

residual sum of squares is divided by the effective degrees of freedom of the 

residual.  
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The  and Sigma will be used to compare the goodness-of-fit of 

OLS and GWR models. 

 

2.10 Akaike Information Criteria (AIC) 

 

Akaike Information Criterion (AIC) (AKAIKE, 1974) is a criterion that 

tries to balance the conflicting between accuracy (fit) and simplicity (small 

numbers of variables). The numerical value of AIC for a single model is not 

descriptive, but it is useful to rank different models on the basis of their twin 

criteria of fit and simplicity (CHATERJEE; HADI, 2006). 

The AIC (corrected Akaike Information Critera) can be defined as: 

 

                              (5) 

 

Where: 

n: sample size 

: estimated standard deviation of the error term 

: denotes the trace of the hat matrix, which is a function of the 

bandwidth. 

 

For a more detailed overview of the AICc, the reader is referred to 

Akaike (1974) and Fotheringham, Brundson and Charlton (2002). As a general 

rule, the best model holds the lowest AICc value and then the model 

approximation is closer to reality.  

Some authors have used AICc to compare OLS and GWR models 

(JAIMES et al., 2010; YU, 2006). All researchers revealed a better performance 

of GWR occasioned by the best estimation of parameters across space, spatial 
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stationarity and spatial dependence. In this work, the AIC will be used to 

compare OLS and GWR performances. 

 

2.11 Spatial Autocorrelation (Moran’s I) 

 

The “first law of geography” states that everything is related to 

everything else, but proximate things are more related than distant things. This 

law is a key concept of spatial data analysis, especially for spatial 

autocorrelation. Spatial autocorrelation measures how much the observed value 

of an attribute in a region is independent of the values of the same variable in 

relation to its neighbors, suggesting spatial dependence or spatial independence.  

One of the OLS assumptions is that the errors terms be independent. 

However, this assumption is often violated due to spatial autocorrelation of the 

data, leading to a biased estimation of standard error parameters. Thus, 

autocorrelation should be taken into account in regression models because it 

may impair the ability to perform standard statistical hypothesis tests 

(LEGENDRE, 1993). The GWR technique can deal with the spatial 

autocorrelation problem, generating more reliable results. Zhang, Gove and 

Heath (2005) investigated spatial residuals from six different techniques such as 

generalized linear model (GLM), linear mixed model (LMM), classification and 

regression tree (CART), multivariate adaptive regression splines (MARS), 

artificial neural networks (ANN), and geographically weighted regression 

(GWR). All the models, except the GWR, yielded more residual clusters of 

similar values. These results confirm that the GWR technique has more desirable 

spatial distributions of errors terms. 

One index very useful for measuring spatial autocorrelation is Moran’s I 

(MORAN, 1950). This is a global index that tests the null hypothesis of 
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autocorrelation in which values close to zero are expected among model 

residuals.   

The Moran’s I formula is given by formula: 

 

                                                                 (6) 

 

where: 

: total number of features 

: value of attribute data in region i 

: average value of attribute data 

: spatial weight between i and j 

 

In general, Moran’s I values range from -1 to 1, indicating negative or 

positive spatial autocorrelation, respectively.   
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4 METHODOLOGY 

 

This section presents the implementation of the OLS and GWR 

techniques at three different scales. First, the potential explanatory variables 

datasets were collected based on the scientific literature and aggregated into 

three aggregation levels. Afterward, an exploratory analysis was conducted to 

select the most significant variables to insert into the models. Finally, the OLS 

and GWR models were applied to each aggregation level. 

 

 
Figure 4 Schematic overview of the methodology 

 

4.1 Study area 

 

The state of Minas Gerais is located in south-eastern Brazil between 

latitudes 14o 03' 28" S and 23o 07' 02" S and longitudes 51o 07' 02" W and 39o 

49' 58" W. It covers an area of approximately 590,000 km² distributed across 

Datasets 

Exploratory analysis

GWR model

Aggregation level 1: 
Municipalities

Aggregation level 2: 
Micro-regions

Aggregation level 3:
Watersheds

OLS model
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853 municipalities within three major Brazilian biomes: viz. Cerrado, Mata 

Atlântica, and Caatinga (Figure 5).  

 

 
Figure 5 Location of the state of Minas Gerais, Brazil and its three major biomes 

 

The Cerrado biome is the second largest Brazilian biome, exceeded only 

by the Amazônia biome. In the state of Minas Gerais, the Cerrado biome is the 

largest in area, followed by the Mata Atlântica and the Caatinga biomes. Also, 

the Cerrado biome is considered as an important biodiversity hotspot (MYERS 

et al., 2000) due to the highest levels of species richness and endemism. The 

Mata Atlântica biome is distributed along the Atlantic coast of the Brazil, 

reaching areas in Argentina and Paraguay. However, its remaining forests in the 

state of Minas Gerais are estimated in only 9.68% of the original area 

(FUNDAÇÃO SOS MATA ATLÂNTICA; INPE, 2010), being considered as 

one of the most endangered biomes. Finally, the Caatinga biome is distributed 

along the north-eastern states in Brazil as well as in the state of Minas Gerais. 

Nonetheless, compared to the Cerrado and Mata Atlantica biomes, the Caatinga 
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is the least studied biome, requiring more researches about its diversity, ecology, 

and conservation. 

Since 2003, the state of Minas Gerais in conjunction with the Secretary 

of Environment and Sustainable Development (SEMAD), the State Forestry 

Institute (IEF) and the Federal University of Lavras (UFLA) through the 

program entitled “Monitoring the Native Flora of Minas Gerais” (SCOLFORO; 

CARVALHO, 2006), has been providing important information to guide 

governmental strategies for sustainable forest management. This information is 

published every two years and it includes land-cover maps, deforestation rates, 

volume estimates, and carbon stocks. 

According to the monitoring system (CARVALHO; SCOLFORO, 

2008), the land cover is classified into 18 classes (Figure 6). Details regarding 

the classification process can be found in Scolforo and Carvalho (2006).  

 

 
Figure 6 Land-cover map of the state of Minas Gerais for the year 2007 
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Besides the pronounced variability of vegetation types, the state is 

characterized by large socioeconomic and cultural differences across its macro-

administrative regions (Figure 7). These regions were also used as 

benchmarking for a better comprehension and discussion of local results. 

Additionally, a deforestation map between the years 2003 to 2007 can be seen in 

the Figure 8.  

 

 
Figure 7 Macro-administrative regions in the state of Minas Gerais 
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Figure 8 Deforested areas from 2003 to 2007 per municipalities 

 

The state’s population is about 19,595,309 inhabitants (INSTITUTO 

BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE, 2010), 

concentrated in the Central region. The agrarian gross product index is higher in 

the Sul region, followed by Triângulo region (FUNDAÇÃO JOÃO PINHEIRO, 

2002). 

The state of Minas Gerais is also characterized by a number of steel 

industries that use charcoal as fuel during the production process. The charcoal 

comes from planted forest such as eucalyptus or from native forests located in 

the Cerrado biome. Due to the low occurrence of valuable species in the 

Cerrado biome and the industry pressure for steel mills, native forests are turned 

into charcoal and then, soils are prepared for the expansion of agricultural 

activities (CARVALHO; SCOLFORO; CAVALCANTI, 2009). According to 

Ughli, Goldemberg and Coelho (2008) the resources from native forests are 

increasingly scarce, especially in areas close to steel industries. As a result, the 

distance between the source of charcoal and steel industries are increasing. This 
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situation may encourage steel industries to develop reforestation programs, 

aiming at supplying charcoal for the production process. 

 

4.2 Datasets 

 

The datasets used in the present study comprise deforestation rates 

registered between 2003 and 2007 (CARVALHO; SCOLFORO, 2008; 

SCOLFORO; CARVALHO, 2006). The deforestation rate is available per 

municipality and it was obtained through digital change detection applied to 

Landsat images. The NDVI image difference with positive values indicated 

areas where vegetation had decreased while negative values indicated areas 

where vegetation had increased. An algorithm was applied to minimize possible 

noises and emphasize change detections.  Official figures show that 152,635 ha 

were deforested between 2003 and 2005, and 109,754 ha were deforested 

between 2005 and 2007 (CARVALHO; SCOLFORO, 2008; SCOLFORO; 

CARVALHO, 2006). 

The independent or explanatory variables were collected based on 

previous research studies and on proximate and underlying driving forces 

proposed by Geist and Lambin (2002). In the present study, the independent 

variables are divided into two main groups: biophysical and socio-economic 

factors (Table 1).  
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Table 1 List of dependent variable and primary independent or explanatory 
variables 

Dependent variable Code Unit 
Deforested areas in the period of 2003 to 2007 DIF0307 ha 
   
Independent variables   
Biophysical factors   
Monoculture forest area in 2007 R07 ha 
Shortest distance to roads  SDR m 
Shortest distance to towns  SDC m 
Agricultural area in 2007 AP07 ha 
Socio-economic factors   
Population in 2006  P06 no. 
Agrarian gross domestic product in 2007  PI07 R$*2000 
Charcoal production in 2007 PC07 ton 
Charcoal price in 2007 PEC07 R$/ton 
Cattle ranching in 2007  B07 no. 

 

The biophysical factors such as proximity to roads, proximity to towns 

and monoculture forest areas were prepared in a Geographical Information 

System (GIS). The monoculture forest forest area comprises eucalyptus and 

pines plantations extracted from the state’s land cover map. Proximity to roads 

and proximity to towns were calculated as the average of the shortest distance 

from each deforested area to the closest roads and towns, respectively. 

Agricultural area was obtained through the Applied Economic Research Institute 

(IPEA).  

The selected socio-economic factors include agrarian gross domestic 

product, population as well as production and price of charcoal obtained through 

the Brazilian Institute of Geography and Statistics (IBGE) and IPEA. All 

variables are organized by municipalities. 
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4.3 The aggregation procedure 

 
To evaluate the model results across scales, the dataset collected at the 

original level of municipalities was aggregated at two coarser spatial scales 

(Figure 8). The Aggregation level 1 (Figure 8a) refers to the original level of 

municipalities, containing 853 regions. These regions were aggregated into 66 

regions corresponding to the micro-administrative regions to form Aggregation 

level 2 (Figure 8b). The micro-administrative regions perfectly coincide with the 

borders of the municipalities. Also, the 853 regions were further aggregated into 

40 regions corresponding to the watersheds to form Aggregation level 3 (Figure 

8c). In this case, the watersheds do not necessarily coincide with the municipal 

boundaries. 

 

a)  

Figure 7 Levels of analysis: a) Level 1; b) Level 2; c) Level 3 
(...continue...) 
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b)  

c)  
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Data from Aggregation levels 2 and 3 were generated through a 

summation of values for all variables, except for the price of charcoal, which 

was calculated as the average of the charcoal price from all municipalities. 

At Aggregation level 1, municipalities without the occurrence of 

monoculture forest forest, charcoal production, or agriculture, as well as 

municipalities with deforested area inferior to 10 hectares were considered as 

outliers and removed from further analysis, resulting in 192 municipalities. At 

Aggregation levels 2 and 3, the same procedure was used to remove outliers, 

resulting in 40 regions and 29 watersheds (Figure 9). According to Harris, 

Fotheringham and Juggins (2010) the outliers in the sample data have to be 

removed to ensure accurate results for GWR modeling. 

 

a)  

Figure 8 a) Municipalities selected at Aggregation level 1; b) Micro regions 
selected at Aggregation level 2; c) Watersheds selected at Aggregation 
level 3 

(...continue...) 
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b)  

c)  
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4.4 Exploratory analysis  

 

Since the normal distribution of variables is an assumption of the OLS 

and GWR models, the dependent variable and independent variables previously 

selected were tested against normality. When the variables were not normally 

distributed, a logarithmic transformation of the form Ln(Y) and Ln(X) was 

applied, improving the relationships between the dependent variable and 

independent variables. Moreover, a scatterplot matrix was used to display the 

associations among the dependent variable and independent variables. Results 

from multiple linear regressions are more reliable when independent variables 

are not strongly correlated. In this context, the strong correlation between 

variables is also referred as multicollinearity, which may invalidate the model. 

To avoid multicollinearity between the independent variables, a correlation 

matrix was calculated to measure the extent of association between them. 

Variables that presented a strong correlation (higher than 0.5) were excluded 

from further analysis. 

Finally, seeking to refine the linear models, a forward stepwise method 

was carried to exclude non-significant independent variables. 

 

4.5 Ordinary Least Square and Geographically Weighted Regression 

 

Ordinary least squares regression (OLS) and geographically weighted 

regression (GWR) were used to explore the relationship between the dependent 

variable and the selected independent variables. OLS is a global estimation by 

linear models that assumes stationarity of the parameters across space and 

generates a single equation that shows the best fits. However, OLS can result in 

biased models, especially when dealing with spatial data. Thus, as the driving 

forces behind deforestation vary in time and space (VELDKAMP; FRESCO, 
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1996), the OLS method is not suitable for spatial analysis. Recent studies have 

demonstrated the poor performance of OLS compared to others models such as 

GWR (GAO; LI, 2011; ZHAO; YANG; ZHOU, 2010). 

GWR appears as a new local spatial technique that addresses spatial data 

analysis (BRUNDSON; FOTHERINGHAM; CHARLTON, 1998; 

FOTHERINGHAM; BRUNDSON; CHARLTON, 2002). The technique is an 

improvement over global regression, providing more weight to observations 

spatially closer to locations being predicted. The weights assigned to each 

observation are given by a weight matrix scheme based on a distance kernel 

function.  

The distance kernel function represents a Gaussian curve and can be 

fixed or adaptive. A fixed kernel function assumes that bandwidths are constant 

across the study area as opposed to adaptive kernel function that uses variable 

bandwidth. The adaptive kernel function produce spatial kernels able to adapt 

themselves to variations in the density of the data and avoiding large local 

variance estimation in areas where data are sparse (FOTHERINGHAM; 

BRUNDSON; CHARLTON, 2002). For this reason, we adopted an adaptive 

kernel function to implement the GWR model. 

In this study, an algorithm that seeks to minimize the Akaike 

Information Criteria (AIC) was chosen to select the bandwidth for the adaptive 

Kernel function based on centroids of each analyzed entity. The AIC has the 

advantage of being more general in application than others statistics because it 

can be used for Poisson and logistic GWR, as well as for linear models 

(FOTHERINGHAM; BRUNDSON; CHARLTON, 2002). 

In addition, a significance test-t with threshold of 95% of confidence 

was applied to the parameters of OLS and GWR masking out points where the 

relationship between variables were not significant. These values can be 
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mapped, allowing the analyst to interpret the nature of the relationship between 

deforestation and driving forces.  

To assess the goodness-of-fit for each model, we used AICc, R² adj and 

Sigma. The model with lower AICc values means a better fit to the observed 

data. AICc differences > 3 are assumed to represent significant difference 

between OLS and GWR models (GAO; LI, 2011; WINDLE et al., 2009). 

Models with higher R² adj and lower Sigma are also preferable. 

Moran’s I was calculated to evaluate the spatial pattern of OLS and 

GWR model residuals. Under the null hypothesis that no spatial autocorrelation 

exist among residuals, Moran’s I has an expected value near zero. Values closer 

to 1 indicate positive autocorrelation and values closer to -1 indicate negative 

autocorrelation. 
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5 RESULTS AND DISCUSSION 

 
This section summarizes our main modeling results and is organized as 

follows. The immediate section presents the selected variables, followed by a 

section about the OLS and GWR fitted models and another one about the 

visualization of GWR results. In these sections, results are compared among 

aggregation levels, highlighting the main differences found across the study 

area. Finally, the last section presents the spatial autocorrelation of model 

residuals for each aggregation level. 

 

5.1 Selected variables 

 
Figure 10 displays the scatterplot matrix among the dependent variable 

and explanatory variables. It is evident the improvement of the linear 

relationship at the transformed variables compared to the non-transformed 

variables.  
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Figure 9 Scatterplot of transformed and non-transformed variables. a) non-

transformed variables at Aggregation level 1; b) transformed variables 
at Aggregation level 1; c) non-transformed variables at Aggregation 
level 2; d) transformed variables at Aggregation level 2; e) non-
transformed variables at Aggregation level 3 

 

Table 2 shows summary statistics for the transformed and non-

transformed dependent variables.  
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Table 2 Summary statistics for transformed and non-transformed dependent 
variables for each aggregation level 

Levels Aggregation level 1 Aggregation level 2 Aggregation level 3 

Statistics DIF0307¹ LNDIF0307² DIF0307¹ LNDIF0307² DIF0307¹ LNDIF0307² 

Count 192 192 40 40 29 29 

Average 931.33 5.96 6150.26 8.09 8785.93 8.43 

Standard deviation 1357.30 1.42 6668.85 1.22 9106.78 1.26 

Coeff. of variation 1.46 0.24 1.08 0.15 1.04 0.15 

Minimum 12.87 2.55 273.06 5.61 506.88 6.23 

Maximum 7611.03 8.94 23701.40 10.07 28681.80 10.26 

Range 7598.16 6.38 23428.30 4.46 28174.90 4.04 

Stnd. Skewness 15.26 -0.69 3.32 -0.23 2.19 -0.20 

Stnd. Kurtosis 22.75 -1.56 0.63 -1.09 -0.57 -1.38 

¹ Non-transformed deforested area during the period 2003 to 2007 
² Transformed deforested area during the period 2003 to 2007 

 

Measures of standard skewness and standard kurtosis demonstrate 

whether the data comes from a normal distribution. Values outside the range -2 

to +2 indicate significant departures from normality. As observed in Table 3, 

non-transformed dependent variables (DIF0307) are not within the expected 

range of a normal distribution in all aggregation levels. Figure 11 shows the 

frequency histogram for the transformed and non-transformed dependent 

variables. All transformed variables are normally distributed.  
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Figure 10 Frequency histogram for transformed and non-transformed variables. 

a) transformed variable at Aggregation level 1; b) non-transformed 
variable at Aggregation level 1; c) transformed variable at 
Aggregation level 2; d) non-transformed variable at Aggregation level 
2; e) transformed variable at Aggregation level 3 

 

At Aggregation level 1, multicollinearity was detected for the following 

variables: agrarian gross domestic product, cattle ranching, and shortest distance 

to towns (Table 3), whereas at Aggregation levels 2 and 3, multicollinearity was 

detected for agrarian gross domestic product, charcoal price, cattle ranching, and 

shortest distance to towns. These variables were removed from further analysis 

(Tables 4 and 5). 
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Table 3 Correlation matrix between independent variables at Aggregation level 1 
Level 1 LNP06 LNAP07 LNPI07 LNPC07 LNPEC07 LNR07 LNB07 LNSDR LNSDC 

LNP06 1.00 0.47 0.56 0.19 0.08 0.14 0.56 0.08 0.34 

LNAP07  1.00 0.74 0.26 0.05 0.14 0.62 0.37 0.51 

LNPI07   1.00 0.29 -0.02 0.11 0.71 0.35 0.42 

LNPC07    1.00 0.18 0.23 0.42 0.22 0.51 

LNPEC07     1.00 -0.10 0.08 0.01 0.11 

LNR07      1.00 0.01 0.05 0.20 

LNB07       1.00 0.36 0.54 

LNSDR        1.00 0.51 

LNSDC                 1.00 

 

Table 4 Correlation matrix between independent variables at Aggregation level 2 
Level 2 LNP06 LNAP07 LNPI07 LNPC07 LNPEC07 LNR07 LNB07 LNSDR LNSDC 

LNP06 1.00 0.30 0.57 0.00 -0.35 -0.03 0.48 0.00 -0.17 

LNAP07  1.00 0.76 0.23 -0.01 -0.07 0.60 0.46 0.42 

LNPI07   1.00 0.22 -0.13 -0.08 0.71 0.21 0.13 

LNPC07    1.00 0.61 0.19 0.45 0.28 0.53 

LNPEC07     1.00 0.10 0.05 0.15 0.48 

LNR07      1.00 -0.14 -0.09 0.12 

LNB07       1.00 0.37 0.39 

LNSDR        1.00 0.60 

LNSDC                 1.00 
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Table 5 Correlation matrix between independent variables at Aggregation level 3 
Level 3 LNP06 LNAP07 LNPI07 LNPC07 LNPEC07 LNR07 LNB07 LNSDR LNSDC 

LNP06 1.00 0.35 0.59 0.00 -0.31 0.41 0.51 -0.43 -0.16 

LNAP07  1.00 0.90 0.22 0.03 0.40 0.70 0.13 0.28 

LNPI07   1.00 0.23 -0.04 0.43 0.78 -0.10 0.13 

LNPC07    1.00 0.80 0.36 0.44 0.33 0.74 

LNPEC07     1.00 0.20 0.20 0.45 0.72 

LNR07      1.00 0.32 -0.27 0.37 

LNB07       1.00 0.10 0.35 

LNSDR        1.00 0.47 

LNSDC                 1.00 

 

The stepwise method generated the most significant variables for each 

aggregation level. As a result, from the nine initially selected variables, only 

three variables at Aggregation level 1 and two variables at Aggregation levels 2 

and 3 were retained for OLS and GWR modeling (Table 6). At Aggregation 

level 1, the selected variables included charcoal production, monoculture and 

shortest distance to roads. At Aggregation levels 2 and 3, the selected variables 

included charcoal production and monoculture forest forest area.  

 

Table 6 Explanatory or independent variables selected in each aggregation level 
for the OLS and GWR models 

Aggregation level 1 Aggregation level 2 Aggregation level 3 

Charcoal Production  Charcoal Production  Charcoal Production  

Monoculture forest area Monoculture forest area Monoculture forest area  

Shortest distance to roads     

 

The most significant driving forces detected confirm the hypothesis that 

the deforestation process in Minas Gerais is related to charcoal production and 

monoculture forest expansion. 
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5.2 OLS and GWR fitted models 

 

OLS results are shown in Table 8. The OLS model explains 31 % of 

dependent variable variance at Aggregation level 1, 50% at Aggregation level 2 

and 63 % at Aggregation level 3 (adjusted R square). Sigma values are lower at 

Aggregation level 3 (0.77) followed by Aggregation level 2 (0.86) and 

Aggregation level 1 (1.38). The AICc is greater at Aggregation level 1 (611.87) 

followed by Aggregation level 2 (104.42) and Aggregation level 3 (69.87). 

According to these parameters, the best performance is obtained at Aggregation 

level 3. 

 

Table 6 OLS model results for each aggregation level 
Aggregation levels 1 2 3 

Sigma 1.38 0.86 0.77 

AICc 611.87 104.42 69.87 

R Square 0.32 0.53 0.65 

R Square adjusted 0.31 0.5 0.63 

 

Table 9 shows the results of GWR for each aggregation level. The GWR 

model explains 36 % of the dependent variable variance at Aggregation level 1, 

73% at Aggregation level 2, and 68 % at Aggregation level 3 (adjusted R 

square). The Sigma value is the lowest at Aggregation level 2 (0.64), but reaches 

0.72 and 1.13 at Aggregation level 3 and Aggregation level 1, respectively. 

These values confirm that the Aggregation level 2 presents the best GWR 

performance followed by Aggregation level 3 and Aggregation level 1. 
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Table 7 GWR model results for each aggregation level 
Aggregation levels 1 2 3 

Sigma 1.13 0.64 0.72 

AICc 599.71 93.47 72.00 

R Square 0.39 0.81 0.74 

R Square adjusted 0.36 0.73 0.68 

 

The lowest OLS and GWR performances at Aggregation level 1 implies 

that it is more difficult to fit a linear model to non-aggregated data composed of 

a large number of spatial units compared to aggregated data. The aggregation 

procedure uses average values from original datasets. As a result, the 

relationship between dependent and independent variables is more linear due to 

the decrease in the variance of the variable creating a smoothing effect 

(FOTHERINGHAM; WONG, 1991). Another view stated by Kok (2001) is 

referred as the aggregation error and occurs when non-linear relationships are 

translated at more aggregated scales. At Aggregation level 1, the adjusted R 

square value suggests that other influential variables should be considered into 

the model.  

It is evident the improvement of GWR model performance analyzing 

AICc and adjusted R square criteria when comparing to the OLS model 

performance. The difference in AICc at Aggregation level 1 and 2 is greater than 

3, indicating better performance in GWR results. The AICc value increase at 

Aggregation level 3 is not significant (<3). 

 

5.3 OLS parameter estimates 

 

The results of the OLS regression reveal that all parameter estimates are 

significant at 95% confidence level for all aggregation levels (Tables 11 and 12), 
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except by the intercept parameter at Aggregation level 1 (Table 10). Moreover, 

all coefficients present positive correlation, where deforested areas and charcoal 

production has stronger influence followed by monoculture forest area at 

Aggregation levels 2 and 3 and followed by shortest distance to roads at 

Aggregation level 1. 

 

Table 8 Parameter estimates for OLS regression model with significance level of 
95% at Aggregation level 1 

Parameter Estimate Standard error t-value 
Intercept 1,44 0,83 1,74 
PC07 0,27 0,04 6,56 
R07 0,09 0,03 3,23 
SDR 0,26 0,09 2,82 

 

Table 9 Parameter estimates for OLS regression model with significance level of 
95% at Aggregation level 2 

Parameter Estimate Standard error t-value 
Intercept 4,14 0,67 6,16 
PC07 0,3 0,06 4,99 
R07 0,19 0,06 3,01 

 

Table 10 Parameter estimates for OLS regression model with significance level 
of 95% at Aggregation level 3 

Parameter Estimate Standard error t-value 
Intercept 4,08 0,69 5,89 
PC07 0,31 0,06 4,93 
R07 0,2 0,07 2,86 

 

5.4 Visualizing GWR results 

 

GWR models result in maps that highlight the spatial variability of the 

estimated parameters, assisting the interpretation of the factors related to the 

deforestation process in each local. The parameter estimates with significance 

threshold of 95% for each aggregation level are shown in Figure 12, 13 and 14. 
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The regression coefficient  represents the value of the dependent variable 

when all independent variables are zero. The coefficients  can be understood 

as the change in the dependent variable corresponding to a unit change in one 

independent variable when all other independent variables are constant.  

At Aggregation level 1, all parameter estimates vary spatially according 

to both locations where they have a significant and positive association with 

deforested areas. The entities in white represent regions with the parameters 

were not significant with threshold of 95 %. The intercept parameter is not 

significant for municipalities located in the Norte, Jequitinhonha, Vale do 

Mucuri, Central, Metropolitana and Rio Doce regions. In contrast, the intercept 

parameter presents a stronger association in some municipalities located in the 

Triângulo region, suggesting that these municipalities may present deforested 

areas while other variables are zero (Figure 12a).  

When analyzing the parameter estimates of the shortest distance to 

roads, it can be observed that the municipalities located in the Norte, 

Jequitinhonha, Vale do Mucuri, Metropolitana and Rio Doce regions present a 

strong relationship with deforested areas (Figure 12b). Charcoal production has 

a greater influence for most municipalities located in the Noroeste, Triângulo, 

Central, Metropolitana and Oeste regions (Figure 12c). Finally, monoculture 

forest area shows a greater influence in the Noroeste, Norte and Central regions 

(Figure 12d).  
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a)  

b)  
Figure 11 Parameter estimates for GWR model at Aggregation level 1 with 

significance level. a) Intercept; b) Shortest distance to roads; c) 
Charcoal production; d) Monoculture forest area.  

(…continue…) 

 

 



65 

 

c)  

d)  
 

At Aggregation level 2, all estimated parameters vary spatially and 

present a positive relationship with deforested areas. The intercept parameter is 

significant for all micro administrative regions, but it is stronger in the Norte and 

Noroeste regions (Figure 13a). In contrast to Aggregation level 1, charcoal 

production has a greater influence at micro regions within the Metropolitana, 
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Rio Doce, Oeste, Sul, and Zona da Mata regions (Figure 13b). The values for the 

monoculture forest area estimated parameters, presented in Figure 13c, indicate 

that the Jequitinhonha, Central and Rio Doce regions experience a greater 

deforestation process due to the expansion of monoculture forest plantations.  

 

a)  
Figure 12 Parameter estimates for GWR model at Aggregation level 2 with 

significance level. a) Intercept; b) Charcoal production; c) 
Monoculture forest area 

(…continue…) 
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b)  

c)  
 

The estimated parameters at Aggregation level 3 reveal that the intercept 

is greater for watersheds located in the Noroeste and Norte regions (Figure 14a), 

while the charcoal production has a greater influence for watersheds located in 

the Norte, Jequitinhonha, Vale do Mucuri, and Rio Doce regions (Figure 14b). 
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Monoculture forest area has a greater influence for some watersheds located in 

the Triângulo, Central, Metropolitana, Oeste, Sul and Campo das Vertentes 

regions (Figure 14c). 

 

a)  
Figure 13 Parameter estimates for GWR model at Aggregation level 3 with 

significance level. a) Intercept; b) Charcoal production; c) 
Monoculture forest area 

(…continue…) 
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b)  

c)  
 

Spatial non-stationarity can be observed by analyzing all parameter 

estimates at all aggregation levels. Spatial non-stationarity detected by GWR 

models was previously reported in many studies (OGNEVA-
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HIMMELBERGER; PEARSALL; RAKSHIT, 2009; WINDLE et al., 2009). In 

this study, it suggests that land-use and land-cover patterns vary across space as 

well as its driving forces. According to Aguiar, Câmara and Escada (2007) land-

use data changes in one area tend to propagate to neighbor regions, being 

spatially variable. Also, the spatial non-stationarity indicates the spatial 

heterogeneity of the factors involved with deforestation process in Minas Gerais.  

Differences were detected by comparing the parameter estimates at all 

aggregation levels. On the one hand, the strongest relationship between 

deforested areas and charcoal production at Level 3 is located in the Norte, 

Jequitinhonha, Vale do Mucuri, and Rio Doce regions. On the other hand, at 

Aggregation level 2, the charcoal production is strongly related to deforested 

areas in areas located in the Metropolitana, Rio Doce, Oeste, Sul and Zona da 

Mata regions. Another example is related to the monoculture forest area. At 

Aggregation level 3, the monoculture forest area shows a stronger relationship 

with deforested areas in administrative regions located in southwestern Minas 

Gerais, like in the Triângulo, Central, Metropolitana, Oeste, Sul and Campo das 

Vertentes regions, while at Aggregation level 2, the monoculture forest area 

shows a stronger relationship in regions located in the northeast of the state like 

in the Jequitinhonha, Central and Rio Doce regions. 

These differences between aggregation levels confirm the hypothesis 

that the MAUP is present in this LUCC modeling and that it has a significant 

impact on GWR models. For each scale of analysis, the researcher is likely to 

find different relationships between the driving forces and deforested areas 

across the space.  

The R square values show the proportion of variance explained by the 

model. In GWR models it is possible to map the R square for each local. Local 

R square values present variations from 0.30 to 0.41 at Aggregation level 1, 0.15 

to 0.86 at Aggregation level 2 and 0.57 to 0.78 at Aggregation level 3 (Figure 
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15). At Aggregation level 1, the higher R square values are located in the 

Central, Metropolitana and Oeste regions, suggesting that the GWR model 

generates better results for these regions. At Aggregation level 2, the higher R 

square values are located in the Triângulo, Central, Metropolitana, Rio Doce, 

Oeste, Sul and Zona da Mata regions, whereas at Aggregation level 3, the higher 

R square values are located in the Norte, Jequitinhonha, Vale do Mucuri, 

Central, Metropolitana, Rio Doce and Zona da Mata regions. The regions 

Central and Metropolitana present the best goodness-of-fit in all aggregation 

levels. 

 

a)  
Figure 14 Spatial distribution of local R square. a) Aggregation level 1; b) 

Aggregation level 2; c) Aggregation level 3 
(…continue…) 
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b)  

c)  
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6 SPATIAL AUTOCORRELATION 

 

Strong evidence of spatial autocorrelation is detected from OLS models 

residuals at Aggregation levels 1 and 2, differently from Aggregation level 3 

(Table 13). The results were tested against the null hypothesis with 95% 

confidence level (p-value>0.05). The z score values measure standard deviation 

from the mean in a normal distribution. High values indicate that the pattern is 

not randomly distributed. 

These results confirm the hypothesis that the conventional regression or 

OLS is not appropriated for spatial data, because the model does not consider the 

spatial non-stationarity neither spatial dependence, resulting in autocorrelated 

residuals (GAO; LI, 2011; TU; XIA, 2008; WINDLE et al., 2009). Figure 16 

shows the OLS model residuals.  

 

Table 11 Moran’s I values for OLS model residuals for each aggregation level 
Aggregation 

levels 
Aggregation level 

1 
Aggregation level 

2 
Aggregation level 

3 
Moran's I 0.10 0.23 0.13 
Z score (std. 
deviation) 5,20 3.36 1.15 
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a)  

b)  

Figure 15 Spatial distribution of OLS residuals. a) Aggregation level 1; b) 
Aggregation level 2; c) Aggregation level 3 

(…continue…) 
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c)  

 

It is possible to identify some clusters in residuals located in the Norte 

region at all aggregation levels (Figures 16a, b, c).  

Spatial autocorrelation is a requirement for the application of GWR 

(ZHAO; YANG; ZHOU, 2010), improving the performance compared to global 

regressions. A completely random spatial pattern of GWR model residuals was 

found at all aggregation levels (Table 14).  

Additionally, Figure 17 shows the spatial distribution of GWR model 

residuals for the three aggregation levels. No clustering pattern of the GWR 

residuals can be identified across space for all the aggregation levels. The 

Moran’s I analysis confirms the evidence that the GWR modeling is appropriate 

when dealing with spatial data, especially for LUCC modeling. These results are 

in accordance with the previous study conducted by Zhao, Yang and Zhou 

(2010) who applied GWR to estimate the effect of climate and site conditions on 

vegetation distribution in China. These authors also compared the results 
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obtained from a GWR model and an OLS model using the Moran’s I. They 

found spatial autocorrelation in OLS residuals and none in the GWR residuals.  

 

Table 12 Moran’s I values for GWR model residuals for each aggregation level 
Aggregation 

levels 
Aggregation level 

1 
Aggregation level 

2 
Aggregation level 

3 
Moran's I 0.06 0.02 0.08 
Z score (std. 
deviation) 1.12 0.6 0.79 

 

a)  
Figure 16 Spatial distribution of GWR residuals. a) Aggregation level 1; b) 

Aggregation level 2; c) Aggregation level 3 
(…continue…) 
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b)  

c)  
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7 CONCLUSIONS AND CONSIDERATIONS 

 

This study examined the relationship between deforestation and its 

driving forces in the state of Minas Gerais, Brazil using three different 

aggregation levels. The use of GWR empirical models was motivated by the 

necessity of mapping the spatial distribution of the most important driving forces 

of deforestation across the state. The use of three aggregation levels was 

motivated by the importance of scale issues when performing LUCC modeling. 

To date, no study has examined these driving forces at different scales in Minas 

Gerais. Modeling the driving forces of deforestation in the state of Minas Gerais 

provided a valuable contribution to the LUCC science, as well as guidance to the 

decision-making process. 

Comparing OLS and GWR techniques, the GWR performance presented 

improvements to model the driving forces behind deforestation. Additionally, 

both techniques showed different results at the three considered spatial scales. 

 Our exploratory analysis showed that the most significant driving forces 

of deforestation are shortest distance to roads, charcoal production and 

monoculture forest area at Aggregation level 1, and charcoal production and 

monoculture forest area at Aggregation levels 2 and 3. These forces are related 

to the current pressure on natural resources in Minas Gerais and should be 

investigated in more detail by governmental agencies. In this study, the 

deforestation database did not include information about the illegalness of 

deforestation activities, which might provide further insights on the causes of 

deforestation. Recent studies have shown that there still exists an increased use 

of wood from native forests of the Cerrado biome caused by the rising costs of 

wood from monoculture forest areas (REZENDE; SANTOS, 2010). According 

to the authors, charcoal is the most important product in the agro-forestry 

business in Minas Gerais and the state presents the largest monoculture forest 
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area in Brazil. The exploratory analysis conducted in the present study confirms 

that charcoal production and monoculture forest area are important activities at 

all levels of aggregation. 

The strong relationship with deforestation presented by charcoal 

production and monoculture forest area do not necessarily imply that they are 

the causative agents of deforestation, though these variables represent important 

economic activities for the state and are certainly related to other aspects not 

investigated in this study such as political and technological factors. 

The identification of the most important variables related to 

deforestation may assist the choice of specific actions and optimal locations for 

surveillance of deforestation. However, the government decision-makers should 

be aware of the scale used in the analysis. For actions concerning local scales, 

Aggregation level 1 should be used with emphasis to municipalities showing the 

highest relationship between variables. Aggregated data might be considered for 

actions concerning the definition of more general statewide policy. 

For a better evaluation of which factors are behind deforestation in the 

state of Minas Gerais, future studies should incorporate additional proximate and 

underlying variables such as technological, public policies, environmental and 

cultural factors. Models capable of projecting changes according to anticipated 

scenarios may be developed with the variables identified in the present study to 

support governamental strategic plans for the creation of protected areas and for 

the definition of effective deforestation monitoring systems. 

Finally, it is important to highlight the non-stationary nature of the 

relationships between deforestation and its driving forces across the state of 

Minas Gerais. GWR analysis revealed that different factors determine forest loss 

in the state of Minas Gerais and that the adjusted GWR model is sensitive to 

variation in the aggregation levels. GWR is a helpful exploratory method to 

identify the driving forces of deforestation at different aggregation levels. The 
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parameter estimates exhibit significant variation for all aggregation levels 

confirming the influence of MAUP in GWR models. Thus, the MAUP must be 

investigated into LUCC modeling as for each scale of analysis the researcher is 

likely to find different relationships between the driving forces and deforested 

areas across the space.  
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