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ABSTRACT. Current study employs Monte Carlo simulation in the building of a significance test to 
indicate the principal components that best discriminate against outliers. Different sample sizes were 
generated by multivariate normal distribution with different numbers of variables and correlation 
structures. Corrections by chi-square distance of Pearson´s and Yates's were provided for each sample size. 
Pearson´s correlation test showed the best performance. By increasing the number of variables, 
significance probabilities in favor of hypothesis H0 were reduced. So that the proposed method could be 
illustrated, a multivariate time series was applied with regard to sales volume rates in the state of Minas 
Gerais, obtained in different market segments. 
Keywords: contaminated samples, Monte Carlo, significance test, p-value. 

Componentes principais na discriminação de outliers: estudo de simulação em dados 
amostrais corrigidos pelas distâncias qui-quadrado de Pearson’s and Yates.  

RESUMO. Este trabalho tem por objetivo realizar um estudo, utilizando simulação Monte Carlo na 
construção de um teste de significância para indicar os componentes principais que melhor discriminam as 
discrepâncias. Neste contexto, diferentes tamanhos amostrais foram gerados pela distribuição normal 
multivariada com diferentes números de variáveis e estruturas de correlação. Para cada tamanho amostral, 
procedeu-se com as correções dadas pela distância qui-quadrado de Pearson e Yates. Concluiu-se ao 
considerar a correção de Pearson o teste apresentou melhor desempenho, entretanto, aumentando o 
número de variáveis as probabilidades de significância a favor a hipótese H0 foram reduzidas. Por fim, para 
ilustrar a metodologia proposta realizou-se uma aplicação em uma série temporal multivariada referente a 
índices de volumes de vendas do estado de Minas Gerais obtidos em diferentes segmentos de mercados. 
Palavras-chave: amostras contaminadas, Monte Carlo, teste de significância, p-value. 

Introduction 

A multivariate outlier is an observation that 
appears at great distance from the others on the  
p-dimensional space defined by all variables. 
Identification is usually performed with methods 
based on graph construction. One of the major 
contributions has been reported by Gnanadesikan 
and Kettenring (1972), Filzmoser (2005) and 
Filzmoser, Maronna and Werner (2008). 

With regard to the principal component analysis, 
employed as an investigation method for outlier 
detection, Steiner, Neto, Braulio and Alves (2008) 
report that components are sensitive to outliers since 
component estimation may be influenced. An 
alternative to this problem is given by  
the implementation of robust statistical methods to  

outlier observations applied in the estimation of the 
principal components (Caroni, 2000; Peña & Prieto, 
2001; Jackson & Chen, 2004; Bénasséni, 2005; Caroni 
& Billor, 2007; Silva, Moraes, & Cirillo, 2013). Enki, 
Trendafilov and Jollife (2013) argue that, as a rule, 
outlier identification via principal components 
method may be contradictory since it depends on 
which components are considered. In addition, the 
last components are most likely to provide 
additional information not available in the plot of 
the original variables. The authors also mention the 
possibility of outliers occurring at different direction 
from those detectable in a simple plot of the original 
variables in experiments with too many variables.  

A single outlier may cause the distortion of the 
principal components to fit better the outlier, 
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leading to a bad interpretation of results. Outliers 
may also cause the so-called masking effect: due to 
their presence, the model is distorted in such a way 
that, based on the principal components, no outliers 
are detected (Serneels & Verdonck, 2008) 

With respect to the method of time series, the 
effect of outliers is associated with structural 
changes that may be related to unexpected events, 
such as economic crisis, strikes or wars, 
measurement errors or inadequate recording of 
information. 

A significant contribution in identifying outliers 
in time series has been given by Fox (1972) who 
differentiated independent outliers affecting only a 
single observation from anomalous observations 
which influence successive observations. Thereby, 
the author introduced the concept of additive and 
innovative outliers. Thus, it was suggested that the 
two new time series models describing possible 
disruption in the series would accommodate the 
effect of such observations. Each model was defined 
according to the author´s classification. 
Subsequently, Chan (1992) showed that both 
models may be considered particular cases of the 
intervention analysis model. In general, outliers have 
been treated by intervention analysis in time series 
in many applications. 

In the case of disturbances occurring in time 
series models, Tsay, Peña and Pankratz (2000) 
established four types of disturbance commonly 
used in univariate time series. The authors 
investigated the effects on the dynamic structure of a 
model in a multidimensional context, with real 
examples and proposals for further analysis. 

In case of high dimensions, Filzmoser  
et al. (2008) presented a computationally fast 
procedure with the techniques of the principal 
components analysis. In summary, the method is 
formalized by constructing a procedure through 
which re-scaling data are calculated.  

Regarding to the use of chi-square distance used 
in the improvement of multivariate methods, 
Knüsel (2008) proposed a new method of factorial 
rotation based on chi-square statistics, the 
Chisquaremax criterion. Pereira, Cirillo and 
Oliveira (2014) concluded that the efficiency of 
covariance matrix estimator provided by the factorial 
model using either Chisquaremax or Promax criteria 
was not affected by the presence of outliers.  

Thus, a methodological contribution is 
proposed: improvement of the re-scaling procedure 
by Filzmoser et al. (2008) by incorporating  
chi-square corrections to data sample for building a 
significance test to evaluate the use of the first 

principal component. Monte Carlo simulation 
studies were presented for validating the 
methodology and applied in a multivariate time 
series regarding sales volume rates at different 
market segments in the state of Minas Gerais, Brazil. 

Re-scaled data 

Given a multivariate sample matrix, re-scaling 
operations started by setting the matrix G(0), whose 
element at ij position was represented by 

(0)
ijg  referring to the i-th sample unit (i = 1, ..., N) 

and the j-th variable (j = 1, ..., r), in which N is the 
sample size and r is the number of observed 
variables. According to this notation, the vector of 
the i-th sample unit was rewritten as 

(0) (0) (0) (0)
i 1j 2 j irG = G ,G ,...,G   , and the vector of the j-th 

variable as (0) (0) (0) (0)
j 1j 2 j NjG = G ,G ,...,G   . With such 

specifications, the data re-scaling approach proposed 
by Filzmoser et al. (2008) was performed, 
considering the median of observations in each 
observed variable. Thus, re-scaling was based on 
Equations 1 and 3, 

 

( )
( )

*
(0) (0) (0)

1j Njsij(1)
ij (0) (0)

1j Nj

g median g ,..., g
g  = ; j 1,..., r

MAD g ,...,g

−
= . 

(1)

 
The median absolute deviation was obtained by 

Equation 2: 
 

( ) ( )(0) (0) (0) (0)
1 N j j i iMAD g ,..., g = 1,4826 median g - median g ,× (2)

 
where: 
1.4826 is the rate corresponding to quantile 75% of 
the standard univariate normal distribution 
suggested by Rousseeuw (1984). Assuming elements 
given by (1)

ijg  of the matrix G(1) , a matrix 

eigenvectors in r-order defined by V was obtained, 
making it possible to obtain the components´ matrix 
according to the expression (2) (1)G =G × V . Applying 

back rescaling, matrix (2)G  was obtained, each 

element being obtained by Equation 3. 
 

( )
( )

(1) (1) (1)
ij ij Nj(2)

ij (1) (1)
ij Nj

g median g ,...,g
g  = ; j=1,...,r

MAD g ,...,g

− ,  (3)

 
The median absolute deviation was obtained by 

Equation 4: 
 

( ) ( )(1) (1) (1) (1)
1 N j j i iMAD g ,...,g = 1, 4826 median g - median g .× (4)
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Based on the re-scaled data represented in matrix 
(2)G , the absolute rate of kurtosis defined in 

Equation 5 for each variable defined by jω was 

calculated: 
 

( )
( )

4(2) (2) (2)N ij 1j Nj
j 4(2) (2)i 1

1j Nj

g median g ,...,g1ω 3 ; j 1,..., r.
N MAD g ,..., g=

 − = − =
  

 (5)

 
So that these coefficients could be better 

interpreted, standardization (Equation 6) was 
undertaken so that the components associated with 
the highest and lowest rate of jξ  may better detect 
outliers, according to Peña and Prieto (2001). 

 

j
j r

j
j=1

ω
ξ

ω
=


. 
(6)

Methodology 

The methodological contribution of current 
study is given in three stages: Incorporation of 
Pearson’s chi-square and Yates´s correction to the 
re-scaled data; Construction of the significance test 
for kurtosis coefficient associated with the first 
principal component and Evaluation of the Monte 
Carlo simulation test. 

Incorporation of Pearson’s chi-square and Yates´s 
correction to re-scaled data 

Incorporation of chi-square corrections to 
sample data was performed by replacing matrix G(0) 
for matrices QP and QY. QP element qPij was 
calculated with Pearson’s chi-square  
(Equation 7), whereas QY element qYij was obtained 
by Yates´s correction (Equation 8). 

 
N r

(0) (0) (0)
ij ij ij

i=1 j=1
ij N r

(0) (0)
ij ij

i=1 j=1
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− 

 
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2
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ij N r

(0) (0)
ij ij
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g  + g  
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 
− −  

 
 

 
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Following these substitutions, the same matrix 

operations inherent to the re-scaling described in 
Equations (1)-(4), were maintained. 

Constructing the significance test for kurtosis coefficient 
associated with the first principal component 

Considering Pearson's chi-square (Equation 7) 
and Yates´s correction (Equation 8) applied to data, 
the significance test was built under the assumption 
defined in H0: The first standardized coefficient of 
kurtosis is zero. It is worth noting that the 
hypothesis definition followed these considerations: 

1st: Small and large rates of 
jξ , associated with 

the re-scaled components obtained in (2)G , indicate 

that the components to be used in the score plot are 
more efficient at identifying outliers (Peña & Prieto, 
2001); 

2nd: According to Filzmoser et al. (2008), the 
number of outliers is associated with the size of 

jξ , 

so that kurtosis coefficient rates indicate a greater 
amount of outliers; 

3rd: Proving statistically that the first standardized 
kurtosis coefficient is zero implies, in practical 
terms, elementary outlier identification, i.e. 
detection in a single dimension. 

Finally, test statistic was computed in Equation 9 
following the decision rule defined in Equation 10: 

 
max[ ]; 1,...,jT j rξ= = (9)

1

1

; 1,...,p

j
j

T R j r
λ

λ
=

> = =


 
(10)

 
where: 

jλ  referred to the j-th eigenvalue of the sample data 

matrix, including outliers detected in sample data 
with and without chi-square correction. 

Thus, the significance probability, i.e. the lower 
probability of rejecting the null hypothesis was 
computed by Equation 11: 

 

1

( ),
m

I T R
p value

m=

≥− =
 

(11)

 
where: 

I is an indicator function and m = 2000 Monte 
Carlo simulations. H0 is rejected if p-value is lower 
than the significance level specified by the 
researcher.  

Test evaluation using Monte Carlo simulation 

In order to evaluate test performance, 
significance probabilities were calculated  
(Equation 11) by Monte Carlo simulations with 
parametric rates assumed in the simulation. Vectors 
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of means μ1 and μ2 and dimensions (r×1) were 
defined as Equation 12:  

 

1

0
0

0

μ
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 e 
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
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where: 
r is the number of variables involved. The 
specification of these parametric values was taken 
arbitrarily, without loss of generality, since only the 
covariance structure is used in the estimation of the 
principal components, either to the original or to 
modified data. Covariance matrices 1  and 2  of  

r-order were also taken into consideration and 
defined as Equation 13: 
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(13)

 
where: 

0.5ρ =  is the rate of the assumed correlation 
coefficient. 

It is worth noting that the choice of AR (1) 
correlation structure, denoted in Σ1 was made for 
the sake of parsimony. This means that among the 
covariance structures applied to the modeling of 
time series, it is the most common and simplest to 
apply. So that results were not influenced by 
correlation degree, it was decided to evaluate an 
intermediate case specifying ρ = 0.5. 

Different sample sizes (n = 20, 50, 100 and 150), 
different amounts of variables (r = 5, 10, 20 and 50) 
and different mixture rates (γ  = 0.1, 0.2 and 0.3) 
were employed. Liu and Zumbo (2007) 
recommended the use of Monte Carlo simulation 
technique, in which contaminated samples may be 
generated from mixtures of distributions. Thus, the 
mixture of normal distributions was generated by 
alternating parametric values and selecting the rate u 
from a continuous uniform distribution between 0 
and 1, with the following configuration: if u γ≤ , 
then 

1 1~ ( , )pA N μ  ; if u γ≤ , then 
2 2~ ( , )pA N μ  .  

It should be noted that, in practice, the use of 
methods with or without chi-square correction 
evidenced by the significance test proposed in 
current study faced an identifiable issue, i.e. to 
estimate the proportion of contaminated samples. 
Since this is an empirical study guided by objectives 
set out at the beginning of the report, estimation of 
γ  was not discussed here. However, for more 
details on inference, see Chen, Tan and Zhang 
(2008) and Chen and Tan (2009). Finally, a program 
was built in software R version 2.14.0  
(R Development Core Team, 2014) to obtain 
results. 

Results and discussion 

Empirical probabilities in favor of H0 for the proposed 
test of significance 

In accordance with current method, the results 
described in Table 1 for small sample sizes n = 20 
and n = 50 indicate that, given the application in 
unanalyzed samples, increase in outlier percentage 
(γ) reduced probability in favor of H0. This fact is 
also confirmed by increase in the number of 
variables (r) including situations where samples 
were analyzed by Yates´s correction. However, 
samples analyzed by Pearson’s chi-square showed 
mixed yet promising results, as increase in rates of 
outlier percentage (γ) leads towards greater statistical 
evidence in favor of the null hypothesis. 

Table 1. p-values of the proposed significance test for assessing 
H0: ξ1 = 0 considering both samples analyzed using different  
chi-square distances and unanalyzed samples, given the 
configuration between sample sizes (n = 20, 50), number of 
variables (r) and different mixture probabilities (γ). 

n r γ Uncorrected  
sample 

Pearson´s  
correction 

Yates´s  
correction 

20 

5 0.1 0.5225 0.6790 0.1235 
 0.2 0.4355 0.7585 0.0860 
 0.3 0.2340 0.7740 0.0750 

10 0.1 0.1935 0.4390 0.0015 
 0.2 0.0755 0.6260 0.0010 
 0.3 0.0225 0.7000 0.0005 

20 0.1 0.1880 0.1315 0.0000 
 0.2 0.0715 0.3080 0.0000 
 0.3 0.0695 0.2905 0.0000 

50 0.1 0.0485 0.0100 0.0000 
 0.2 0.0085 0.0220 0.0000 
 0.3 0.0015 0.0365 0.0000 

50 

5 0.1 0.8860 0.7240 0.1355 
 0.2 0.5100 0.7580 0.1030 
 0.3 0.2455 0.8245 0.0775 

10 0.1 0.4095 0.6405 0.0100 
 0.2 0.1550 0.7310 0.0040 
 0.3 0.0300 0.8275 0.0010 

20 0.1 0.0105 0.1760 0.0005 
 0.2 0.0025 0.3310 0.0000 
 0.3 0.0000 0.4565 0.0000 

50 0.1 0.0405 0.0000 0.0000 
 0.2 0.0145 0.0265 0.0000 
 0.3 0.0080 0.0445 0.0000 
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While keeping the same specifications 
described in Table 1, albeit considering larger 
samples (n = 100 and 150), results in Table 2 are 
also promising with regard to the application of 
Pearson’s chi-square in the sample data, with the 
exception of situations involving r = 50,  
where significance probabilities were practically 
null. 

Table 2. p-values of the proposed significance test for assessing 
H0: ξ1 = 0 considering both samples analyzed using different  
chi-square distances and unanalyzed samples, given the 
configuration between sample sizes (n = 100, 150), number of 
variables (r) and different mixture probabilities (γ). 

n r γ Uncorrected  
sample 

Pearson´s  
correction 

Yates´s  
correction 

100 

5 0.1 0.9270 0.8255 0.1515 
 0.2 0.6735 0.8910 0.1030 
 0.3 0.2705 0.9005 0.0925 

10 0.1 0.5640 0.7235 0.0055 
 0.2 0.0620 0.7970 0.0040 
 0.3 0.0090 0.8210 0.0025 

20 0.1 0.0015 0.2660 0.0000 
 0.2 0.0000 0.4265 0.0000 
 0.3 0.0000 0.5910 0.0000 

50 0.1 0.0000 0.0065 0.0000 
 0.2 0.0000 0.0030 0.0000 
 0.3 0.0000 0.1330 0.0000 

150 

5 0.1 0.9940 0.7205 0.0875 
 0.2 0.6485 0.8685 0.0865 
 0.3 0.1715 0.9045 0.1145 

10 0.1 0.5970 0.7035 0.0025 
 0.2 0.2680 0.7015 0.0060 
 0.3 0.0040 0.8795 0.0010 

20 0.1 0.0005 0.4115 0.0015 
 0.2 0.0000 0.4505 0.0000 
 0.3 0.0000 0.5245 0.0005 

50 0.1 0.0000 0.0000 0.0000 
 0.2 0.0000 0.0185 0.0000 
 0.3 0.0000 0.0360 0.0000 

 

In the discussion of descriptive results  
(Table 1 and 2), it may be observed that, as a rule, 
Yates´s correction showed reduced significance 
probabilities due to the increase in sample size 
and number of variables. Result may be explained 
by the fact that Yates´s correction is treated as a 
continuity correction; consequently, it produces 
more conservative results. For smaller samples in 
particular the probability of rejecting the 
hypothesis H0 is even greater when compared to 
other sample sizes; in fact, larger samples tend to 
produce smaller significance probabilities 
(Hubbard, 2011). 

Application to sales volumes rates in the state of Minas 
Gerais in different market segments 

Exploratory analysis 

The method was performed on a data set 
comprising independent variables named ‘retail 
trade indicators’ in the state of Minas Gerais, Brazil, 

between January 2007 and December 2009, obtained 
from the Brazilian Institute of Geography and 
Statistics website, with 36 observations. Each 
variable was named according to segments 
numbered as follows: 1-Fuels and Lubricants;  
2-Hypermarkets, supermarkets, food products, 
beverages and tobacco; 3-Hypermarkets and 
Supermarkets; 4-Textiles, apparel and footwear;  
5-Furniture and appliances; 6-pharmaceutical, 
medical, orthopedic, perfumery and cosmetics;  
7-books, newspapers, magazines and stationery;  
8-office equipment and supplies, computer and 
communication; 9-Other articles of personal and 
domestic use. Figure 1 shows an exploratory analysis 
for each segment based on these variables. 

Observing the time series for each segment in 
Figure 1, expected seasonal peaks during the period 
of 12 months were identified, since retail sales rise in 
December.  

Note that in the case of this application, the 
identification of the observation preliminarily 
classified as an outlier and that corresponding to 
seasonal peaks did not show a behavior that featured 
an intervention or change of level, usually caused by 
the lack of observations at a given period. For such 
situations, it would be recommended to the 
researcher to infer through intervention models in 
univariate or multivariate approach, since, to infer 
the structural relationship between variables, there 
are chances to estimate biased models resulting in a 
reduction in the accuracy and prediction of 
forecasts. This reduction may be more attenuating 
when considering simultaneous observations 
generated by two or more processes, featuring a 
multivariate temporal modeling. 

Application of the significance test for kurtosis coefficient 
associated with the first principal component and outlier 
identification using the principal components 

Keeping the procedure described in Equations 
(1)-(11), 5000 resampling trials were performed and 
the probability of significance under the hypothesis 
H0: ξ1 = 0 was calculated. Results are described in 
Table 3. 

According to the results in Table 3, there is 
statistical evidence that Pearson’s correction in 
sample data suggests that the first principal 
component (PCA-1) is recommended for outlier 
detection. The other component for constructing 
the two-dimensional graph was determined  
by the coefficients of kurtosis (6) found in  
Table 4. 
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Figure 1. Plot of ratio of sales volume collected monthly for each market segment.  

Table 3. p-values obtained in samples analyzed using Pearson’s 
chi-square and Yates´s correction and in uncorrected samples. 

Situation p-value 
Uncorrected 0.3814 
Pearson´s correction 0.4936 
Yates´s correction 0.3908 
 

Table 4. Standardized coefficient of kurtosis (ξj) for j = 1,...,  
r = 9 calculated using sample analyzed with Pearson’s chi-square. 

Coefficient of kurtosis (ξj) Principal Components 
ξ1 = 0.1126 PCA-1 
ξ 2 = 0.7052 PCA-2 
ξ 3 = 0.0101 PCA-3 
ξ 4 = 0.0306 PCA-4 
ξ 5 = 0.0141 PCA-5 
ξ 6 = 0.0112 PCA-6 
ξ 7 = 0.0937 PCA-7 
ξ 8 = 0.0131 PCA-8 
ξ 9 = 0.0095 PCA-9 
 

Based on the results described in Table 4, the 
component score plot was established with 
components selected in response to kurtosis rates 
according to Peña and Prieto (2001), who state that 
components with higher and lower kurtosis rates are 
most appropriate for outlier detection. Thus, the 
graphs in Figure 2 show the following situations: (A) 
refers to score plots for the first and second principal 
components, considering non re-scaled data 
analyzed with Pearson’s chi-square; (B) refers to 
score plots for the second and first components, 
considering re-scaled data also analyzed with 
Pearson’s chi-square.  

Figure 2 (A) demonstrates that observations 
classified as outliers were identified in December 
2007 (obs.12); December 2008 (obs.24) and 
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December 2009 (obs. 36). The same observations 
were identified in Figure 2B, but including January 
2009 (obs. 25), as retail sales also rise in January. 
Thus, December and January are special months 
according to the indicators evaluated in current 
study. Therefore, Pearson’s chi-square analysis of 
re-scaled sample data provided more informative 
results. 

 

 
Figure 2. Outlier detection considering Pearson’s chi-square 
analysis of data sample: A) non re-scaling, and B) re-scaling. 

For confirmation and validation of the method 
employed, identified outliers were confronted with 
individual graph results of time series for each 
market segment, as shown in Figure 1. This 
comparison showed that outliers corresponded to 
seasonal peaks in all segments assessed in the study. 
It should be emphasized that the results obtained in 
the analysis do not identify which segment showed 
greater importance in retail. A study of greater 
impact should add a more sophisticated statistical 
analysis which includes external factors, for instance, 
the reduction of consumption among households, 
defaults on retail, etc. 

Conclusion 

Owing to the agreement between the 
simulation study and application, there is 
statistical evidence to assert that the selection of 
principal components using the proposed 
significance test as the most appropriate is the chi-
square Pearson. It has been observed that in the 
application the use of the proposed methodology 
allowed the identification, by exploratory analysis, 
of the outliers of all segments in the retail, as 
seasonal peaks. In terms of the significance test 
performance, the effect of the number of variables 
resulted in a smaller reduction in the probability 
of significance for Pearson´s chi-square 
correction for all sample sizes evaluated. 
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