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ABSTRACT 

 

 

Contradicting the need for detailed maps, we currently experience scarcity of investments on soil 

surveys in Brazil. In this sense, it is necessary to resort to techniques that allow the expansion of the 

mapped areas, at relatively lower costs. From this perspective, this work focused on the investigation of 

procedures and tools for the retrieving and extrapolation of soil type information from a reference area 

to its surroundings. The objectives included: (i) retrieving information from a detailed soil map of a 

reference area; (ii) to evaluate the transferability of information to a larger area, which preserves similar 

environmental characteristics similar to those of the pilot area; (iii) evaluate the accuracy and uncertainty 

of the inference models. From a Digital Elevation Model, a series of topographic indexes were 

calculated, which were correlated with the soil classes, represented by mapping units of the legacy map. 

The objective was to infer from the soil-landscape relationship of the pilot area, the distribution of soil 

types in the extrapolation area. For that duty, three inference procedures were applied, one data-driven 

(Random Forest (RF)) and two others, based on knowledge (Rule-based reasoning and Case-based 

reasoning - ArcSIE). Regarding RF, 52 models were graded from a routine of tuning and different 

combinations of training data. Although considered a robust predictor, RF demonstrated sensitivity to 

training strategies. Most of the models presented low accuracy. However, at least one model with more 

than 80% of global accuracy was obtained. Regarding RBR and CBR procedures, only the former 

resulted in a map with good precision. The advantage of using knowledge-based systems like RBR is to 

make explicit the soil-landscape relationship through a systematic set of rules. By accessing the 

uncertainty of the predictions, in addition to evaluating the behavior of the models, it was possible to 

observe the complexity of the soil-landscape relationship of Oxisols and Inceptisols, characteristic of 

tropical environments. This is particularly important for model review and sampling planning in the 

search for more accurate maps. 

 

Keywords: Pedology. Digital soil maps. Soil surveys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

RESUMO 

 

Contrapondo a necessidade de mapas mais detalhados, atualmente enfrentamos a escassez de recursos 

destinados ao levantamento de solos. Neste sentido, é preciso recorrer a técnicas que viabilizem a 

expansão das áreas mapeadas, a custos relativamente mais baixos. Sob essa perspectiva, este trabalho 

focou na investigação de procedimentos e ferramentas para a extrapolação de informações sobre classes 

de solo de uma área de referência para seu entorno. Os objetivos incluíram: (i) recuperar informações 

de um mapa de solos detalhado de uma área de referência; (ii) avaliar a transferibilidade da informação 

para uma área 15 vezes maior, que preserva características de paisagem semelhantes às da área piloto; 

(iii) avaliar a acurácia e a incerteza dos modelos de inferência. A partir de um Modelo Digital de 

Elevação, calculou-se uma série de índice topográficos, os quais foram correlacionados com as classes 

de solo, representadas por unidades de mapeamento do mapa legado. O objetivo, portanto, foi inferir, a 

partir da relação solo-paisagem da área piloto, a distribuição dos tipos de solo na área de extrapolação. 

Para tanto, foram aplicados três procedimentos de inferência, um baseado em dados (Random Forest 

(RF)) e outros dois baseados no conhecimento (Rule-based reasoning-RBR e Case-based reasoning-

CBR - ArcSIE). Com relação a RF, foram grados 52 modelos a partir de uma rotina de ajustes e 

diferentes combinações de dados de treinamento. Embora considerado um preditor robusto, a RF 

demonstrou sensibilidade as estratégias de treinamento. Grande parte dos modelos apresentou baixa 

precisão, contudo, obteve-se ao menos um modelo com mais de 80% de acurácia global. Em relação aos 

procedimentos RBR e CBR, apenas o primeiro resultou em um mapa com boa precisão. A vantagem da 

utilização de sistemas baseados no conhecimento com o RBR é o de tornar explicita a relação solo-

paisagem através de um conjunto sistematizado de regras. Ao acessar a incerteza das predições, além de 

avaliar o comportamento dos modelos, foi possível observar a complexidade da relação solo paisagem, 

característica de ambientes tropicais. Este aspecto é particularmente importante para revisão de modelos 

e planejamento de coletas de solo na busca por mapas com maior acurácia. 

 

Palavras-chave: Pedologia. Mapas digitais de solos. Levantamento de solos. 
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1 INTRODUCTION 

 

1.1 General introduction 

 

Soil is essential for life, playing a role in providing food, fibers and fuel, serving as basis 

for human infrastructure and it is also related to other environmental such aspects as climate 

regulation, water security and biodiversity protection (FAO, 2015). Thus, knowing about the 

soil distribution allows a proper planning by defining the appropriate land use for each location. 

Soil surveys are inventories of the morphological, physical, chemical and mineralogical 

characteristics of soils, as well as their geographic distribution, whose representations are given 

through maps and reports (DALMOLIN et al., 2004). The soil survey is based on understanding 

how the soils evolve for identifying their spatial distribution pattern. Hudson (1992) described 

it as a paradigm-based science. According to the author, by comprehending the soil forming 

factors (JENNY, 1941) and identifying the soil-landscape relationship (HUDSON, 1992), a soil 

scientist can accurately discriminate boundaries between different soil types. 

Traditionally, soil mapping has been carried out in an empirical approach, based on tacit 

knowledge and mental models, with manual delineation of mapping unit boundaries. Although 

delivering very precious results, it is very onerous and time-consuming (KEMPEN et al., 2012), 

which are pointed out as important factors for the worldwide lack of soil spatial data 

information (MCBRATNEY; SANTOS; MINASNY, 2003). Also, it is argued that the cost / 

benefit ratio, which is poorly understood and difficult to estimate, also makes it difficult to raise 

funds (GIASSON; INDA-JÚNIOR; NASCIMENTO, 2006). Moreover, the strong reliance on 

tacit knowledge hinders the transfer of knowledge (HUDSON, 1992).   

In Brazil, most soil maps were designed with low level of detail (LEPSH, 2013; 

SANTOS et al., 2013), in addition to being mostly in press (paper-based format), making their 

refinement more difficult (SILVA, 2016). The need for more detailed information contrasting 

with low investments in soil surveys resulted in a scenario that “we need to permit ourselves to 

consider alternative and possibly less costly approaches” (MALONE et al., 2016, p. 243).  

An economical alternative to obtaining soil spatial information is the use of soil legacy 

data and Digital Soil Mapping (DSM) techniques. They allow retrieving information of already 

mapped areas and extrapolate the information for non-mapped areas. In this regard, the concepts 

of homosoil (MALLAVAN; MINASNY; MCBRATNEY et al., 2010), reference area 

(LAGACHERIE; LEGROS; BURROUGH, 1995), predictive soil mapping (SCULL et al., 
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2003), and the SCORPAN model (MCBRATNEY; SANTOS; MINASNY, 2003) have an 

important role, serving as procedural parameters to create an information system and identify, 

through similarity assessment, sites which may be possible to extrapolate the information from 

a detailed area to another with sparse data (MALONE et al., 2016). 

The increasing access to new techniques and tools for data acquisition and processing 

has significantly changed the way of soil information has been handled (ARROUAYS; 

LAGACHERIE; HARTEMINK, 2017). So, some alternatives have emerged to circumvent 

those limitations. In the last decades, DSM has been widely discussed and its feasibility has 

been reported by numerous researchers (BUI; MORAN, 2001; DOBOS et al., 2000; HENGLE 

et al., 2015; PANDARIAN; MINASNY; MCBRATNEY, 2017). 

DSM can be described as the computer-assisted creation of spatial soil information 

systems by means of mathematical and statistical models combining field and laboratory 

observation, expert knowledge, and also correlated environmental features (DOBOS et al., 

2006; LAGACHERIE; MCBRATNEY, 2007). Somehow, both traditional and digital 

approaches are similar on needing an input data on soil and covariates that describe the soil 

forming environment. It is important to highlight that the field work is still very needed and 

important. The main difference is related to how both models derive the spatial prediction from 

the input data (DOBOS et al., 2006). 

DSM techniques can be grouped in two broad categories: statistical/geostatistical 

approaches (Data-driven) and knowledge based approaches (Knowledge-driven) 

(ASHTEKAR; OWENS, 2014; SHI et al., 2009). As a result, the digital maps represent 

estimates of soil types or properties spatial distribution. These estimations also involve different 

levels of uncertainty (STUMPF et al., 2017). Despite the great advances in DSM, some 

methodologies are unsettled as the evaluation of soil predictions uncertainty (ARROUAYS; 

LAGACHERIE; HARTEMINK, 2017). 

 

1.2 Objectives 

 

This study had three main objectives: (i) to retrieve information from a detailed scale 

soil map of a reference area; (ii) to evaluate the transferability of the information to a larger 

area with similar environmental characteristics using three different approaches (Random 

Forest; Rule-based Reasoning and Case-based Reasoning); and (iii) to assess the uncertainty of 

predictions. Thus, two scientific articles were presented:  
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a) Soil type spatial prediction from Random Forest: different training datasets, 

transferability, accuracy and uncertainty assessment. This study aimed to evaluate the 

use of Random Forest for extracting and extrapolating soil type information. For this 

duty, different training datasets (point and polygon derived data) and combinations of 

predictor variables were tested. A total of 52 models were evaluated by means of error 

of models itself, prediction uncertainty and external validation. It was also investigated 

the modeling behavior by reducing the amount of training data and the number of 

predictor variables to its main components by means of Principal Components Analysis, 

and Mean Decrease in Accuracy (for variables only); 

 

b) Transferability, accuracy, and uncertainty assessment of different Knowledge-based 

approaches for soil type mapping. The main objective was to evaluate the efficiency of 

Rule-based and Case-based approaches on retrieving soil spatial information of a 

reference area and extrapolate it to surroundings with similar soil-environment 

characteristics. The methodology contains three main processes: i) knowledge 

acquisition; ii) soil inference procedures; iii) validation and uncertainty assessment.   
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2 REVIEW 

 

2.1 Digital Soil Mapping basis 

 

Digital Soil Mapping can be de defined as the creation, and population of spatial soil 

information systems by the use of field and laboratory observational methods, coupled with 

spatial and non-spatial soil inference models. Thus, DSM presents three main components: the 

input data (soil and environment information); the inference system (a set of techniques used to 

predict and populate the information system); and the output (a spatialized soil information 

system along with the uncertainty of prediction) (LAGACHERIE; MCBRATNEY, 2006).  

 

2.1.1 Input data 

 

The conception of predicting soil distribution over the landscape is to infer and spatialize 

data that we do not know based on measurements that we more-or-less know (MCBRATNEY 

et al., 2002). The inference is based on the soil-landscape relationships, and the measurements 

correspond to the input for the inference systems. The input data includes legacy soil data, soil 

maps and often, new samples, combined with information of related environmental features. 

The expansion of access to Geographic Information Systems, collaborative 

programming communities (e.g. Software R), and free sources of environmental covariates as 

Digital Elevation Models (DEM), Remote Sensing data and climate databases have favored 

DSM research in the last decades (ARROUAYS; LAGACHERIE; HARTEMINK, 2017). 

Brevik et al. (2016) also related to the increasing of proximal sensing techniques in soil spatial 

models development. 

Regarding soil information, in recent years, legacy data has become even more 

important, given its potential as input data for DSM. The term legacy data is applied to all 

information that was raised to characterize or mapping soil through traditional techniques of its 

time (OMUTO; NACHTERGAELE; ROJAS, 2013) serving as available knowledge about soils 

for a given area of interest. The major sources are soil maps and reports in a paper-based format 

(SILVA, 2016), but it is often found on shapefile format as point-data (profiles descriptions and 

prospections) and polygon-data (soil mapping units). As for the environment covariates, the 

effort in storing, coding and harmonizing and the access to soil databases have been 

contributing for DSM advances (ARROUAYS; LAGACHERIE; HARTEMINK, 2017). 



16 

2.1.1.1 Reference area 

 

In locations where the soil-landscape relationships are known, in terms of rules or 

implicit in detailed soil maps, there is possible to extrapolate this information, from these 

reference area, for physiographically similar regions where these relationships are not yet 

known (ARRUDA et al., 2016).  

The term, reference area, were presented by Favrot (1989), and it is related to a small 

natural region where the main soil classes and its soil-environment relationships are well known 

and stablished in terms of mapping rules. These approach assumes that, it is possible to delimit 

areas considered representative of a finite number of soil classes and its occurrence patterns on 

the landscape. Once these patterns are repeating and identifiable, "consequently, a purposely 

chosen reference area could be sufficient to identify all the soil classes of the larger area and to 

determine their spatial relations" (LAGACHERIE; LEGROS; BURROUGH et al., 1995, 

p.284). 

 

The first stage consists of a detailed survey in a small but representative area 

of a small natural region, called the reference area. It defines the main soil 

classes of the whole region and establishes their mapping rules. This first stage 

facilitates and accelerates the following stage in which new soil surveys are 

carried out in the same region. These surveys consist of identifying, at 

purposely chosen observation points, the soil classes previously defined 

during the reference area survey and then delineating their boundaries with 

the pre-established mapping rules. (LAGACHERIE; LEGROS; 

BURROUGH, 1995. p. 284) 

 

The knowledge acquired by searching in a representative small natural region or 

inherited in terms of legacy data can be used to facilitate and accelerate the soil survey in other 

areas in the same natural region (ARRUDA et al., 2016). However, "this advantage was mostly 

observed when the further soil surveys were carried out by the surveyor of the reference area 

himself" (LAGACHERIE et al., 1995, p. 284). In fact, the use of the reference area is attached 

to tacit knowledge, nonetheless, the advances in data mining methods can provide solutions to 

assist in the knowledge retrievement (SILVA et al., 2016). 

The use of the reference area associated with predictive methods for soil mapping can 

be found in studies such as Grinand et al. (2008) - classification trees; Yigini and Panagos 

(2014) - regression-kriging; Arruda et al. (2016) – artificial neural networks; Silva (2016) – 

Random Forest; McKay et al. (2010) – fuzzy logic/ArcSIE. 

 



17 

2.1.2 Inference models 

 

The advances in computer science, powerful hardware and software that can handle with 

large datasets, in addition to the increase in number of spatial inference models, it is pointed 

out by numerous soil scientist as some of the main factors that made operational results in DSM 

(MINASNY; MCBRATNEY, 2016; MCBRATNEY; SANTOS; MINASNY, 2003; 

ARROUAYS; LAGACHERIE; HARTEMINK, 2017). 

An inference model works on associating soil observations with their forming factors 

(environmental features) to understanding the spatial distribution of soils and coevolving 

landscapes to infer about soil type and properties by means of expert knowledge, mathematical 

and statistical functions (GRUNWALD, 2006; ARROUAYS; LAGACHERIE; HARTEMINK, 

2017). These soil inference models are tools for environmental soil-landscape modeling 

(GRUNWALD, 2006), composed of a source, an organizer, and a predictor (MCBRATNEY et 

al., 2002).  

The soil-landscape modeling is largely influenced by the attribute statistical type 

(Boolean, categorical, continuous…); the content of attributes or feature type (soil, relief, parent 

material, organisms, climate, age…); observations (total number of observations, density of 

observations, sampling design, sample support); and the geographic extent of observation 

(GRUNWALD, 2006). In this sense, the choice of the technique applied for the soil inference 

is directly related to the data set characteristics, in addition to the researcher knowledge about 

the available approaches.  

Digital soil mapping techniques can be divided into two main types: Data-driven and 

Knowledge-driven (SHI et al., 2009). The Data-driven approaches are based on statistics, 

geostatistics, machine learning and data mining techniques. It is often recommended when there 

is availability of relatively large datasets and dense sampling schemes in combination with 

ancillary environment features information (MENEZES et al., 2013). Once Data-driven 

approaches are strongly data dependent, it becomes expensive and not practical when the data 

is not readily available (ASHTEKAR; OWENS, 2014). Hengl et al. (2007) identified at least 

four distinct groups of data-driven approaches for DSM: (I) Pure classification techniques, 

which is based on remote sensing images; (II) Pure regression techniques, when applying 

regression and data mining methods (e.g. Random Forest; Neural Networks; Support Vector 

Machines); (III) Pure geostatistical techniques stated on kriging methods; IV) and Hybrid 

statistical/geostatistical approaches. An overview of predictive soil mapping based on these 

approaches can be found in Scull et al. (2003), McBratney et al. (2000) and Grunwald (2006). 
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The Knowledge-driven approaches are based on tacit knowledge, and are composed of 

a Knowledge base (the expert knowledge about the soil variation), an environmental dataset 

(data of spatial environmental features) and an inference engine that combines the data and the 

knowledge base to infer logically valid conclusions about the soil (SKIDMORE et al., 1996). 

In this methods, the values derived from the environmental features analysis are incorporated 

into the scientist knowledge, and contrarily to the Data-driven techniques, the inferences are 

structured in the decisions made by the expert, constructing the rule base, not by pure statistics 

predictions (ASHTEKAR; OWENS, 2014; SCULL et al., 2003). A preexisting knowledge of 

the soil-landscape soil relationships is crucial, thus, in many cases, they also require extensive 

work on data preparation, e.g. to design classification rules and to adjust the final outputs 

(HENGL et al., 2007). 

It is worth pointing out that both approaches, knowledge-driven and data-drive, are not 

mutually exclusive, in fact, in some applications, combining two ways would be ideal. 

According to Rossiter (2005), the soil variability can be divided into “regional factors”, which 

can be explained by knowledge-driven models, and its “residuals”, product of our inability to 

explain the phenomena, in addition to those inherently random events. “A mixed approach is 

to explain what can be explained by knowledge of soil-forming factors, and then see if the 

remaining unexplained variability has any (geo)statistical relation which can be used to improve 

the prediction” (ROSSITER, 2005, p.4).  

 

2.2 Random Forest 

 

A Random Forest (RF) algorithm is an ensemble learning classifier, used to understand 

the relationship between a dependent variable and an ensemble of predictor variables. It consists 

of creating an independent collection of classification trees, from random vectors, sampled 

independently, and with the same distribution for all trees in the forest. Furthermore, at each 

node a random subset of variables is sorted, and the best among these is chosen as a “splitter 

variable”. The classification of a new input vector is a combination of the results reached by 

each tree in the forest. The output corresponds to the modal classification overall trees 

(BREIMAN, 2001) as seen at Figure 1.1. If the response is a factor, RF performs classification; 

if the response is continuous (that is, not a factor), RF performs regression.  

The model demands an input training data. Each tree is grown based on a bootstrap 

sample. For each tree, about one-third of the observations are left out. This is called out-of-bag 
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data (OOB). This OOB data are used to get unbiased estimates of generalization error and 

variables importance (BREIMAN, 2001). 

 

Figure 1.1 - The random forests algorithm is as follows: A) ntree bootstrap samples from the 

original data; B) for each of the bootstrap samples, grow an unpruned classification 

or regression tree; C) Predict new data by aggregating the predictions of the ntree 

trees. 

 

Source: The author 

 

A) 

B) 

C) 
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There are basically two adjustments parameters that may be set to fine-tune the model 

for particular situations, which are; mtry, (the number of randomly selected predictor variables 

chosen at each node) and ntrees (the number of trees in the forest). "The only one of these 

parameters to which Random Forests is somewhat sensitive appears to be mtry" (CUTLER; 

CUTLER; STEVENS, 2012, p. 11). 

In an extensive evaluation of different families of classifiers (179 classifiers arising from 

17 families and 121 data sets), Fernández-Delgado et al. (2014, p. 1) related that "the classifiers 

most likely to be the bests are the random forest versions". RF is currently one of the most 

promising methods and its use is increasing in DSM.  

On DSM literature and whose applied RF for classification/regression problems, others 

(BREIMAN, 2001; CUTLER; CUTLER; STEVENS, 2012; HASTIE; TIBSHIRANI; 

FRIEDMAN, 2009; MARMION et al., 2008; PRASAD; IVERSON; LIAW, 2006) some 

advantages and disadvantages of RF are often highlighted, which are: 

 

a) advantages:  

 

- insensitive to missing data (Missing value imputation); 

- to the inclusion of irrelevant predictors and outliers; 

- flexible with various types of datasets; 

- less susceptible to over-fitting and it provides better error measurement in 

comparison with decision trees; 

- incorporates randomness into its predictions (bootstrap sampling and randomized 

variable selection); 

- naturally handle both regression and (multiclass) classification; 

- are relatively fast to train and predict; 

- depend only on one or two tuning parameters; 

- have a built in estimate of generalization error; robust error estimates by using the 

OOB data; 

- can be used directly for high-dimensional problems; 

- can easily be implemented in parallel; 

- measures of variable importance; 

- differential class weighting; 

- visualization; 

- outlier detection; 
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- unsupervised learning; 

- generates an internal unbiased estimate of the generalization error as the forest 

building progresses. 

 

b) disadvantages or limitations:  

 

- the stability of an RF classifier can be poor when it was used in an evaluation 

area that was different from the calibration area; 

- difficult to provide guidelines for parameters adjustments to achieve good 

performance; 

- for data including categorical variables with different number of levels, random 

forests are biased in favor of those attributes with more levels; 

- unlike decision trees, the classifications made by random forests are difficult for 

humans to interpret (black box). Results of learning are incomprehensible, 

compared to a single decision tree, or to a set of rules, they don't give you a lot 

of insight; 

- it tends to return erratic predictions for observations out of range of training data. 

 

2.3 Soil Inference Engine (ArcSIE) and Fuzzy Logic 

 

The Soil Inference Engine (ArcSIE) is an expert knowledge-based inference engine 

powered with fuzzy logic. The inference method is based on fuzzy membership functions or 

similarity curves, which indicates the similarity between a local soil and a typical case. It is 

reasoned in partial membership concept. The similarity values vary from 0 (which means that 

soil is very different from the given soil type) to 1 (which means that local soil is exactly the 

same with the given soil type) (SHI et al., 2004), values in between this range express different 

degrees of similarity to the central concept (MENEZES et al., 2013). Fuzzy logic is particularly 

appropriate for soil distribution or representation due to the continuous and complex nature of 

soil-landscape relationships (SCULL et al., 2003). 

There are two main types of knowledge supported by ArcSIE: rules and cases. For Rule-

based reasoning approach, the membership functions are adjusted directly with the soil surveyor 

specifications. For Case-based reasoning approach, the membership functions correspond to a 

group of cases, defined in geographical space represented by polygons, lines or points. Case-
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based reasoning aims to use the knowledge retrieved from specific cases to help solve a problem 

in a different area (SHI et al., 2004).  

 

2.4 Uncertainty of predictions 

 

The uncertainty of predictions is strongly related to the knowledge domain about the 

study phenomena and the quality of the data base (HARROWER, 2003) also, the complexity 

of the area and soil variability may influence in this aspect. Qi and Zhu (2011) listed a series of 

causes for uncertainty related to predictive soil mapping, grouped in two kinds of errors: 

modeling error (generalization or over-simplification of transitional zones and non-avoidable 

inclusions) and mapping error (misplacement of class boundaries; mislabeling of polygons and 

avoidable inclusions).  The uncertainty related to mapping errors are commonly modeled with 

stochastic methods, on the other hand, the uncertainty associated with modeling errors has been 

commonly studied using fuzzy logic (QI; ZHU, 2011). 

For expert-fuzzy systems, like those used in soil inference engine approaches, the 

generalization of the continuous soil-landscape to discrete polygons map implies in a pixel-to-

pixel conversion, in which a local object has its classification assigned due to its similarity to 

the soil class prototype (ZHU, 1997). In this sense, the uncertainty can be assessed in two 

different ways. The first one is the exaggeration uncertainty, which revels the “distance” for a 

given object classification in comparison with its prototype. For example, in Figure 1.2, by 

labeling as class B the objects I1 and I2, they assume the prototype properties by exaggerating 

the similarities between these instances and those of the class prototypes. It results in 

exaggeration uncertainty. The second one, the Ignorance uncertainty, also called Entropy, 

expresses the degree of certainty in a pixel classification, in which membership is concentrated 

in a particular class, rather than spread over a number of classes. In Figure 1.2, it is ignored that 

both objects l1 and l2 may present partial similarity to other prototypes (A and C) Qi and Zhu 

(2011). 

Both entropy and exaggeration values do not indicate if a prediction itself is correct, 

however, they are appropriate for illustrating the uncertainty of predictions, to access the 

classifiers behavior, the quality of the modeling, and also as input in sampling planning for 

updating models (KEMPEN et al., 2009; STUMPF et al., 2017). Although the use of entropy 

for uncertainty assessment is most commonly used in fuzzy inference systems, its use in 
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ensemble-modeling like Random Forest has been shown to be appropriate (KEMPEN et al., 

2009).  

 

Figure 1.2 - Soil type distribution and assignments for objects l1 and l2. 

Source: Qui and Zhu (2011). 
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2. ARTICLE 1. Soil type spatial prediction from Random Forest: different training 

datasets, transferability, accuracy and uncertainty assessment 

 

* Article prepared according to the rules of Scientia Agricola 

 

ABSTRACT 

 

Different uses of soil legacy data as dataset training as well as the selection of soil 

environmental covariables could drive the accuracy of machine learning techniques. Thus, this 

work evaluated the performance of the Random Forest algorithm to predict soil classes from 

different training datasets and extrapolate such information to similar area. The following 

training datasets were extracted from legacy data: a) point data composed by 53 soil 

observations (small trenches and soil profiles); b) 30 m buffer around the soil samples (Buffer-

Point); soil map polygon with two exclusion zones: c) 20 m from boundaries; d) 30 m from 

boundaries. These four datasets were submitted to principal component analysis (PCA) for 

sampling pixels reduction. A total of 52 models were evaluated by means of error of models 

itself, prediction uncertainty and external validation. The best result was obtained by reducing 

the number of predictors ensemble with the PCA along with information from buffer around 

the points. Although Random Forest has been considered a robust spatial predictor model, it 

was very clear it is sensitive to different strategies of selecting training dataset. Effort was 

necessary to find the best training dataset for achieving suitable accuracy of spatial prediction. 

To identify a specific dataset seems to be better than using a great number of variables or a 

large size of training data. The efforts made allowed the accurate acquisition of a mapped area 

15.5 times larger than the reference/legacy area. 

 

Keywords: Digital soil mapping; soil survey; legacy data. 
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2.1 INTRODUCTION 

 

Soil mapping is an important tool for soil management and planning. However, there is 

still a need for maps in detailed scale, particularly in countries with sparse areas (Lagacherie 

and McBratney, 2007) and few financial resources, such as Brazil. The traditional way of 

mapping soils, based on Pedologists’ empirical mental model associated with manually 

delineating mapping unit boundaries is very time-consuming and onerous (Kempen et al., 

2012), although delivering precious maps. Such soil legacy has a potential to be source of 

training data in machine-learning techniques (Pelegrino et al., 2016), formalizing soil-landscape 

relationships and applying the information in areas with similar environmental conditions, 

providing gain in mapped areas with less time and costs (Silva et al., 2016). This is an important 

strategy of mapping in Brazil, due to the detailed soil surveys being mostly restricted to small 

areas (Mendonça-Santos and Santos, 2007).    

Machine-learning is a computer-based statistical set of tools that could be used to figure 

out the relationship between soil type and environmental covariables (McBratney et al., 2003; 

Hastie et al., 2009) that represent soil forming factors (Jenny, 1941). In this context, Random 

Forest (RF) is one of the most promising techniques regarding digital soil mapping (Chagas, et 

al., 2016; Rudiyanto et al., 2016; Hengl et al., 2015; Heung et al., 2016; Heung et al., 2017; 

Souza et al., 2016), in which the way of using legacy data should be investigated for providing 

a suitable source of data in Random Forest, either from points or polygons. 

Considering the influence of soil forming factors in the area of this study, relief is the 

main driver of soil variability (Menezes et al., 2009). In this sense, several types of digital 

terrain maps can be generated in Geographical Information System, thus, there has been 

growing interest in understanding how the characteristics of the environmental covariates 

influence the accuracy of digital soil mapping (Samuel-Rosa et al., 2015). The choice of 

effective auxiliary maps (best set of variables) should be sought.  

Thus, this work aimed to extract soil information from a reference area (Favrot, 1989; 

Lagacherie et al., 1995) and extrapolate it to areas with similar soil-landscape relationships. 

The use of the reference area associated with predictive digital soil mapping approaches can be 

found in studies such as Grinand et al. (2008) - classification trees; McKay et al. (2010) – fuzzy 

logic; Arruda et al. (2016) – artificial neural networks; Silva et al. (2016) – Random Forest. The 

following sequence was implemented and evaluated using Random Forest: a) comparison 

between point and polygon as source of data to compose training dataset; b) evaluation of the 
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effects of reducing the number of predictor variables and training-data by principal component 

analysis on the accuracy of the predicted maps; c) assessment of maps uncertainty. 

 

2.2 MATERIAL AND METHODS 

 

2.2.1 Study Area 

 

The study area is divided into reference area, named Vista Bela Creek watershed, where 

from the legacy data was extracted (175 ha) for model training, and extrapolation area (2,719 

ha), where a new soil map was generated (Figure 2.1). Both areas are located in Minas Gerais 

state, Brazil, between the coordinates UTM 553781 and 581138 m, 7598766 and 7597100 m, 

23K, datum WGS 1984, with an elevation range of 924-1342 m. The relief at the area was 

modeled through intense dissection provided by fluvial erosion, resulting in hilly features with 

convex to tabular summit and convex slopes, interspersed by elongated crests. There is 

predominance of gneisses and biotite-schists of Carrancas sequence and biotite-gneiss and 

amphibolite of Serra do Turvo sequence. According to Köppen classification, the climate is 

Cwa, with dry winter and rainy summer. The mean annual temperature varies between 18 and 

22°C, presenting an annual precipitation average of 1,450mm (Menezes et al., 2009). 

 The main soil types that occur in the area are, classified according to US Soil Taxonomy 

(Soil Survey Staff, 2014), are Udept, Hapludox, Acrudox, and Fluvent (Menezes et al., 2009) 

according to Soil Taxonomy (Soil Survey Staff, 2014).  Orthent are also found, but, occurring 

as inclusions associated with rock outcrops, in an intricate landscape pattern with Inceptisols, 

which may hinder its individualization, and consequently, the knowledge transferability. 

The soil legacy data is composed by a soil map in detailed scale (1:10,000) with simple 

mapping units (Menezes et al., 2009). Table 2.1, soils are referred to as classified by the Soil 

Taxonomy classification (Soil Survey Staff, 2014). The soil map was produced by an 

experienced team in a traditional basis: analysis of aerial photography and manual delineation 

of soil mapping units, along with intensive fieldwork (total of 53 soil profiles). This watershed 

is considered as a reference area (Favrot, 1989; Voltz et al., 1997), since it comprises the whole 

soil-landscape relationships occurring in the region that can be extrapolated to areas with 

similar physiographic conditions. This map was used as the source of information for training 

Random Forest models.  
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Figure 2.1 - Study areas location: Vista Bela Creek Watershed (soil legacy - reference area) 

(Menezes et al., 2009) and the area to which information was extrapolated in 

Minas Gerais state, Brazil. 

 

 

Table 2.1 - Mapping units identified in the study area. 

Symbol Soil classes Area (ha) % 

Hx Hapludox 61.2 35 

Ax Acrudox 21.3 12.2 

Ut Udept 61.3 35 

Ft Fluvent 27.2 15.5 

Ot Orthent 4 2.3 

Total 175 100 
Source: Menezes et al. (2009) 

 

2.2.2 Environmental covariates: relief maps 

 

A digital elevation model (DEM) with 20 m of resolution was generated from contour 

lines freely available in Brazil from Brazilian Institute of Geography and Statistic (IBGE), at a 

1:50,000 scale and 20 m of equidistance. A hydrologic consistent DEM was generated in 

ArcGIS (version 10.1 of ESRI) through the Topo To Raster tool. From the DEM, 14 
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topographic indexes were created using the SAGA GIS SOFTWARE (SAGA Development 

Team version 3.0) and selected due to their capacity to express variations of both 

morphometrical and hydrological characteristics at local and landscape scales. The following 

topographic indexes were calculated: catchment slope (CS), convergence index (CI), plan 

curvature (Plan C) and profile curvature (Prof C) (Zevenbergen and Thorne, 1987), 

multiresolution index of ridge top flatness (MRRTF) (Gallant and Dowling, 2003), slope, LS-

factor, SAGA wetness index (SWI), topographic position index (TPI) (Guisan et al., 1999), 

terrain surface texture (Texture) (Iwahashi and Pike, 2007), terrain classification index for 

lowlands (TCI), upslope curvature (USC), valley depth (VD), vertical distance to channel 

network (VDCN). 

 

2.2.3 Random forest: characteristics and accuracy of models 

 

In order to establish the distribution of soil types according to their relation with 

topographic indexes, the randomForest package (version 4.6-12) in the statistical software R 

(R Development Core Team, version 1.0.44) was used. The Random Forest algorithm consists 

of a combination of prediction trees, in which each node is split using the best subset among 

predictors randomly chosen at that node. The classification procedure consists of growing a 

predefined number of unpruned classification trees, defined by the parameter ntree, from 

bootstrap samples (2/3) of the entire population, n. Each tree is constructed using a different 

bootstrap sample from the original data. At each node, instead of choosing the best split 

predictor considering all variables (p), the predictor is identified from a random subset of 

predictors, where the number of predictors tried at each split, mtry, is defined by the user. For 

classification trees, the default value for mtry is ⌊√p⌋ (Hastie et al., 2009; Heung et al., 2014). 

After a large number of generated trees, the algorithm votes for the most popular class 

(Breiman, 2001). 

Each bootstrap sample leaves out about one-third of the observations. These left-out 

data are called out-of-bag (OOB) observations. Thus, it is possible to predict the response for 

the ith observation, using each of the trees in which that observation was OOB. Performing this 

procedure with all OOB data allows obtaining the OOB estimate of error rate. The resulting 

OOB error is a valid estimation of the models, since the response for each observation is 

predicted using only the trees that were not fit employing that observation (James et al., 2013). 

So, as result of Random Forest proceedings, a single model is established along with 

classification error estimation (Heung et al., 2014).  
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Random Forest also uses the OOB samples to measure the importance of predictors 

(topographic indexes) that can be useful for reducing the number of variables and for 

interpreting the fitted forest (Cutler et al., 2012). The Random Forest algorithm provides two 

measures of variable importance:  

- mean decrease in accuracy (MDA): evaluates a variable contribution from OOB error 

estimate, in order to determine changes in prediction accuracy by randomly permuting a single 

predictor in the OOB data. By measuring the increase in error, this procedure can rank the 

variables according to their importance in establishing accurate predictions. 

- mean decrease in Gini (MDG): indicates the predictors importance based on the quality 

of each split. A variable that produces less heterogeneity in the descendent nodes scores better 

at MDG rank (Breiman, 2001).  

In summary, a set of soil types information derived from the reference area and their 

associated topographic indexes were used to train the Random Forest classifier. By feeding the 

algorithm with different sets of variables, a group of non-spatial Random Forest models was 

developed and then applied to all unknown points of the study area, resulting in a series of soil 

type maps in a raster format for the entire study area. The different dataset training used as soil 

legacy data with their related topographic indexes are presented below. 

 

2.2.4 Training dataset 

 

The complete framework, including the choice of training dataset until the spatial 

prediction of soil types of the extrapolated area, is presented in the Figure 2.2. The 

randomForest package (version 4.6-12) in the statistical software R (R Development Core 

Team, version 1.0.44) was used. The choice of mtry is often the square root of the number of 

variables (p), in this case it was 4 and the parameter ntree was adjusted to 1000.  The following 

way of using legacy data for training Random Forest was applied:  

- Point legacy data (Figure 2.2A): a) 53 soil legacy samples; and b) a circular buffer of 

30 m radius around each soil sample point, aiming to increase the number of points with soil 

information to be used by the Random Forest. The buffer increases the size of training dataset, 

which, in turn, could improve the accuracy of Random Forest prediction (Deng and Wu, 2013). 

- Polygons of soil mapping units (Figure 2.2B): a) pixels from the interior of the 

polygons eliminating 20 m from their boundaries; and b) pixels from the interior of the polygons 

eliminating 30 m from their boundaries. The use of information closer to the mapping unit 

boundaries has been frequently avoided, since it is a transitional zone where there is greater 
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uncertainty (ten Caten et al., 2012; Giasson et al., 2015; Pelegrino et al., 2016).  The use of 

polygon data in predictive models could bring great dataset training gain, and it has been 

reported as one of the greatest advantages by capturing more details of the landscape variability 

and the multivariate feature space of a categorical variable (Heung et al., 2016). 

- PCA of Polygons and Points training datasets (Figure 2.2C): PCA was applied 

(FactoMineR package, version 1.36) by means of R software environment (R Development 

Core Team, version 1.0.44). The PCA extracted the most important information from a 

multivariate data set and expressed it as a whole new set of information, called principal 

components. Considering that the contribution of the individuals (pixels) to the principal 

components of a given dataset can be measured, it was possible to reduce the data to a new 

ensemble more aligned to the variables, according to the Figure 2.3. The red line in the Figure 

2.3A indicates the individuals expected average contribution (EAC). For a given component, 

an observation with a contribution larger than this cutoff could be considered as important in 

contributing to the component, reducing the subjectivity in explanatory information reduction. 

The Figure 2.3B shows the variation of contribution of the dataset. The closer to the center, the 

lower the contribution of a given observation. Therefore, the contribution of individuals was 

calculated for each training dataset described above, and the pixels with values below the EAC 

were excluded (Figure 2.3C). With this procedure, four additional training datasets were 

created, namely PCA-Point, PCA Buffer-Point, PCA Pol -20 m, PCA Pol -30 m. 
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Figure 2.2 - Flowchart of training data scheme and their interaction with the variables. A- 

composition of Point training datasets. B - development of Polygon training 

datasets. C - training data reduction for development of PCA training datasets. D 

- summary of the proposed methodology. 
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Figure 2.3 - A - Contribution of individuals to dimensions-1-2 of the principal component 

analysis for the data set. B - The variation of contribution of the data set. C – 

Reduction of data dimension. Dim - Dimension. 

 

 

2.2.5 Variables reduction  

 

Possessing a large number of available information does not always contribute to 

generate accurate models. Even the Random Forest being efficient in applying multiple 

predictors, the accuracy is not always improved (Svetnik et al., 2003). In this sense, the different 

kinds of tests, in order to assess the effects of variable reduction in spatial prediction (Figure 

2.2D), were developed:   

1. The Random Forest classifier was initially loaded with the entire set of predictors 

(topographical indexes) for each one of the soil information data set (control);  

2. Based on Random Forest algorithm, the mean decrease in accuracy was obtained and 

the variable importance was ranked. For each dataset, the top eleven (MDA11), nine (MDA9) 

and five (MDA5) variables were selected.  

3. The whole set of soil data and its correspondent terrain indexes were submitted to 

PCA. The reduction of variables was performed from the expected average contribution of the 

variables for the dimensions 1-2 of PCA. For the given components, the variables with a 

contribution lower than this cutoff were excluded (PCA1-2). 

4. For each dataset from the dimensions 1-2 of the PCA had the top nine attributes 

selected from a rank (PCA9). 
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5. For each dataset, from the dimensions 1-2 of the PCA the top five attributes (PCA5) 

were selected from a rank. 

It is important to highlight that PCA was performed for both reduction of predictor 

variables and training points. Thus, in the procedures 3, 4, and 5 aforementioned, the Random 

Forest was loaded with the ensemble of variables defined for their original training sets (Figure 

2.2D). 

 

2.2.6 Assessment of predictions accuracy within extrapolation of information area 

 

The assessment of the Random Forest accuracy was done with 23 soil profiles (external 

validation), at which was called here as extrapolation of information area (Figure 2.1). The 

sampling sites were chosen by means of Regional Random method on ArcSIE (Soil Inference 

Engine - ArcGIS extension, version 10.3.101). The locations were randomly defined within 

polygons, representing three altitude levels (sampling regions) as shown in Figure 2.1. Two 

indexes were calculated: overall accuracy and kappa index. The overall accuracy is the sum of 

the main diagonal components of the confusion matrix divided by the total of validation 

samples, as follow:  

 

𝑂𝐴 =  
∑ 𝑥𝑗𝑗𝑐

𝑗=1

𝑁
 

 

where: xjj is the number of correct samples and N is the total number of samples. 

Kappa index is an agreement measure calculated taking into account the total number 

of samples, the number of soil types and the correctly classified samples (Congalton and Green, 

2008). The values may range from -1 (suggesting disagreement) to 1 (suggesting excellent 

agreement) (Landis and Koch, 1977). 

 

𝐾𝐼 =  
𝑁 ∑ 𝑥𝑗𝑗𝑐

𝑗=1 −  ∑ 𝑥𝑗𝑖𝑥𝑖𝑗𝑐
𝑗=1

𝑁2 − ∑ 𝑥𝑗𝑖𝑥𝑖𝑗𝑐
𝑗=1

 

 

where xij is the value in a row i and in a column j; xji is sum of values in line i; xij is the sum 

of values in column j; N is the total number of samples (points used for validation); and c is the 

number of soil types. 
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User's accuracy and producer's accuracy were also calculated. User's accuracy shows 

the probability of the predicted class on the map to match the class at the field, while the 

producer's accuracy expresses the probability of a soil type point being correctly classified in 

the map (Congalton, 1991). The indexes are presented by the equations below: 

 

User′s accuracy =  
𝑋𝑖𝑖

∑ 𝑋𝑖𝑗𝑟
𝑖=1

 

Producer′s accuracy =  
𝑋𝑗𝑗

∑ 𝑋𝑖𝑗𝑟
𝑗=1

 

where Xii and Xjj are the number of correctly classified samples and Xij the sum of samples of 

a soil type in a row (user's accuracy) or column (producer's accuracy) of a confusion matrix. 

An accurate map has indexes values closer to one (100%) (Behrens et al., 2010). 

 

2.2.7 Prediction uncertainty 

 

The prediction uncertainty was evaluated by vote count and entropy maps. The 

ensemble-modeling, like Random Forest, has as benefits the possibility to estimate the 

uncertainty by using the vote count surface. In this study, each model corresponds to 1,000 

interactions. By the end of the procedure, each pixel receives 1,000 votes. Thus, the range of 

votes varies from 0% to 100%. Pixel values closer to 0% or 100% indicate less uncertainty. The 

higher the value, the greater the certainty of that pixel to correspond to a given soil type. The 

lower the value, the higher the certainty of a given pixel does not correspond to a given soil 

type. Therefore, the values in between this range carry some uncertainty. 

To represent the overall uncertainty, the entropy measure (H) was used to describe how 

the ensemble-model intent their predictions to a particular soil type. It expresses the degree of 

certainty in a pixel classification which the votes are concentrated in a particular class, rather 

than spread over a number of classes. H is calculated as follows (Zhu, 1997): 

 

𝐻(x) =
1

1n𝑛
∑ 𝑃𝑘(𝑥) ln𝑃𝑘(𝑥)

𝑛

𝑘=1
 

where Pk is the proportion of instances where pixel x is classified as soil types k and where n 

is the number of members in the ensemble-model. The entropy values range from 0 to 1, which 

the higher the entropy value at a location, the higher the uncertainty of classification.  
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To better understand the uncertainty in predictions, a landforms map was generated. The 

DEM was selected as input data to the TPI based landform classification module on SAGA GIS 

(Weiss, 2001) resulting into ten landform classes of the study area (APPENDIX D.) The derived 

landform classes were intersected with the vote-count and entropy maps for the interpretation 

of the predictions uncertainty distribution on the landscape. 

 

2.3 RESULTS AND DISCUSSION 

 

2.3.1 Model Evaluation 

 

According to the Table 2.2, the OOB estimate of error varied in a wide range (from 5 to 

77%). This index seems to be mainly driven by the number of observations: the error decreases 

while the number of observations increases. Such difference is clear when comparing the 

models with training datasets derived from points and from polygons, the last one showing 

more observations and less errors. For the group of polygons, those that were reduced using 

PCA presented mean OOB values slightly lower than their respective original sets. However, 

when analyzing the whole models by means of training data reduction (Figure 2.4), two 

different groups of OOB estimated of error were found: those with less than 53 and more than 

105 training data observations, with or without PCA analysis, as seen in Table 2.2. 

Such results indicate that Random Forest models were sensitive to variations in training 

dataset. Larger training dataset is often necessary to decrease error (Pal et al., 2003), and in this 

study, such information also brought stability to the errors of the models in training data above 

105 observations. However, it is important to highlight that the use of polygons and buffers 

could bring some uncertainty about the soil type, mainly closer to the boundaries or transition 

zones (Pelegrino et al., 2016; ten Caten et al. 2012; Giasson et al., 2015). Thus, the key point 

here is if the more accurate models will deliver accurate soil maps in the extrapolated area.    
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Table 2.2 - Accuracy measurements of the models developed from point and polygon data 

(continue) 

 

 

Training dataset 
Number of 

observations 

Variable 

selection 

Number of 

variables 

OOB estimate 

error 

Overall 

accuracy 

Kappa 

Index 

    -----------%-----------  

Point 53 

Control 14 62 57 0.358 

MDA(11) 11 57 57 0.345 

MDA(9) 9 54 48 0.209 

MDA(5) 5 64 43 0.143 

PCA1-2 11 60 57 0.345 

PCA (9) 9 62 57 0.345 

PCA (5) 5 64 39 0.069 

PCA-Point 18 

Control 14 77 49 0.110 

MDA(11) 11 72 40 0.110 

MDA(9) 9 56 40 0.093 

MDA(5) 5 55 49 0.159 

PCA1-2 11 67 49 0.110 

PCA (9) 9 67 39 0.100 

PCA (5) 5 50 35 0.004 

Buffer-Point 322 

Control 14 15 65 0.476 

MDA(11) 11 15 65 0.476 

MDA(9) 9 16 70 0.540 

MDA(5) 5 17 70 0.550 

PCA1-2 11 20 65 0.476 

PCA (9) 9 18 65 0.476 

PCA (5) 5 29 70 0.546 

PCA Buffer-Point 105 

Control 14 18 61 0.410 

MDA(11) 11 20 61 0.410 

MDA(9) 9 18 61 0.410 

MDA(5) 5 21 48 0.211 

PCA1-2 11 21 65 0.474 

PCA (9) 9 18 61 0.409 

PCA (5) 5 32 83 0.738 
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Pol -20m 2,314 

Control 14 11 57 0.324 

MDA(11) 11 9 52 0.260 

MDA(9) 9 9 52 0.258 

MDA(5) 5 15 57 0.327 

PCA1-2 * * * * 

PCA (9) 9 15 57 0.337 

PCA (5) 5 25 44 0.158 

PCA Pol -20m 714 

Control 14 6 50 0.226 

MDA(11) 11 5 57 0.343 

MDA(9) 9 5 66 0.474 

MDA(5) 5 6 61 0.417 

PCA1-2 * * * * 

PCA (9) 9 10 53 0.262 

PCA (5) 5 19 40 0.118 

POL -30m 1,604 

Control 14 8 52 0.267 

MDA(11) 11 8 52 0.256 

MDA(9) 9 9 48 0.191 

MDA(5) 5 12 48 0.207 

PCA1-2 * * * * 

PCA (9) 9 14 57 0.327 

PCA (5) 5 21 44 0.172 

PCA Pol -30m 524 

Control 14 6 52 0.262 

MDA(11) 11 6 57 0.343 

MDA(9) 9 6 57 0.335 

MDA(5) 5 8 52 0.254 

PCA1-2 * * * * 

PCA (9) 9 10 53 0.279 

PCA (5) 5 14 44 0.160 

PCA – principal component analysis; OOB out-of-bag observations. *For PCA-1-2, there are 

no values for the polygons group because only 9 variables (Terrain Indexes) reached the 

expected average contribution; Control – All terrain indexes applied for RF spatial prediction; 

MDA-Variables reduction by means of Mean Decrease in Accuracy; PCA-Variables reduction 

by means of Principal Component Analysis.  
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Figure 2.4 - Variation of OOB estimate of error rate in function of the number of training data 

observation (pixels). 

 

2.3.2 Assessment of extrapolated information (external validation) 

 

Table 2.2 presents the overall accuracy and Kappa index derived from external 

validation within the area, to where the information was extrapolated. Figure 2.5 presents the 

Kappa index organized by training dataset groups. The Point derived models presented the 

poorest prediction when compared with the Buffer-Point or Polygons, with or without PCA 

analysis. Also, an increasing in number of data observation does not bring significantly 

improvement of accuracy, in disagreement with OOB estimate error from the model. Polygon 

derived models presented intermediate Kappa values, ranging from 0.118 to 0.474, while the 

Point derived models (original and buffered) gave rise to maps with both lowest and greatest 

accuracy values (Kappa index from 0.004 to 0.738). The map with the highest absolute accuracy 

came from PCA Buffer-Point dataset, with 0.738 for the Kappa index and 83% for overall 

accuracy. 

As long as digital soil mapping techniques attempt to take advantage of a large number 

of explanatory environmental covariates (McBratney et al., 2003), with a relative small 

proportion of sampling points, the ability of Random Forest to deal with high dimensional 

datasets should be tested. Thus, the reduction of dimensionality by means of PCA analysis 

(Behrens et al., 2010) or calibration of data set selection (Kuang and Mouazen, 2011) would 

improve the accuracy of spatial prediction, since the most important subsets are used (Millard 
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and Richardson, 2013). In this study, the use of PCA resulted only in a slight improvement of 

overall accuracy of models. Nevertheless, as already mentioned, the PCA Buffer-Point dataset 

presented the most accurate map among all 52 prediction models, as evaluated by Kappa index 

and overall accuracy.  

It is possible to notice large variations of accuracy even within the same type of training 

datasets (Figure 2.5), variations are due to the choice of terrain indexes. In order to better 

understand the effects of terrain indexes or variables reduction, Table 2.3 presents the difference 

between the overall accuracy of the control (all terrain indexes as an input on Random Forest) 

and the reduced ensembles of each training dataset. It is expected that where the most important 

input data are used, the accuracy would increase (Strobl et al., 2009; Millard and Richardson, 

2013). In this study, in general, variable reduction was not related with increasing accuracy. 

Millard and Richardson (2015) noted high fluctuations regarding the variable importance, even 

when the same training data was used. Thus, another way to select variable importance from 

Random Forest output should be tested, seeking for model stability and accuracy improvement. 

 

Figure 2.5 - Accuracy for each dataset based on Kappa Index. 
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Only two training datasets (PCA Buffer-point; PCA Pol-20m) presented at least one 

model with relevant increase in overall accuracy (higher than 15% in overall accuracy). No 

relevant variation or reduction in accuracy was found for the others. Thus, the relationship 

between models predictive capacity and terrain indexes cannot be explained only by the number 

of predictor variables used in each model. As an example, from the best results obtained for the 

Buffer-Point dataset, the variables reduction resulted in a slight or no variation on maps 

accuracy. Moreover, different sets of terrain indexes presented the same overall accuracy for 

the same dataset (Buffer-Point MDA(5), 70% and Buffer-Point PCA(5), 70%) as seen in Table 

2.2. 

 

Table 2.3 - Difference of overall accuracy of the reduced ensembles of variables in relation to 

the control, for each training dataset. 

Variables Point 
PCA-

Point 

Buffer-

Point 

PCA 

Buffer-

Point 

Pol 

(-20m) 

PCA-

Pol (-

20m) 

Pol 

(-30m) 

PCA-

Pol 

(-30m) 

Ensembl

e 

Numbe

r 

______________________________%______________________________

___ 

Control 14 57 49 65 61 57 50 52 52 

MDA(11

) 
11 0 -9 0 0 -5 +7 0 +5 

PCA-1-2 11 0 0 0 +4 * * * * 

MDA(9) 9 -9 -9 +5 0 -5 +16 -4 +5 

PCA(9) 9 0 -10 0 0 0 +3 +5 +1 

MDA(5) 5 -14 0 +5 -13 0 +11 -4 0 

PCA(5) 5 -18 -14 +5 +22 -13 -10 -8 -8 

PCA – principal component analysis. *For PCA-1-2, there are no values for the polygons group because 

only 9 variables (Terrain Indexes) reached the expected average contribution; MDA-Variables reduction 

by means of Mean Decrease in Accuracy; PCA-Variables reduction by means of Principal Component 

Analysis. 

 

In accordance with the findings of Heung et al. (2014), in this study, the variable 

reduction did not necessarily result in great accuracy improvements with Random Forest. 

However, the best result obtained in our study was achieved with the reduction of variables. 

For the PCA Buffer-Point dataset, by reducing the number of the variables to the 5 most 

important ones pointed out by the PCA, there was a 22% improvement in the accuracy of the 

map, in accordance with Table 2.3. In contrast, for the same training data, using the same 

predictor variables set size, although defined by MDA, the accuracy of the map was 13% lower 
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when compared to the control model, as seen in Table 2.3. This result is contrary to those 

obtained by Behrens et al. (2010), which reported that the unsupervised PCA approach turned 

out to be the worst technique in terms of selecting optimal features for soil classification. 

Regarding variable reduction, it is important to note that, there is no single method for 

best ranking classifiers from distinct datasets (Novakovic et al., 2011). Different ranking 

methods may result in different classifications, as shown in Figure 2.6. Moreover, a poorly 

ranked variable that could be considered useless by itself, can afford an expressive performance 

enhancement when combined with others (Guyon and Elisseeff 2003). At this study, e.g., for 

PCA Buffer-Point dataset, the best predictor subset was obtained based on PCA-1-2 ranking, 

composed by the terrain indexes CS, TPI, TCI, LSF and SLOPE, whose MDA order of 

importance were 11th, 6th, 7th, 13th and 14th, respectively. Once the accuracy is influenced by the 

choice of features, it is reasonable the use of many rank indices in order to assure that the most 

accurate subset will be obtained (Novakovic et al., 2011). Another important aspect of 

identifying the main variables is the time saving in the acquisition and preparation of database 

and the computational efficiency, if there is interest in applying such model in larger and similar 

areas (Scarpone et al., 2017; Yu et al., 2016). 

Having a large training dataset and a numerous ensemble of variables does not 

necessarily result in accurate predictions, despite the low values on OOB error rate. Figure 2.7 

shows the relationship between the overall error rate and the OOB estimate of error rate. A 

weak correlation between model and external validation was found (R2 = 0.1395). Before an 

extensive sequence of tests in different types of Random Forest training datasets, Millard and 

Richardson (2015) pointed out that OOB was not a good indicator of error in highly dimensional 

datasets, and it seems to be driven mainly by dataset training size, as already discussed. Thus, 

it is recommended to explore different combinations of predictor variables for a single dataset, 

once, to load the random forest with the whole covariates ensemble, do not necessarily results 

in the most accurate map, as well as to provide an independent validation data set in order to 

avoid optimistic bias (Hammond and Verbyla, 1996). 
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Figure 2.6 - Overall variable importance. A - Variable importance based on mean decrease in 

accuracy. B - Variable importance based on its contribution for the dimensions-1-

2 of principal component analysis.  

 
Dim – dimensions; CS – Catchment slope; CI – Convergence index; PlanC – Planform curvature; ProfC 

– Profile curvature; LSF – LS-Factor; MRRTF – Multiresolution index of ridge top flatness; SWI – Saga 

Wetness Index; TPI – Topographic Position Index; TCI – Terrain Classification for Low Lands; USC – 

Upslope Curvature; VD – Valley Depth; VDCN – Vertical Distance to Channel Network. 

 

 

Figure 2.7 – Correlation between variations of Out of Bag (OOB) estimate of error rate and the 

overall rate of external validation. 
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2.3.2 Prediction uncertainty 

 

Uncertainty analysis was done in the Random Forest predictions for the two best models 

obtained (point-derived and polygon-derived training dataset). The vote count surfaces of the 

soil types are presented in the Figure 2.8. Higher values correspond to areas most likely to occur 

for a given soil type, and the lower values indicate the opposite. Both can be considered areas 

of low uncertainty. Therefore, intermediate values are indicators of the areas of greatest 

uncertainty on prediction. 

There were quite differences when comparing the vote count surfaces from point-

derived training data and the polygon-derived training data. The polygon derived model seems 

to oversize the area of certainty for the probability of occurrence of Udepts, advancing over 

areas where Fluvents are expected (APPENDIX F). Despite this, the producer's accuracy for 

this class was 50%, demonstrating that, in addition to oversizing, spatialization was also 

impaired. For the Oxisols (Acrudox and Hapludox), the general spatialization pattern was 

considered similar to that of the point-derived model. However, the dimensionalization may be 

overestimated since the producer's accuracy (84% and 100%) was greater than user's accuracy 

(63% and 50%) for the soil type map. The model derived from the polygons was also less 

efficient in discriminating Fluvents compared to the point-derived one (Figures 2.8G and 2.8H). 

Great extensions of uncertainty over areas of Udepts and Hapludox votes surface maps 

were found for the point-model compared to polygon-model. This effect may come from the 

least amount of training data for the point dataset, which was respectively 8.4 and 2.4 times 

greater for polygon derived model. However, both soil types presented satisfactory values of 

producer's accuracy and user's accuracy (Table 2.4). In this case, the greatest uncertainty was 

found in Acrudox spatial prediction. 

The overall uncertainty prediction was represented by entropy (Figure 2.9A and 9B). 

Polygon and Buffer-Point presented quite similar results: polygon-derived the entropy ranged 

from 0 to 0.99, with average of 0.478 and standard deviation of 0.198; for the polygon-derived 

models the entropy ranged from 0 to 0.99, with average of 0.478 and standard deviation of 

0.198; for the Buffer-Point derived models the entropy also ranged from 0 to 0.99, with average 

of 0.467 and standard deviation of 0.169. Contrary to what was observed by Heung et al. (2017), 

there was no major difference in the spatial distribution of the overall uncertainty over the study 

area, considering the different datasets. 
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Table 2.4 - Producer’s and user’s accuracy for the highest accuracy spatial prediction from 

buffer of point and polygon data. 
 

Dataset Variables 
Udept Acrudox Hapludox Fluvent 

Producer's accuracy 

  _________________%___________________ 

PCA POL-20 MDA(9) 50 100 84 50 

PCA Buffer-

Point 
PCA(5) 80 0 88 100 

   User's accuracy  

  _________________%___________________ 

PCA POL-20 MDA(9) 78 50 63 25 

PCA Buffer-

Point 
PCA(5) 89 0 88 100 

PCA POL-20 - training data derived from polygon -20 m dataset and reduced with Principal 

Component Analysis; PCA Buffer-Point - training data derived from Buffer-Point dataset and 

reduced with Principal Component Analysis; MDA(9) – the best nine variables of the Mean 

Decrease in Accuracy rank; PCA(5) – the five variables that most contributed for Principal 

Component Analysis. 

 

 

Figure 2.10 shows the relative frequency distribution of the uncertainty related to 

landforms. In general, the uncertainty was low for valley bottom regions, where there is 

predominance of Fluvents occurring over flatter areas around the drainage network, being 

formed by the accumulation of sediments from floods depositions. Such values were also found 

in flat ridge tops and plains, commonly associated to Hapludox.   

 In sites where the slope is greater than 20%, the entropy values range from low to 

intermediate, and the steeper the slope, the lower the uncertainty. Such sites are commonly 

associated with the occurrence of Inceptisols. In the region of the study area, this soil type tends 

to be located in a wide range of slope gradient (3% to 45%). 
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Figure 2.8 - Vote count surfaces on 1000 decision trees of the Random Forest using Point and 

Polygon derived training data. A – Udept from Point data; B – Udept from Polygon 

data; C – Hapludox from point data; D – Hapludox from polygon data; E – Acrudox 

from point data; F – Acrudox from polygon data; G – Fluvents from point data; H 

– Fluvents from polygon data. 
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Figure 2.9 - Uncertainty surface based on Random Forest model using Point and Polygon-

derived training data produced at a 20m spatial resolution for the study area. (A) 

Entropy values for Polygon derived training data. (B) Entropy values for Point-

derived training data.  
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Higher uncertainty was found in footslopes and convex ridges. The former is probably 

related to the common associations between Udepts and Hapludox in this region, which can 

generate "confusion" when discriminating the domains of each type of soil. Silva et al. (2016) 

reported an analogous condition studying a nearby area, where on similar landscape positions 

occurs both, Inceptisols and Oxisols. Inceptisols tends to occur in the upper third and sometimes 

in the inferior third of backslope in association with Oxisols (Curi et al., 1994). In relation to 

the convex ridges, higher values of uncertainty may be due to the difficulty in tell apart the 

domains of Hapludox, Acrudox, and occasionally Udepts. Such pattern of soil distribution is a 

common situation in the northeastern portion of the study area. 

Most of the models presented low accuracy for Acrudox (Table 2.4) along with greater 

uncertainty, as observed in Figure 2.9A and B. This is mainly related to two factors: a) the low 

density of the training and validation datasets, since such soil type has low geographical 

expression in this region when compared with the others. This relative unbalance tends to favor 

the majority classes within the training dataset (He and Garcia, 2009). In other words, classes 

over-represented in the training dataset may dominate the classification by the model (Millard 

and Richardson, 2015). This natural unbalance is common when dealing with soil type 

distribution. In the reference area (Vista Bela Creek Watershed), Acrudox corresponds to only 

12% of the total area. The same was observed during the field work for the extrapolation area, 

where unlike Hapludox, the Acrudox do not occur in large contiguous areas, but rather, in 

transitions between Hapludox areas. b) Even though the relief explained most of spatial 

variability of soil types, it seems that specifically for Acrudox, it is mainly driven by parent 

material instead of relief solely. Terrain indexes do not efficiently tell apart the Acrudox and 

Hapludox areas, since both occur in similar portions in the landscape. Since digital soil mapping 

techniques are updatable (Hengl et al., 2014), the availability of data in the future related to 

parent material in the same scale of this study, could provide improvements of spatial prediction 

accuracy. 
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Figure 2.10 – Overall relative frequency distribution of the entropy values related to the TPI 

based landforms classification.  

 

Streams – canyons and deeply incised streams; Drainages - midslope drainages, shallow valleys, upland 

drainages and headwaters; Valleys - U-shape valleys; Slopes - open slopes and upper slopes; Ridges - 

local ridges/hills in valleys, midslope ridges, small hills in plains and high ridges 

 

 

2.4 CONCLUSIONS 

 

By executing the Buffer, the point-derived data performed better results compared to 

Polygon-derived models. Excluding the Buffer and PCA Buffer datasets, there were no great 

differences between the accuracy of the models. The reduction of variables was able, in a 

general way, to improve the accuracy of the predicted maps of soil types, the same for training 

data selection. The best result was obtained by identifying the principal components of the 

Buffer dataset, and reducing the size of predictors ensemble with the PCA. Although the 

uncertainty was relatively similar for both Buffer-Point and Polygon derived models, the one 

derived from Polygons seems to have inserted more noise to the models, as observed by the 

inconsistences in the spatial prediction of soil types. The natural unbalance in the dataset 

training related to those soil types with smaller geographical expression could under-represent 

its spatial prediction from Random Forest and increase the uncertainty over some types, such 

as Acrudox in the region of the study. 

Even though Random Forest has been considered a robust spatial predictor model in 

Soil Science, it was very clear its sensitivity to different strategies of selecting training dataset. 
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Effort was necessary to find the best training dataset for achieving suitable accuracy of spatial 

prediction. To identify a specific dataset in this study seems to be better than a great number of 

variables or a large size of training data. And so, the efforts here allowed the accurate 

acquisition (83% for overall accuracy and 0.738 for Kappa index) of a mapped area (2,719 ha) 

15.5 times greater than the reference area (175 ha), up to the second hierarchica level according 

to Soil Taxonomy, at low cost by taking advantage of soil legacy data. 
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3. ARTICLE 2. Transferability, accuracy, and uncertainty assessment of different 

Knowledge-based approaches for soil type mapping 

 

* Article prepared according to the rules of Catena 

 

ABSTRACT 

 

Soil legacy data is an important source of soil information, especially when dealing with limited 

resources. In countries with sparse areas and few financial resources, such as Brazil, it 

represents an economical alternative to obtaining soil spatial information. By retrieving the soil 

scientist’s knowledge, it can be used as guidance for knowledge based digital soil mapping 

approaches. In this sense, this work aimed to evaluate Rule-Based Reasoning (RBR) and Case-

Based Reasoning (CBR) knowledge-based approaches in order to predict soil types up to the 

second categorical level (U.S Soil Taxonomy) in a non-sampled area, by retrieving and then 

extrapolating the information of a detailed soil legacy map, used as a reference area. The study 

was carried out in Minas Gerais state, Southeastern Brazil. The methodology contains three 

main processes: i) the knowledge acquisition; ii) the soil inference procedures; iii) accuracy and 

uncertainty assessment. For the validation, 23 independent samples were chosen by means of 

the Regional Random method, and the accuracy was assessed by Kappa index, Overall 

Accuracy, Users', and Producers' Accuracy. The uncertainty was evaluated through ignorance 

of individuals (entropy) and exaggeration of members. A total of 24 inference models were 

obtained with the CBR approach, whose the best model presented 61% of overall accuracy and 

a Kappa index of 0.518. The RBR approach had a greater accuracy than the other models, 

accounting for 82% of overall accuracy and 0.749 for Kappa index. The efforts made it possible 

the accurate acquisition of a mapped area 15.5 times larger than the reference area with low 

cost. 

 

Keywords: Digital soil mapping; soil survey; legacy data. 
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3.1 INTRODUCTION 

 

Soil mapping is an inference process based on well-structured paradigms, which states 

that the distribution of soils in the landscape is predictable once the soil-environment 

relationships are known (Hudson, 1992; Jenny, 1941). Traditionally, soil mapping is related to 

a mental process, fully depending on the expertise of the soil scientist to decode the soil-

environment relationships and delineate the spatial representation of the soil distribution over 

the landscape. Although very precious, some problems are usually reported. The facts of being 

time-consuming and its high cost are pointed out as the major factor for the worldwide lack of 

soil spatial data information in greater detail (McBratney et al., 2003; Kempen et al., 2012). 

The subjectivity, the inconsistency and the difficulty on representing the continuous variability 

of soils are pointed out by Shi et al. (2004) as inherent of manual polygon-based mapping 

process. Another problem is related to the knowledge transmission. "Tacit Knowledge is non-

transferable without the exchange of key personnel and all the systems that support them" 

(Nonaka et al., 2000), therefore, the knowledge transferability often requires collaborative 

experiences, participation and doing (Foos et al., 2006). 

Such problems have motivated many researchers to improve soil mapping techniques, 

by means of quantitatively descriptions of soil-landscape relationships on digital environments 

(Skidmore et al., 1991; Zhu et al., 1997a; Dobos et al., 2000; Shi et al., 2004; Qi et al., 2006; 

Demattê et al., 2015; Silva et al., 2016; Akumo et al., 2017). In general, we can distinguish two 

groups of techniques being taken in Digital Soil Mapping (DSM); data-driven and knowledge-

driven processes. The former is based on statistics, geostatistics, machine learning, and data 

mining techniques. It is more quantitative and automatic, but often requiring dense sampling 

schemes, which may be costly, if no data is readily available. The other approach takes 

advantage of soil scientist’s knowledge, combining it with Geographical Information System 

techniques, trying to reduce the subjectivity problems related to manual processes of 

conventional soil mapping frameworks, such as inconsistency, and loss of knowledge due to 

personnel change over time (Shi et al., 2004; Shi et al., 2009). 

In Brazil, there is a need for more detailed soil maps contrasting to increasing funding 

limitations (Giasson, et al., 2006). Other authors have argued that Knowledge systems 

represents a feasible and economical alternative on making good use of soil scientists’ 

knowledge and soil legacy data (Hudson, 1992; Shi et al., 2004; Silva et al., 2016). Available 

soil maps synthetize the soil scientist mental model for the soil distribution over the landscape 
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for a given site (Bui, 2004), serving as reference areas (Favrot, 1989) to soil survey for 

unmapped areas with similar environmental characteristics (Bui and Moran, 2003). 

In order to overcome the necessity of representing the continuity character of the soil 

distribution, many researchers focused on exploring knowledge systems under fuzzy logic 

concepts (McBratney et al., 2003). The option for using fuzzy logic attempts to consider the 

uncertainty in predictions employing a partial membership conception, and the non-linearity of 

soil-landscape relationships to describe and model it (Zhu et al., 2010; Menezes et al., 2013).  

One of the first efforts on developing a routine for soil mapping practice under these 

concepts was the SoLIM experiments, leaded by Zhu and colleagues (Zhu and Band, 1994; Zhu 

et al., 1996; 1997a; Zhu et al., 2001). It employs a soil membership vector (Zhu, 1997a) to 

measure the similarity between a soil at a given location (i,j) to a soil class (k). It is a Rule-

Based Reasoning approach (RBR), where the soil scientist employs his/her knowledge to 

establish rules, which describes the relationship between the soil types and environmental 

variables (e.g. slope, parent material, elevation, etc). However, Shi et al. (2004) reported that, 

the need of explicit knowledge and the variable independence assumption limited the 

experience on using the current SoLIM. In an effort to overcome those limitations, the authors 

purposed the use of a Case-Based Reasoning (CBR) approach as an alternative to the RBR. It 

was based on two main assumptions: “cases are capable of representing domain expert’s 

knowledge” and “a new problem can be solved by referring to similar cases” (Shi et al., 2004). 

Instead of creating a set of rules (parametrical space), which is not always simple, scientists 

identify locations in geographic space to represent the knowledge of the soil-landscape 

relationship. It is called tacit point, and corresponds to a case. Similarly, to RBR, the objective 

is to drive for every location the fuzzy membership values of all soils that occurs in the area.  

Shi et al. (2009) introduced a software package named Soil Inference Engine (SIE) to 

integrate both RBR and CBR. In addition, the SIE has a Knowledge Discovery module, which 

enables the scientist to explore the knowledge implicit on soil maps. There is also the possibility 

to explore the uncertainty of predictions, through the entropy and exaggeration of individual 

indexes. It permits to assess the behavior of the inference process and identify the complexity 

of the soil-landscape relationships. This is particularly relevant on tropical countries, where it 

is common the occurrence of polygenetic soils. Given the global increase demand for more 

detailed maps, the understanding of this aspect regarding landscape is important for generating 

maps with greater accuracy and lower cost. 

This paper presents the use of two knowledge-based approaches founded on fuzzy logic 

for soil mapping at a non-sampled area. The main objective is to evaluate the efficiency of these 

approaches on predicting soil types up to the second categorical level (classified according to 
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U.S. Soil Taxonomy) for a non-sampled area with similar environmental characteristics of the 

reference area. It uses the knowledge retrieved from a reference area on GIS environment along 

with field expertise. For this, the ArcSIE (Soil Inference Engine) was applied. The methodology 

contains three main processes: i) the rule-based and case-based knowledge acquisition; ii) and 

the soil inference proceedings; iii) validation and uncertainty assessment.  

 

3.2 MATERIAL AND METHODS 

 

3.2.1 Study Area 

 

Two areas were used in this study. The digitally mapped area A1 and the reference area 

A2. The comparison of their physical characteristics is given in Table 3.1. The reference area 

A2 (Figure 3.1A) (Vista Bela creek watershed) was mapped by experienced soil scientists, 

along with intensive fieldwork (total of 53 soil profiles). The map was produced in a detailed 

scale (1:10,000) composed by simple mapping units (Menezes et al., 2009). Table 3.2, soils are 

referred to as classified by the Soil Taxonomy (Soil Survey Staff, 2014), and their respective 

geographical expressions at the reference area (Figure 3.1A).  

 

Table 3.1 - Study area comparison 

 Study area A1 Study area A2 

Coordinates 

553781 and 581138 mW, 

7598766 and 7597100 mS 

fuse 23K, datum WGS 1984 

559868 and 561536 mW 

7598766 and 7597100 mS, 

fuse 23K, datum WGS 1984 

Size (ha) 2,719 ha 175 ha 

Geology 

biotite gneiss (banded); biotite 

schist; gneiss; feldspar schist; 

phyllites; xystus and quartzite 

biotite gneiss (banded); biotite schist 

and gneiss 

Slope (%) 
Min: 0 - Max:73 

Mean:14 - Std. Dev.: 10 

Min: 2.29 - Max: 39.73  

Mean: 15,5 - Std. Dev.: 7,8 

Elevation (Meters) 
Min: 924 - Máx:1342  

Mean:1042 - Std. Dev.: 56 

Min: 960 - Máx:1068  

Mean:1034 - Std. Dev.: 25 

Mean annual temperature 20ºC 20ºC 

Mean annual precipitation 1,450 mm 1,450 mm 

Land use Pasture Pasture 
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Figure 3.1 - Study areas location. A) – Soil types at the reference area (A1) (Menezes et al., 

2009); B) The spatial settings of mapping unit polygons. C) An overview of the 

area A2. D) Digitally mapped area (A1), reference area (A2) and the validation 

sampling regions. 

 

Table 3.2 - Mapping units identified in the study area. 

Symbol Soil classes Area (ha) % 

Hx Hapludox 61.2 35 

Ax Acrudox 21.3 12.2 

Ut Udept 61.3 35 

Ft Fluvent 27.2 15.5 

Ot Orthent 4 2.3 

Total 175 100 
Source: Menezes et al. (2009) 

 

3.2.2 Preparing the Environmental Database 

 

For the present study, a digital cartographic base was developed in GIS environment. 

Firstly, it was generated a Digital Elevation Model (DEM) with 20 m of spatial resolution, 

derived from contour lines freely available from IBGE (Brazilian Institute of Geography and 

Statistic) with a 1:50,000 scale and equidistance of 20 m. A hydrologic consistent DEM was 
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generated in ArcGIS 10.1 software (ESRI) through the Topo To Raster function. The DEM was 

used to calculate 14 topographic indexes (TI) using the SAGA GIS software (SAGA 

Development Team version 3.0), which are: catchment slope, convergence index, plan-

curvature, profile curvature, LS-factor, multiresolution index of ridge top flatness (MRRTF), 

slope, SAGA wetness index (SWI), topographic position index (TPI), texture, terrain 

classification index for lowlands (TCI LOW), upslope curvature, valley depth and vertical 

distance to channel network and TPI based landforms. The topographic variables were selected 

due to their capacity to express variations of morphometric and hydrological characteristics at 

local and landscape scale, indicating changes in soil-forming factors (Giasson et al., 2015). For 

the reference area, a soil type map of Vista Bela Creek Watershed on shapefile format was used 

(Figure 3.1A).  

 

3.2.3 Soil modeling environment - ArcSIE 

 

The ArcSIE (SIE stands for Soil Inference Engine) version 10 is a toolbox extension of 

ArcGIS 10.1. It is an expert knowledge-based inference tool, supported by fuzzy logic. The soil 

mapping proceedings is based on the soil-environment model: S= f (E), which states that the 

soil information (S) can be derived from the information about the soil formative environment 

(E) (Shi et al., 2004), as well known as the soil forming factors (Jenny, 1941), in addition to 

other information about soils characteristics or attributes (McBratney et al., 2003). There are 

two inference methods of establishing the relation between the soil and its environment (f), 

namely: RBR, in which the inference is based on rules from direct specifications of soil 

surveyor and CBR, when the inference is based on cases, the knowledge at a specific location 

is represented by a point, line, polygon, and pixels defined in a geographic space (Shi et al., 

2009). In both cases, the inference procedure consists on derive fuzzy membership functions, 

which describes the relationship between an environmental feature and the optimality values 

for a soil type (Shi et al., 2004). A more detailed review about these methods can be found at 

Menezes et al. (2013) and Zhu et al. (2010). 

The ArcSIE also provides a data mining tool named Knowledge Discoverer (KD). In 

this case, data mining stands for a semi-automated process, and it was used to recognize patterns 

and thresholds for the purposes of prediction. It works by overlapping vector features over raster 

layers to generate mathematical functions, represented by curves. These curves are considered 

a representation of the knowledge about the relationship between the environmental feature 

(raster layers) and the soil, represented by a vector feature. For a polygon, the cells that are 
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enclosed by the polygon will be used to calculate statistics and build the curve. The KD is a 

practical way to convert a case-based into a rule-based, and then apply this "discovered" 

knowledge to a different mapping area if convenient (Shi et al., 2009). 

 

3.2.4 The soil inference on ArcSIE 

 

In this study, the inference process was done based on the global knowledge approach 

(Shi et al., 2009), which are divided on three phases, described by the three functions, E, P, and 

T, in the following equation (Shi et al., 2004): 

𝑺 𝒊𝒋 ,𝒌 =

𝒏
𝑻𝒌

𝒈 = 𝟏
 {

𝒎
𝑷𝒈

𝒂 = 𝟏
[𝑬𝒈,𝒂(𝒁𝒊𝒋,𝒂 , 𝒁𝒈,𝒂)]} 

where Sij,k is the fuzzy membership value at a location (i,j) for a soil k. The m is the number of 

environmental features used in the inference. The n is the number of instances for soil type k. 

Zg,a is the most optimal range given by rule or case g, defining the most favorable condition of 

feature a for soil k; Zij,a is the value of the ath environmental feature at location (i,j). The E 

function evaluates the optimality value at the environmental features level. The closer Zij,a is to 

the Zg,a range, the greater the optimality value assigned by E. In RBR, Zg,a is directly defined 

by the scientist, whereas in CBR, it is automatically stated based on the case location and the 

related environmental features.  

ArcSIE provides five choices for E, namely nominal, ordinal, cyclic, continuous and 

raw values. In this study, only the Continuous function (Figure 3.2) was applied since it fits 

with continuous distribution of raster maps used. It is based on Gaussian curves to fine-tune the 

optimality value. The Continuous E function, are defined by the parameters v, w and r, and 

adjusted in the Inference module on ArcSIE. The v1 and v2 are, respectively, the lower and 

upper limits of the most optimal range of a certain environment feature for a soil type. The w1 

and w2 defines how optimality will change as environmental conditions deviate from the typical 

conditions (Zhu et al., 2010). It corresponds to which value of the current attribute feature 

should present 50% of the optimality value. The r1 and r2 are used to control the flatness of the 

top and the steepness of the side parts of the curve. 
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Figure 3.2 - The three types of Continuous Function implemented on ArcSIE 

 

Function P is responsible for the interaction of the environmental features, resulting in 

optimality value for the whole instance. ArcSIE provides three methods for the P function: 

Limiting-Factor, Weighted-Average, and Multiplication. Once it is possible that a soil type 

presents more than one instance or case, T function is responsible for integrating their predicted 

values to return the final predicted values (Shi et al., 2009). 

 

3.2.5 Knowledge discovery and inference models 

 

The prediction of soil classes was performed based on the mentioned environmental 

variables. In this study, two procedures were tested: i) RBR approach; ii) CBR approach.  

 

3.2.5.1 RBR approach 

 

The RBR is based on attribute rules that can represent and formalize the soil scientist's 

mental-model for the soil-landscape relationship. Attribute rules are created and fully defined 

by the user. For the development of the attribute rules and the inference for the non-sampled 

area, the following procedures were adopted: 

1. The first step was to retrieve the soil-landscape model for the study area by revisiting 

the expertise accumulated in different studies in the reference area and surroundings, which 

preserves a potential knowledge that could be applied for the study area. In addition, fieldwork 

was carried out to confirm and update the soil-landscape model.  

2. The terrain indexes representing the environmental characteristics were developed 

and managed in GIS environment. Among them, the TI that better reproduced the relief 

characteristics associated with the respective soil classes comprised of the mental model were 

chosen. 
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3.  Once the mental-model and the set of variables were defined, the next procedure was 

to create the Rulebase. The Rulebase is composed of one or more soil types, which in turn have 

one or more instances, each one describing a unique environmental configuration, represented 

by a set of fuzzy membership curves. The adjustments were done by exhaustive evaluations, 

modeling and comprehending the soil-landscape relationships. For this task, the Knowledge 

Discoverer was applied. The KD uses curves to expose soil-environment relationships. There 

are two options of curves: two-side Gaussian optimality curve and kernel-smoothed frequency 

curve. The curves were generated based on the soil mapping units of the reference area. These 

proceedings aimed to expose the mental-model for the soil occurrence over the landscape to a 

formal set of rules.  

4. Based on the soil type instances, it was generated a series of fuzzy membership maps 

in raster format, one for each soil type of the current Rulebase. Since it is a modelling task, the 

iterative process is done until the membership maps match with the operator expectations (Shi 

et al., 2004). 

 5. The hardened map was generated by confronting each fuzzy membership map. For 

that, ArcSIE assigns to each pixel the soil type with the highest fuzzy membership value. The 

output is a raster layer that can be then vectorized. 

 

3.2.5.2 CBR approach  

 

In the CBR approach, the knowledge of local soils is represented by a collection of 

cases, organized into one or more case lists, each one representing a soil type. A case is the 

same as an instance plus spatial information. Two assumptions are made on CBR. The first is 

that cases may represent the expert’s knowledge. The second is that a new problem can be 

solved by referring to similar cases already solved (Shi et al., 2004). In this study, the cases 

were obtained by the mapping unit polygons from the legacy soil survey (reference area – A2). 

Each polygon represents a case that contains the information of the geographic space, the 

parametrical space (environmental features), and the solution space (taxonomic space). The 

construction of the case lists and the inference procedure for the non-sampled area (study area 

A1) are described below, and summarized in Figure 3.3: 

1. The data layers, including the soil map of the reference area and the TI, were 

developed and stored on GIS environment. For the Knowledge discovery, it was defined two 

ensembles of topographic indexes. The first (ei-TI) corresponds to the same used for previous 

procedure (RBR). For the second one (rf-TI) the Random Forest (RF) algorithm (Breiman, 
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2001; Liaw and Wiener, 2002) was applied on R software (R Development Core Team 2012, 

version 1.0.44) using the randomForest package to rank and them, select a reduced ensemble 

of variables. The training data comprehended the pixels enclosed by the mapping units of soil 

map from the reference area. The RF provides an index for measuring the importance of each 

variable for the model, called Mean Decrease in Accuracy (MDA). It evaluates a variable 

contribution for the model by measuring the increasing in error when randomly permuting a 

single predictor (TI) in the Out-of-Bag data (Breiman, 2001). More details can be found in 

Hastie et al., (2009) and Liaw and Wiener (2002). The indexes were selected based on the MDA 

rank, and the top six were selected. Thus, the rf-TI ensemble was composed by terrain surface 

texture, Saga wetness index, valley depth, vertical distance to channel network, longitudinal 

curvature, and terrain classification index for lowlands.  

2. The soil type distribution in the landscape (legacy data from the soil map) was related 

to the TI, and the values were extracted from the maps in three different ways in KD, 

considering the spatial reference (Figure 3.1B): a) each mapping unit from the entire polygon 

(MUe); b) each mapping unit polygon excluding 20 m from the boundaries (MUP-20); c) each 

mapping unit polygon excluding 30 m from the boundaries (MUP-30). For b) and c), the 

transition zones (closer to the borders) were avoided since such areas might bring uncertainty 

for soil information (Ten Caten et al. (2012), Giasson et al. 2015). 

3. For adjusting the models, the sampling scheme on KD was the No 

subsampling/averaging, where the original raster was used for statistics. For E function, it was 

applied the Continuous Bell-shaped (the optimality value decreases as the difference between 

the environmental feature value and the central values v1 and v2 increases). For the optimality 

values v1 and v2, two statistics were tested: the mean and mode values of the TI extracted for 

each MU. For w and r, the default values were applied. For P function, multiplication and 

limiting factor were also tested. 

4. Once extracted the values and developed the cases, the soil class fuzzy membership 

maps were generated for each interaction. 

5. Finally, for each set of adjustments a hardened map was developed.  
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Figure 3.3 -  Knowledge acquisition, membership functions adjustments and inference 

processes for the Case-based approach. MU – Mapping Unit; ea-TI – conjunct of 

terrain idexes used on RBR approach; rf-TI – conjunct of terrain idexes selected 

with the Random Forrest. 

 

 

3.2.6 Assessment of spatial predictions 

 

The assessment of spatial predictions was done by 23 soil profiles. The sampling sites 

were chosen by means of Regional Random method implemented in ArcSIE (version 10.3.101). 

The locations were randomly specified within three sampling regions, representing different 

altitude levels as shown in Figure 3.1. Aiming to assess the quality of the predictive maps, two 

indexes were calculated: Overall Accuracy (OA) and Kappa Index (KI). The overall accuracy 

is the sum of the main diagonal components of the confusion matrix divided by the total number 

of validation samples. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝑥𝑗𝑗𝑐

𝑗=1

𝑁
 

where: xjj is the number of correct samples and N is the total number of samples. 

Kappa index is an agreement measure calculated taking into account the total number 

of samples, the number of soil classes and the correctly classified samples (Congalton and 

Green, 1999). The values may range from -1 (suggesting disagreement) to 1 (excellent 

agreement) (Landis and Koch, 1977). 

 

𝐾𝑎𝑝𝑝𝑎 =  
𝑁 ∑ 𝑥𝑗𝑗𝑐

𝑗=1 −  ∑ 𝑥𝑗𝑖𝑥𝑖𝑗𝑐
𝑗=1

𝑁2 − ∑ 𝑥𝑗𝑖𝑥𝑖𝑗𝑐
𝑗=1
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where xij is the value in a row i and in a column j; xji is sum of values in line i; xij is the sum 

of values in column j; N is the total number of samples (points used for validation); and c is the 

number of soil classes. 

The prediction uncertainty caused by the hardening process was evaluated by the 

ignorance uncertainty (entropy) and exaggeration of members, calculated as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  

− ∑
𝑆𝑘

∑ 𝑆𝑘
𝑛
𝑘=1

𝑛
ℎ=1 ln

(
𝑆𝑘

𝑛 )

∑ 𝑆𝑘
𝑛
ℎ=1

ln (𝑛)
 

In the above equation, Sk is the fuzzy membership value of soil type k at a given location, 

and n is the total number of soil types. The entropy values range from 0 to 1, and the higher the 

entropy value at a location, the higher the uncertainty caused by the hardening process (Zhu, 

1997b). The exaggeration was calculated as follows:  

 

𝐸𝑖𝑗 = 1 − 𝑆𝑖𝑗
𝑎  

where Eij is the estimated exaggeration uncertainty and 𝑆𝑖𝑗
𝑎  is the similarity value of the 

instance for at each pixel to its correlate predicted category (a) (Zhu, 1997b). 

 

3.3 RESULTS AND DISCUSSION 

 

3.3.1 RBR approach: soil-landscape relationships 

 

The study area is situated at the Andrelândia Plateau. The relief presents, in general, a 

homogeneous dissection pattern, with predominantly medium to coarse drainage densities. This 

pattern results in hills with convex to tabular tops and also convex slopes, interspersed by 

elongated crests. Below the 1,200 meters, the hill tops lose their sharp appearance, getting more 

softened (Neto, 2014; RADAM, 1983). 

The most common soil types are Oxisols, Inceptisols and Entisols. Regarding the 

Oxisols, it is mainly related to hills with elongated and flat top, and slopes gentler than 20%. 

Inceptsols have a relevant geographical expression in the study area, and, as well as Orthents, 

are usually associated with steep slopes, and fine-textured terrain surfaces. The FT occur in flat 

areas around the drainage network, formed by sediments from floods deposition.  
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In the region comprising the study area, it is common the occurrence of different soil 

types in similar portions of the landscape. As observed by Curi et al. (1994) and Menezes et al. 

(2009), UT can occour associated to OT, and also in similar relief conditions to Oxisols.  

Figure 3.4 illustrates a case by means of optimality curves. The curves represent values 

of slope and cross-sectional curvature extracted from the mapping units (UM) of the reference 

area, being Figure 3.4A and 4B, UT and Figure 3.4C and 4D, HX. The optimality values 

correspond to the modal value of the TI, for each MU. The curves in light green represent the 

TIs values, enclosed by their respective mapping units, highlighted in light blue in the maps. 

The more individualized is the optimality value of the TI for a certain soil type, the better that 

TI is in discriminating that soil type from others. In this case, it is noteworthy that both the slope 

and curvature values present similar optimal values for HX and UT. This is not a typical 

configuration for HX, which means that, formulating a Global Rule-based considering just the 

main soil-landscape configurations for each soil type could exclude scenarios like this one, 

affecting the prediction accuracy.  

Since the soil-landscape relationships for a given soil type is not homogeneous, it was 

not possible to identify a single threshold-value based on the terrain indexes. Thus, the use of a 

single instance for each soil type in the Rule-base would be ineffective. In this sense, it was 

decided to identify specific soil-landscape configurations that could be translated into instances. 

This artifice was also used by Shi et al. (2009), which, for handling with local exceptions, to 

identify local cases was the most effective way to represent the knowledge. 

 

Figure 3.4 - Two-side Gaussian optimality curves: A – Slope (Udept); B – Cross-sectional 

curvature (Udept); C – Slope (Hapludox); D – Cross-sectional curvature 

(Hapludox). Red-dashed lines depict the optimality value of the marked curves. 
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Figure 3.5, represents the places or situations taken as reference for the formulation of 

the Rule-base described in Table 3.3, which presents the instances for each soil type. The FT 

occur in the lowest portions of the landscape (Figure 3.5 FT-e1), presenting high SWI values 

(>6.4), and closer to the channel network (VDCN ≤ 1.5 m). The SWI indicates the places with 

higher tendency of water accumulation (Beven and Kirkby, 1979), while the VDCN calculates 

the vertical distance from each pixel to the channel network (Conrad et al., 2015). Once some 

upper-plains could present SWI values similar to the lower limit for FT, the VDCN was used 

as a limiting factor to avoid misleading classification (Figure 3.5 FT-e2).  For UT, four instances 

were assigned. The first is related with concave and hilly slopes, usually associated with 

drainage headwaters (Figure 3.5 UT-e1) characteristics of fine-textured surfaces, which tend to 

correlate with erosional topography. The second are the narrow top areas, transitioning to steep 

slopes on fine-textured surfaces (Figure 3.5 UT-e2). The SWI (<3,6) was applied, once it gives 

information not only of flow accumulation, but also indirectly of curvatures and relative 

position (McKay et al., 2010). The third instance for UT describes locations where slope 

gradient and length leads to erosive surface conditions (Figure 3.5 UT-e3). The erosion tends 

to be intensified with the increasing of the slope and the length of the slopes, influencing the 

volume and speed of the water flow on the surface (Bertoni, Lonbardi Neto, 2012; Morgan, 

2005), indicating erosive surfaces, and probably shallower soils. The last instance for UT 

describes the transition between floodplain and Inceptsols area related to convex slopes (Figure 

3.5 UT-e4) and fine-texture surfaces.  

 

Figure 3.5 - Schematic distribution of the soils in the reference area. Each label corresponds to 

the approximate location of a soil-landscape configuration described by the 

instances at the Rule-base. 
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According to Table 3.3, the Terrain Surface Texture was the main distinguishing 

parameter, mainly for UT and HX. The Texture is directed related with drainage density and 

changes in sign of slope aspect or curvature per unit area (Iwahashi and Pike, 2007). While the 

Inceptsols are associated to fine-texture surfaces, the Oxisols tend to occur on coarse-texture 

surfaces, related to areas of few dissection and planar slopes. The Texture allowed to distinguish 

HX sites with slope gradient higher than 20% (Figure 3.5 HX-e1) from Inceptisols domains, 

commonly associated with this slope class. The other instances for HX describe planar surfaces, 

gentle slope convex areas (Figure 3.5 HX-e2) and open concave hills with SWI between 4.4 

and 6.4, if the VDCN is higher than 2 m (Figure 3.5 HX-e3). 

Both HX and AX presented similar environmental conditions. However, AX commonly 

occupies the highest altitudes of the landscape, and presents a relatively better drainage than 

HX, favoring the formation of hematite, which is reflected by their color, redder than 2,5YR 

(Curi and Franzmeier, 1984). Thus, for the AX first instance (Figure 3.5 AXe-1), the MRRTF 

was applied. This TI was designed to identify higher flat areas, based on slope and position in 

landscape (Gallant and Dowling, 2003). In addition, AXe-2 describes a slope pattern between 

the flatter slopes of HX and the hilly slopes, characteristic of UT.  

The OT was manually delineated. Its low geographical expression in the reference area, 

along with its intricate pattern of occurrence with Inceptsols may have hindered its 

individualization, and consequently, the knowledge transferability. To delineate the OT areas, 

it was identified some sites during the field work for establishing an identification key, by 

relating its occurrence on the field, as depicted in Figure 3.6. 

 

Figure 3.6 - Identification Key for OT based on field verification. 
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Table 3.3 - Rules for Udept (UT), Hapludox (HX), Acrudox (AX) and Fluvent (FT) 

Soil 

Class 
Instance Terrain Index 

E function 
P function 

v1 w1 v2 w2 Curve shape 

UT 

e1 
Catch slope 0.2 0.014 - - S-shape 

Limiting 
Texture 1.2 0.2 - - S-shape 

e2 
SWI - - 3.6 0.2 Z-shape 

Limiting 
Texture 2.6 0.5 - - S-shape 

e3 
Texture 6.7 0.59 - - S-shape 

Limiting 
LS-factor 11 0.2 - - S-shape 

e4 
Texture 2.4 0.59 - - S-shape 

Limiting 
VDCN 1.8 0.5 20 2 Bell-shape 

HX 

e1 
Slope % 16 2 30 5 Bell-shape 

Limiting 
Texture - - 1.5 0.5 Z-shape 

e2 
Catch slope - - 0.06 0.014 Z-shape 

Limiting 
VDCN 2 0.2 - - S-shape 

e3 
SWI 4.46 0,35 6.5 0,35 Bell-shape 

Limiting 
VDCN 2 0.2 - - S-shape 

AX 

e1 

MRRTF 0.38 0.16 - - S-shape 

Limiting Texture 2.34 0.59 6.6 0.59 Bell-shape 

VDCN 50 5.2 - - S-shape 

e2 
LS-factor 4 3 8 3 Bell-shape 

Limiting 
Catch slope 0.136 0.014 0.18 0.014 Bell-shape 

FT 
e1 SWI 6.5 0.3 - - S-shape Limiting 

e2 VDCN - - 1.5 0.3 Z-shape Limiting 

 

Catch slope – Catchment slopes; Texture – Terrain surface texture; SWI – Saga wetness index; 

VDCN – Vertical distance to channel network; MRRTF – multiresolution index of ridge top 

flatness.  

  

After the model process detailed above, a hardened soil type map (Figure 3.7A) was 

generated, based on fuzzy-membership maps of each soil type (Figure 3.7B, 3.7C, 3.7D and 

3.7E). Darker colors represent higher memberships for that soil type. 

 

 

 



75 

 

Figure 3.7 - A – RBR predicted soil class map for the study areas and the fuzzy membership 

maps of Udept (B), Hapludox (C), Acrudox (D) and Fluvent (E).  
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3.3.2 RBR Accuracy Assessment  

 

For the accuracy assessment, 23 soil profiles were described for validation purposes 

only. The inference procedure on ArcSIE resulted in an accurate soil type map for the 

extrapolation area. Of the 23 validation samples, 19 (83%) were correctly predicted, resulting 

in a Kappa index of 0.75, considered as a substantial classification, according to Landis and 

Koch (1977). The confusion matrix is presented in Table 3.4, as well the Producer´s and User´s 

accuracies.  

 

Table 3.4 - Confusion matrix and uncertainty of the RBR predictions 

  Observations   

 Predictions Fluvent Hapludox Udept Acrudox 
User’s 

Accuracy 

Mean 

Entropy 

Mean 

Exaggeration 

 Fluvent 4 0 0 0 100 0.34 0.00 

 Hapludox 0 8 0 0 100 0.14 0.12 

 Udept 0 2 6 1 66 0.53 0.06 

 Acrudox 0 1 0 1 50 0.40 0.20 

 
Producer’s 

Accuracy 
100 72 100 50    

Total number of samples = 23   

Overall accuracy = 82%   

Kappa index =  0,75   

 

Based on the mapping units from the legacy soil type map, the overall agreement with 

the predicted soil map was about 57%. Even though the modeling process could be time-

consuming, RBR has become a promising technique where there is suitable knowledge about 

soil-landscape relationships. Silva et al. (2016) reported better results for a knowledge-driven 

approach based on fuzzy-logic using the ArcSIE compared with data-driven approach (decision 

trees) for soil type prediction and knowledge transferability. In addition, the results here 

demonstrate an adequate capacity of knowledge transfer for the expansion of mapped areas 

based on reference area. McKay et al. (2010) tested how well a soil prediction model developed 

for a relatively small area would work to a different one, with similar environmental conditions. 

They found that a knowledge-based model such as SIE can be developed and effectively 

transferred, once the environmental factor constraints are considered.  
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3.2.3 RBR Prediction Uncertainty  

 

The ignorance of individuals can be estimated based on the entropy measure 

(Zhu,1997b; Qi and Zhu, 2011), which is related to the certainty on the inference results. For a 

location (i, j), the higher the membership for a particular class and lower the similarities to 

others, the smaller the uncertainty. Figure 3.8 shows the spatial distribution of the entropy 

values for RBR approach and its relative frequency distribution according to a landform 

classification. The entropy ranged from 0.0 to 1.0, with a mean of 0.38 and standard deviation 

of 0.27. The highest entropy values are associated with transitional zones between floodplains 

and footslopes. The soils occupying such transitional zones preserves similarities to their 

neighboring (based on their instances), enhancing the continuous aspect of soil distribution, 

which makes it difficult to fully apply a crisp limit for a certain soil type. Another observation 

for these lowland sites is the high percentage of medium entropy values (0.4-0.6). This is related 

to some similar values of SWI for both upper-concave areas and flood plains. Despite this, the 

inference results were quite accurate for lowland soil types. For open and upper slopes, the 

uncertainty is mostly related with two different soil-environment associations. The first is for 

coarse, gently to moderately slope surfaces (3-12%). Once these landforms are strongly related 

to Oxisols domains, the difficulty in discriminating the HX from AX, based only on 

morphometric variables would be the reason for the high uncertainty. The second is for slopes 

from 13% to 25%. These are common conditions for both Oxisols and Inceptisols. The 

uncertainty related to the inferred soil type were also investigated. The results are depicted in 

Table 3.4. HX and FT presented lowest entropy values than UT and AX. These results are 

strongly related to the overall accuracy, found with the field samples. 

For exaggeration, the mean value was 0.04 and the standard deviation 0.13. Only 18% 

of the study area presented values greater than zero, of which 71% were lower than 0.3. The 

higher exaggeration was related to ridges. The higher the exaggeration, the lower is the 

similarities to the assigned soil type. In general, high exaggeration values are related to random 

variations that were not well captured by the membership functions, or the similarity vector is 

not an accurate representation of the local soil types (Zhu, 1997b). In this study, the latter would 

be more appropriated due to the difficulty on defining limiars for the membership functions due 

to heterogeneity in the soil-landscape relationship in these sites.    

As shown, the entropy and exaggeration measures are important sources of information, 

with regards to the quality of the inference process and also for the quality of the knowledge 

obtained. It also can be useful for the development of the Rulebase. When the inference process 

results in high entropy levels, it indicates that the instances are not well captured by the soil-

environment configurations, or the database is not adequate to capture the soil variations. With 

this information, the user can revisit the knowledge and make a fine tuning of the instances. 

Additionally, as highlighted by Qi and Zhu (2011) this source of data would be useful for proper 
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management of soil resources, by considering the transitional zones as different of their 

respective optimal characteristics, and so, properly suggest their potential use. 

 

Figure 3.8 - Inference uncertainty based on entropy values and its relative frequency distribution 

according to a landforms classification. 
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3.2.4 CBR approach  

 

A total of 24 inferences were performed. The configuration of each Casebase and the 

results of external validation are shown in the Table 3.5.  The mean OA was 46% and KI of 

0,279. The best performance (61% (14/23) OA and 0,518 KI) was obtained by the dataset with 

the full polygon with the ea-TI ensemble of variables, using the mean as optimality value and 

the multiplication factor for P function. 

Regarding the variables selection, while other inference approaches as Random Forest 

and Decision Trees well handle a great number of covariates, ArcSIE seems to perform better 

with a reduced subset of variables. The multidimensionality has been tested and discussed for 

data-driven techniques in different areas of knowledge (Millard and Richardson, 2015; Heung 

et al., 2014; Scarpone et al., 2017; Yu et al., 2016), however, there are no such discussion for 

knowledge-based tools. In general, for data mining tools, by reducing the data sets 

dimensionality, the expectation is that the processing results in equally, if not better, inferences 

as for the original data set (Liu and Motoda, 1998).  

There are an extensive number of algorithms to figure out the importance of 

environmental covariables or subset selection. John et al. (1994) divide them into filter (e.g., 

Principal component analysis) and wrapper (e.g., Mean Decrease in Accuracy) approaches. 

However, the variables selection can also be Knowledge-driven (Shi et al., 2004; Shi et al., 

2009; Zhu et al., 2010; Zhu et al., 2014) and, if desired, statistical tools (as Box Plots) can be 

used to define a subset (Silva et al., 2016; Brown et al., 2012). In this study, based on the Table 

3.5, the Knowledge-driven approach for subset selection (ea-TI) presented better performance 

for 58% of the cases in direct comparison to the wrapper approach (rf-TI), with an average 

difference of 11% for OA and 0.152 for KI. The exceptions were mainly for the MUP-30 

polygons.  

Different sampling areas were also tested. In general, by using the original polygons and 

the ones with 20 m of exclusion zones, the inference accuracy was relatively similar, on 

average, 46.4% of OA and 0.296 of KI and 50% OA and 0.358 KI, respectively. The best 

prediction was obtained using the complete polygon (Casebase - AEMei - 61% of OA) 

(APPENDIX G). The cases developed from MUP-30 polygons resulted in the worst average 

accuracy, 39.9% OA and 0.183 KI. In respect to the buffer zones, these results are in agreement 

with Giasson et al. (2015), by failing to provide relevant advantages for the inference process. 

Furthermore, as stated by Pelegrino et al. (2016), in this same area of study, but using a Decision 
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Tree approach, there was a reduction in prediction accuracy when the exclusion zones were 

larger than 20 m from boundaries. 

 

Table 3.5 - Settings, accuracy and uncertainty of the CBR models. 

 
MUP – spatial reference (e=full polygon; -20= 20 m of exclusion zones; -30= 30 m of exclusion 

zones); Optimality – statistics applied for the V1-2 parameter of E function; Variables – ensemble of 

variables (ei-TI=knowledge driven selection; rf-TI=wrapped approach); OA% - Overall Accuracy; KI 

– Kappa Index; Ent – Entropy; Exag –   Exaggeration. 

 

This study also tested different statistics as the central concept for the fuzzy membership 

functions. At first, guided by the idea of major (most common) components, it was expected 

that, by applying the modal value of a given feature as its optimality value, it would result in 

more accurate predictions. However, the findings pointed out this assumption to be wrong. In 

direct comparisons, the models using the mean as the optimality value resulted in the most 

accurate predictions in 83% of the cases, with an average difference of 8.2% and 9.8% for OA 

and KI, respectively. It was not clear what may be caused this bias. By analyzing the effect of 

MUP Optimality P function Variables OA% K I EntOA Exag Casebase 

e mean limiting ei-TI 39 0.229 0.68 0.61 AELei 

e mean multiplication ei-TI 61 0.518 0.52 0.84 AEMei 

e mode limiting ei-TI 47 0.290 0.6 0.74 AOLei 

e mode multiplication ei-TI 52 0.343 0.43 0.9 AOMei 

-20 mean limiting ei-TI 56 0.423 0.6 0.63 BELei 

-20 mean multiplication ei-TI 56 0.423 0.44 0.82 BEMei 

-20 mode limiting ei-TI 52 0.391 0.64 0.62 BOLei 

-20 mode multiplication ei-TI 56 0.470 0.47 0.85 BOMei 

-30 mean limiting ei-TI 43 0.232 0.37 0.75 CELei 

-30 mean multiplication ei-TI 43 0.196 0.36 0.78 CEMei 

-30 mode limiting ei-TI 34 0.128 0.36 0.88 COLei 

-30 mode multiplication ei-TI 21 0.004 0.44 0.97 COMei 

e mean limiting rf-TI 52 0.353 0.67 0.57 AELrf 

e mean multiplication rf-TI 43 0.225 0.47 0.8 AEMrf 

e mode limiting rf-TI 39 0.197 0.57 0.67 AOLrf 

e mode multiplication rf-TI 39 0.211 0.38 0.85 AOMrf 

-20 mean limiting rf-TI 47 0.306 0.66 0.58 BELrf 

-20 mean multiplication rf-TI 34 0.174 0.46 0.81 BEMrf 

-20 mode limiting rf-TI 47 0.305 0.55 0.72 BOLrf 

-20 mode multiplication rf-TI 52 0.374 0.4 0.88 BOMrf 

-30 mean limiting rf-TI 52 0.345 0.38 0.82 CELrf 

-30 mean multiplication rf-TI 48 0.283 0.36 0.94 CEMrf 

-30 mode limiting rf-TI 39 0.101 0.35 0.88 COLrf 

-30 mode multiplication rf-TI 39 0.172 0.42 0.97 COMrf 
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alternating the integration parameter (P function), it was noted that, although the individual 

analysis indicates a better setting for a given function, the multivariate inference character turns 

it more complex to define an "overall better configuration", analyzing an automated method. 

For the cases developed with the full polygons, it was noticed that, independently of the statistic 

applied to the optimal values, using the ei-TI ensemble, the Multiplication factor performed 

better than the Limiting factor, and for the rf-TI, using Limiting for P function resulted in equal 

or better accurate inferences compared to Multiplication. For the polygons with 20 m of 

exclusion zones, those developed based on mean as optimality values performed better with the 

Limiting factor, and those using the mode were more accurate when integrated by Multiplication 

as P function, independently of the ensemble of variables. For the polygons with 30 m of 

exclusion zones, the Limiting factor presented better results as P function, independently of the 

others parameters. 

Based on the exposed, it is reasonable to affirm that different data sets will demand 

different configurations. The best setting resulted from a trial and error procedure. However, 

the great issue of developing the Casebase as a semi-automatic procedure is the adjustments for 

v1-v2 (optimality) and w1-w2 (deviations). In this study, while the values for v1-v2 

corresponded to the mean or mode of a specific ensemble of environmental features (TI), the 

w1-w2 values were set as their standard deviation. The curves were bell-shape by default. These 

settings result in a symmetric curve, which, in some (not rare) cases, did not well represent the 

knowledge implicitly represented in an existing mapping unit.  

Figure 3.9 shows the fuzzy membership functions (Gaussian curves) and the kernel-

smoothed frequency curve of a given environmental feature related to a specific mapping unit, 

which, in turn, corresponds to a case. Figure 3.9A, observing the kernel curve, it is possible to 

note two peaks, at 4.0 and 4.7 (environmental feature values). Comparing with the Gaussian 

curves, both values, despite its similar frequency, are not equivalent on optimality, so the curve 

fitted with the modal value, peak 4.0 corresponds to half of the optimization value of 4.7. In 

such cases, it would be feasible to keep the bell-shaped curve, but adjustment of values v1-v2 

to comprehend the range from 4.0 to 4.7, or multiple instances should be considered.  

Figure 3.9B represents a common problem for relatively large polygons, wrapping a 

wide range of the environmental feature values. By setting the w1-w2 as the standard deviation, 

the Gaussian curve attributed high optimality values for low-frequency feature values on the 

left side of the curve and lower optimality for relatively most frequent ones on the right side. 

Also, in spite of the mean curve seems to be more realistic, the most common value (47), which 

in turn should have a high (if not full) optimality value, corresponds to only a half. For this 
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case, it should be considerate that a S-shaped curve might best characterize the relationship 

between the soil and this environmental factor. 

In general, the models presented poor accuracy rates, even the best model (AEMei) and 

was not satisfactory based on the criteria of the Brazilian Pedology Technical Manual (IBGE, 

2015), which establishes that soil maps must present up to 30% of inclusions to be acceptable. 

Nevertheless, once these models were created on KD module and stored, the Casebase can be 

revisited whenever necessary. Thus, this kind of semi-automated approach would be useful for 

a first evaluation on the different sets of data and settings, and if desired, a given Casebase 

would be improved. 

 

Figure 3.9 - Optimality and Kernel density curves of two different cases. The Gaussian curves 

were adjusted with the mean and mode of a given environmental feature spatially 

constricted by a mapping unit (polygon). 

 

3.2.5 CBR prediction uncertainty 

 

The CBR uncertainty indexes (entropy and exaggeration) are shown in Table 3.6. 

Comparing with RBR approach, the 24 predicted maps presented higher uncertainty. In part, 

these values can be explained by the already discussed soil-landscape associations, which 

naturally make it difficult to discriminate the soil types. However, the development of models 

based on symmetric Gaussian curves also contributed as discussed above.  

A major difference observed from the comparison of the six groups of maps in Table 

3.6 is that using the MUP with 30 m of exclusion zone (MUP -30m) as spatial reference, in 

which the overall level of entropy was lower than both the complete MUP (MUPe) and the one 

with 20 m of exclusion zone (MUP -20m), but resulted in an overall higher level of exaggeration 

uncertainty. By examining the optimality curves derived from the different sets of spatial 

references (polygons), it was noted that the MUP-30m group tended to generate narrower 
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curves than others. This is directly related to the reduction of the polygons dimensionality. 

Smaller polygons are more constrained in terms of capturing the environmental feature range. 

As a result, there is an overlapping reduction among other soil types. Thus, lower entropy values 

are found, but also resulted in higher exaggeration uncertainty. This effect of narrower curves 

resulting in lower entropy values and higher exaggeration uncertainty was also observed by Qi 

and Zhu (2011).  

 

Table 3.6 - Overall entropy and exaggeration measures of the predicted soil type maps. 

 

MUP 
Entropy Exaggeration Entropy Exaggeration 

ei-TI rf-TI 

e 0.558 0.773 0.523 0.723 

-20 0.538 0.730 0.518 0.748 

-30 0.383 0.845 0.378 0.903 

 
MUP – Casebase spatial reference (e=full polygon; -20= 20 m of exclusion zones; -30= 30 m of 

exclusion zones); ei-TI – knowledge driven ensemble of variables; rf-TI wrapped approach for variables 

selection. 

 

The entropy is related to the membership diffusion in the similarity vector (Zhu, 1997b) 

in the inference result. For a pixel (i,j), the higher the membership for a single class (and lower 

for others), the lower the entropy, and hence the uncertainty. This explains how, by reducing 

the overlapping, the entropy of MUP -30m groups was lower than others. On the other hand, 

the uncertainty related to the exaggeration deals with the membership saturation to the assigned 

class (Zhu, 1997b). Models based on narrower curves tend to result in a relatively lower 

frequency of high membership values leading to higher exaggeration uncertainty and lower 

accuracy of the predicted maps.  

 

3.3 CONCLUSIONS 

 

The RBR approach led to the development of a formal framework, structuring and 

formalizing the knowledge retrieved from the soil legacy data. This mapping technique allowed 

the creation of an accurate soil map, covering an area 15.5 times greater than the reference area, 

up to the second level according to Soil Taxonomy.  

 The CBR approach proposed in this study, as a semi-automatic modeling technique did 

not result in a satisfactory soil spatial prediction. The inference process resulted in relatively 

great uncertainty over all of the 24 tested sets. However, it could be useful for analyzing the 



84 

performance of different data sets under different configurations for variables selection or 

function adjustments. Regarding the CBR configurations, the use of the mean or mode as 

optimal value did not result in great differences in accuracy, as well as for the Limiting or 

Multiplication settings for P function.  

For the spatial settings, by excluding 30 m from the boundaries of the polygons, the 

membership curves became narrower, increasing the uncertainty in the inference process, being 

the original polygons those that promoted the best predictions. 
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APPENDIX 

 

APPENDIX A – Soil profiles descriptions and physicochemical analysis 

 

APPENDIX B - Distribution of soil profiles used for external validation of prediction models 

 

APPENDIX C - Geology at the study area 

 

APPENDIX D – TPI based landforms classification map of the study area 

 

APPENDIX E - Hypsometric map of the study area 

 

APPENDIX F – Predicted soil maps based on models: A) PCA Buffer-Point (PCA5); B) PCA 

POL-20 (MDA9) 

 

APPENDIX G – CBR predicted soil map by the model AEMei 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (PT2) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo     

Date - 08/feb/2017     

Coordinates UTM - 556687 x 7594778 m, fuse 23, datum WGS 1984     

Land use - native pasture     

Parent Material - biotite schist or gneiss     

Landform - high Ridge     

Relief ² - steeply sloping to very steeply sloping      

Slope (%) - 7.2     

Elevation (m) - 1107     

Aspect (º) - 141 (Southeast)   

Erosion - severe laminar     

Permeability - well drained     

A horizon - moderate     

Described by - M. D. de Menezes; D. F. T. Machado     

 

Table 4.1 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 28 14 58 

B 35 16 49 

 

Table 4.2 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.1 40.86 0.39 0.31 0.14 0 3.95 

B 5.8 8.22 0.06 0.16 0.1 0 1.2 

 

Table 4.3 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-------cmol/dm³------- ------ % ------ dag/kg mg/L 

A 0.55 0.55 4.5 12.33 0 2.96 19 

B 0.28 0.28 1.48 18.99 0 0.75 3.75 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

 HAPLUDOX (PT3) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo 

Date - 08/feb/2017 

Coordinates UTM - 561114 x 7595805 m, fuse 23, datum WGS 1984 

Land use - pasture 

Parent Material - biotite schist or gneiss 

Landform - High Ridges 

Relief ² - steeply sloping 

Slope (%) - 7.2 

Elevation (m) - 1106 

Aspect (º) - 275 (West) 

Permeability - well drained 

A horizon - prominent 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.4 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 54 17 29 

B 52 16 32 

 

Table 4.5 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5 34.33 0.17 0.21 0.12 0 8.05 

B 5.3 10.39 0.01 0.15 0.1 0 2.65 

 

Table 4.6 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.42 0.42 8.47 4.94 0 3.09 8.57 

B 0.28 0.28 2.93 9.44 0 1.16 6.27 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

 UDEPT (PT4) 

Classification (SiBCS¹) - Cambissolo Háplico 

Date - 08/feb/2017 

Coordinates UTM - 557545 x 7596076 m, fuso 23, datum WGS 1984 

Landuse - native forest (litter accumulation) 

Parent Material - biotite schist or gneiss 

Landform - open slope (Upper third) 

Relief ² - steeply to very steeply sloping 

Slope (%) - 27.4 

Elevation (m) - 1020 

Aspect (º) - 256 (West) 

Permeability - well drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.7 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 29 28 43 

B1 28 21 51 

B2 24 35 41 

 

Table 4.8 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 6.2 82.22 2.08 4.25 1.5 0 3.2 

B1 5.2 32.16 0.48 0.43 0.17 0 3.5 

B2 5.7 29.98 0.23 0.63 0.33 0 1.22 

 

Table 4.9 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 5.96 5.96 9.16 65.07 0 5.31 22.6 

B1 0.68 0.68 4.18 16.33 0 1.55 18.66 

B2 1.04 1.04 2.26 45.88 0 0.53 25.73 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

ACRUDOX (PT5) 

Classification (SiBCS¹) - Latossolo Vermelho 

Date - 08/feb/2017 

Coordinates UTM - 562840 x 7592060 m, fuso 23, datum WGS 1984 

Landuse - pasture 

Parent Material - biotite gneiss (banded) or quartzite 

Landform - high ridges 

Relief ² - strongly to steeply sloping 

Slope (%) - 15.2 

Elevation (m) - 1140 

Aspect (º) - 1 (North) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/6; B - 2.5YR 4/8 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.10 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 24 23 53 

B 32 24 44 

 

Table 4.11 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.8 147.51 0.78 1.7 1.6 0 2.37 

B 5.7 56.1 0.31 0.22 0.59 0 2.03 

 

Table 4.12 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 3.68 3.68 6.05 60.8 0 3.29 36.91 

B 0.95 0.95 2.98 32.01 0 0.18 9.24 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (PT6) 

Classification (SiBCS ¹) - Latossolo Vermelho-Amarelo 

Date - 08/feb/2017 

Coordinates UTM - 566356 x 7593936 m, fuso 23, datum WGS 1984 

Landuse - pasture 

Parent Material - biotite gneiss (banded) or quartzite 

Landform - plain 

Relief ² - moderately to strongly sloping 

Slope (%) - 4.9 

Elevation (m) - 1040 

Aspect (º) - 299 (Northwest) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 3/4; B - 5YR 5/8 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.13 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 21 10 69 

B 35 6 59 

 

Table 4.14 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.4 43.04 0.34 0.64 0.29 0 2.74 

B 5.8 6.04 0.01 0.11 0.1 0 1.04 

 

Table 4.15 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 1.04 1.04 3.78 27.52 0 2.96 29.02 

B 0.23 0.23 1.27 17.75 0 0.35 3.49 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (PT8) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo 

Date - 08/feb/2017 

Coordinates UTM - 565105 x 7597367 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - biotite gneiss (banded) 

Landform - plain 

Relief ² - very gently to moderate sloping 

Slope (%) - 6.9 

Elevation (m) - 991 

Aspect (º) - 59 (Northeast) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/6; B - 5YR 5/6 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.16 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 30 13 57 

B 42 12 46 

 

Table 4.17 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.5 58.27 0.56 0.8 0.29 0 2.4 

B 6.1 6.04 0.09 0.14 0.1 0 1.3 

 

Table 4.18 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 1.24 1.24 3.64 34.05 0 2.22 22.99 

B 0.26 0.26 1.56 16.38 0 0.67 4.66 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (´PT9) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo 

Date - 08/feb/2017 

Coordinates UTM - 558661 x 7590305 m, fuso 23, datum, WGS 1984 

Landuse - remnant of native forest 

Parent Material - biotite gneiss (banded) 

Landform - upper slopes 

Relief ² - strongly sloping 

Slope (%) - 5 

Elevation (m) - 1129 

Aspect (º) - 337 (North) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet)   horizons: A - 5YR 3/4; B - 5YR 5/6 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.19 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 44 10 46 

B 55 12 33 

 

Table 4.20 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5 53.92 0.59 0.38 0.22 0 5.96 

B 5.7 14.74 0.12 0.14 0.1 0 2.4 

 

Table 4.21 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.74 0.74 6.7 11.02 0 3.25 15.45 

B 0.28 0.28 2.68 10.37 0 1.23 8.22 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

FLUVENT (PT10) 

Classification (SiBCS¹) - Neossolo Flúvico 

Date - 08/feb/2017 

Coordinates UTM - 566742 x 7595145 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - alluvial sediments of the quaternary 

Landform - floodplain 

Relief ² - level to gently sloping 

Slope (%) - 3.9 

Elevation (m) - 975 

Aspect (º) - 284 (West) 

Erosion - not apparent 

Permeability - imperfectly drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.22 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 17 15 68 

C 13 7 80 

 

Table 4.23 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.6 56.1 2.89 0.94 0.47 0 3.42 

C 5.4 12.57 1.79 0.31 0.1 0 2.12 

 

Table 4.24 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 1.55 1.55 4.97 31.26 0 2.45 27.79 

C 0.44 0.44 2.56 17.27 0 0.41 27.64 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

FLUVENT (P11) 

Classification (SiBCS¹) - Neossolo Flúvico 

Date - 07/feb/2017 

Coordinates UTM - 567936 x 7602331 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - alluvial sediments of the quaternary 

Landform - floodplain 

Relief ² - depressional to level 

Slope (%) - 0 

Elevation (m) - 958 

Aspect (º) - -1 (flat) 

Erosion - not apparent 

Permeability - imperfectly drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.25 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 37 45 18 

C 48 41 11 

 

Table 4.26 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.7 88.74 3.16 1.67 1.06 0 5.34 

C 5.7 51.74 1.41 0.74 0.31 0 5.28 

 

Table 4.27 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 2.96 2.96 8.3 35.63 0 3.54 13.97 

C 1.18 1.18 6.46 18.31 0 1.82 5.58 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

FLUVENT (PT12) 

Classification (SiBCS¹) - Neossolo Flúvico 

Date - 07/feb/2017 

Coordinates UTM - 573864 x 7603428 m, fuso 23, datum, WGS 1984 

Landuse - permanent protection area 

Parent Material - alluvial sediments of the quaternary 

Landform - floodplain 

Relief ² - strongly to steeply sloping 

Slope (%) - 11.3 

Elevation (m) - 1032 

Aspect (º) - 327 (Northwest) 

Permeability - imperfectly drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

Observations - narrow floodplain 

 

Table 4.28 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 13 1 86 

C 11 7 82 

 

Table 4.29 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.8 14.74 0.87 0.16 0.1 0 1.24 

C 5.4 34.33 0.78 0.26 0.21 0 3.35 

 

Table 4.30 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.3 0.3 1.54 19.34 0 0.36 28.02 

C 0.56 0.56 3.91 14.27 0 1.74 34.69 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

UDEPT (PT13) 

Classification (SiBCS¹) - Cambissolo Háplico 

Date - 07/feb/2017 

Coordinates UTM - 572339 x 7599193 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - biotite schist or gneiss 

Landform - Plain 

Relief ² - moderately to steeply sloping 

Slope (%) - 2.3 

Elevation (m) - 1061 

Aspect (º) - 166 (South) 

Permeability - well drained 

A horizon - weak (underdeveloped)  

Described by - M. D. de Menezes; D. F. T. Machado 

Observations - "Epipedregoso" (in portuguese) 

 

Table 4.31 - Granulometric analysis 

Horizon 

Particle Size Analysis 

Clay Silt Sand 

---dag/kg--- 

A 13 20 67 

B 11 16 73 

 

Table 4.32 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.4 32.16 1.67 0.44 0.19 0 2.24 

B 5.3 27.8 1.24 0.32 0.12 0 2.42 

 

Table 4.33 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.71 0.71 2.95 24.15 0 2.09 37.32 

B 0.51 0.51 2.93 17.45 0 1.8 39.24 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

ACRUDOX (PT15) 

Classification (SiBCS¹) - Latossolo Vermelho 

Date - 07/feb/2017 

Coordinates UTM - 566813 x 7606055 m, fuso 23, datum, WGS 1984 

Landuse - Soybean crop 

Parent Material - phyllites; xystus or quartzite 

Landform - upper slope 

Relief² - strongly to steeply sloping 

Slope (%) - 14.2 

Elevation (m) - 1030 

Aspect (º) - 21 (North) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/3; B - 2.5YR 4/6 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.34 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 48 28 24 

B 57 20 23 

 

Table 4.35 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 6.3 95.27 0.73 2.64 1.06 0 3.27 

B 4.9 43.04 0.01 0.32 0.12 0 2.62 

 

Table 4.36 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 3.94 3.94 7.21 54.71 0 4.34 10.92 

B 0.55 0.55 3.17 17.36 0 1.84 4.41 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (PT16) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo 

Date - 07/feb/2017 

Coordinates UTM - 562323 x 7600072 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - biotite gneiss (banded) 

Landform - Plain 

Relief ² - strongly sloping 

Slope (%) - 4.3 

Elevation (m) - 1005 

Aspect (º) - 85 (East) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/4; B - 5YR 5/6 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.37 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 28 16 56 

B 37 14 49 

 

Table 4.38 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.2 40.86 0.12 0.41 0.16 0 4.72 

B 5.7 14.74 0.01 0.21 0.12 0 1.78 

 

Table 4.39 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.67 0.67 5.39 12.52 0 2.2 12.47 

B 0.37 0.37 2.15 17.11 0 0.93 6.44 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (PT17) 

Classification (SiBCS¹) - Latossolo Vermelh-Amarelo 

Date - 07/feb/2017 

Coordinates UTM - 567333 x 7605862 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - phyllites; xystus or quartzite 

Landform - open slope (upper third) 

Relief ² - strongly to steeply sloping 

Slope (%) - 44.3 

Elevation (m) - 999 

Aspect (º) - 179 (South) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/4; B - 5YR 5/6 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.40 - Granulometric analysis 

Horizon 

Particle Size Analysis 

Clay Silt Sand 

---dag/kg--- 

A 23 14 63 

B 28 13 59 

2B 19 33 48 

 

Table 4.41 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 6 167.1 0.31 0.37 0.15 0 2.42 

B 5.6 19.1 0.26 0.18 0.1 0 1.92 

2B 5.7 10.39 0.2 0.14 0.1 0 1.16 

 

Table 4.42 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base saturation 

(V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.95 0.95 3.37 28.14 0 1.92 17.8 

B 0.33 0.33 2.25 14.62 0 1.13 16.14 

2B 0.27 0.27 1.43 18.65 0 0.39 17.18 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

UDEPT (PT18) 

Classification (SiBCS¹) - Cambissolo Háplico 

Date - 07/feb/2017 

Coordinates UTM - 569600 x 7600598 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - gneiss or feldspar schist 

Landform - upper slope (near the ridge) 

Relief ² - steeply sloping 

Slope (%) - 26.5 

Elevation (m) - 1071 

Aspect (º) - 190 (South) 

Erosion - frequent linear erosion 

Permeability - well drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

Observations - degraded pasture and poorly maintained roads 

 

Table 4.43 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 23 15 62 

Bi 24 15 61 

 

Table 4.44 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 4.9 19.1 0.5 0.2 0.1 0 3.91 

Bi 5.1 10.39 0.26 0.15 0.1 0 4.04 

 

Table 4.45 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.35 0.35 4.26 8.19 0 2.47 27.64 

Bi 0.28 0.28 4.32 6.4 0 1.44 23.99 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

HAPLUDOX (EX2) 

Classification (SiBCS¹) - Latossolo Vermelho-Amarelo 

Date - 07/feb/2017 

Coordinates UTM - 570391 x 7604930 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - biotite schist or gneiss 

Landform - open slope (upper third) 

Relief ² - strongly to steeply sloping 

Slope (%) - 6.8 

Elevation (m) - 1038 

Aspect (º) - 11 (North) 

Permeability - well drained 

A horizon - moderate 

Soil color (wet) - horizons: A - 5YR 4/6; B - 5YR 5/8 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.46 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 23 15 62 

B 31 14 55 

 

Table 4.47 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.2 23.45 0.34 0.16 0.1 0 2.77 

B 5.6 8.22 0.17 0.23 0.1 0 1.35 

 

Table 4.48 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 0.32 0.32 3.09 10.36 0 1.81 21.27 

B 0.35 0.35 1.7 20.65 0 0.46 6.01 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

UDEPT (EX5) 

Classification (SiBCS¹) - Cambissolo Háplico 

Date - 07/feb/2017 

Coordinates UTM - 575696 x 7599388 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - biotite schist or gneiss 

Landform - open slope (upper third) 

Relief ² - steeply sloping 

Slope (%) - 19.6 

Elevation (m) - 1132 

Aspect (º) - 138 

Permeability - well drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

 

Table 4.49 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 33 14 53 

B 35 11 54 

C 28 26 46 

 

Table 4.50 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.4 51.74 0.59 0.72 0.45 0 2.93 

B 5 16.92 0.31 0.29 0.14 0 3.91 

C 5.5 6.04 0.26 0.25 0.13 0 1 

 

Table 4.51 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base 

saturation (V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 1.3 1.3 4.23 30.8 0 2.33 22.73 

B 0.47 0.47 4.38 10.81 0 1.64 16.54 

C 0.4 0.4 1.4 28.25 0 0.2 14.6 
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¹ SiBCS - Brazilian Soil Classification System 

² Relief (Slope %): depressional to level (0-0.5); very gently sloping (0.5-2.0); gently sloping (2-5); moderately sloping (5-9); 

strongly sloping (9-15); steeply sloping (15-30); very steeply sloping (30-60); extremely sloping (over 60) 

FLUVENT (EX7) 

Classification (SiBCS¹) - Neossolo flúvico 

Date - 07/feb/2017 

Coordinates UTM - 556687 x 7594778 m, fuso 23, datum, WGS 1984 

Landuse - pasture 

Parent Material - alluvial sediments of the quaternary 

Landform - valley 

Relief ² - floodplain 

Slope (%) - 0.4 

Elevation (m) - 978 

Aspect (º) - 31 (Northeast) 

Erosion - not apparent 

Permeability - imperfectly drained 

A horizon - moderate 

Described by - M. D. de Menezes; D. F. T. Machado 

Observations - profile near an artificial-channel 

 

Table 4.52 - Granulometric analysis 

Horizon 

Particle Size Analisys 

Clay Silt Sand 

---dag/kg--- 

A 8 7 85 

C 6 6 88 

 

Table 4.53 – Soil pH, sorption complex, assimilable phosphorus and extractable acidity. 

Horizon pH 
K P Ca Mg Al H+Al 

----mg/dm³---- -----cmol/dm³----- 

A 5.9 43.04 3.13 0.9 0.32 0 1.74 

C 6.6 47.39 2.92 0.72 0.25 0 1.33 

 

Table 4.54 – Sum of bases (SB), Cation exchange capacity (CEC and CEC at pH 7,0), base saturation 

(V), aluminum saturation (m), organic matter and remaining phosphorus (P-Rem) 

Horizon 
SB t T V m O.M. P-Rem 

-----cmol/dm³----- ---- % ---- dag/kg mg/L 

A 1.33 1.33 3.07 43.33 0 1.97 39.78 

C 1.09 1.09 2.42 45.1 0 0.77 36.19 
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APPENDIX B - Distribution of soil observations used for external validation of Random 

Forest, CBR and RBR prediction models 
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Na1+2 - Biotita gnaisses bandados com intercalações de filitos / xistos cinzentos, muscovita xistos, quartzitos, anfibolitos e rochas ultramáficas; Na3 - Quartzito e quartzo 

xisto, em geral com muscovita esverdeada; Na4 - Filitos ou xistos cinzentos e quartzitos; Na5 - Biotita xisto ou gnaisse; Na6 - Gnaisse e xisto feldspático; com intercalações 

de muscovita xisto, quartzito, quartzito micáceo, quartzito manganesífero, rochas alcissilicáticas e anfibolitos, com veios de turmalinito e pegmatito; APi - Ortognaisses 

migmatíticos indivisos; beta2 - Anfibolitos 

APPENDIX C - Geology at the study area 
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APPENDIX D – TPI based landforms classification map of the study area 
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APPENDIX E - Hypsometric map of the study area 



113 

 

APPENDIX F – Predicted soil maps based on models: A) PCA Buffer-Point (PCA5); B) PCA POL-20 (MDA9)
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APPENDIX G – CBR predicted soil map using the model AEMei 


